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On the Height of a Homotopy
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Abstract

Given 2 homotopic curves in a topological space, there
are several ways to measure similarity between the
curves, including Hausdorff distance and Fréchet dis-
tance. In this paper, we examine a different measure
of similarity which considers the family of curves repre-
sented in the homotopy between the curves, and mea-
sures the longest such curve, known as the height of the
homotopy. In other words, if we have two homotopic
curves on a surface and view a homotopy as a way to
morph one curve into the other, we wish to find the
longest intermediate curve along the morphing.

In this paper, our model assumes we are given a
pair of disjoint embedded homotopic curves (where the
endpoints remained fixed over the course of the homo-
topy) in an edge-weighted planar triangulation satisfy-
ing the triangle inequality. We prove that among min-
imal height homotopies between the two curves, there
exists an embedded isotopy; in other words, the homo-
topy with minimum height never makes a “backwards”
move and results in disjoint simple intermediate curves.

1 Introduction

There are many ways of measuring similarity between
curves. Hausdorff distance is one common measure,
which is (intuitively) the maximum distance that an
adversary can force by picking a point on one curve
and allowing you to choose any point on the other
curve. While Hausdorff distance does measure close-
ness in space, it does not take into account the flow of
the curve in space; two curves may have small Hausdorff
distance but still not be “similar”.

A second metric for measuring similarity between
curves in Euclidean space is the Fréchet distance, which
is the minimum length of a leash required to connect
a man and dog as they travel, from one endpoint to
the other, without backtracking, along the two curves.
Fréchet distance is used in different applications as a
more accurate measure of similarity, and algorithms
have been developed to compute Fréchet distance in sev-
eral different settings [1, 8, 9]. Several variants, such as
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Figure 1: The height of the homotopy measures the
maximum length of the solid curves “parallel” to α and
β, while Fréchet distance measures the maximum length
of the dashed “transverse” curves.

geodesic Fréchet distance [3] and homotopic Fréchet dis-
tance [2], have also been introduced to generalize the
notion of Fréchet distance to more general settings.

In this paper, we examine a metric for measuring
similarity between curves which is in many ways or-
thogonal to standard Fréchet distance. Any homotopy
H : I × I → S between two curves yields two families
of curves: one set H(s0, t) (for fixed s0) that run “be-
tween” the two curves being examined and the other
H(s, t0) (for fixed t0) that run “parallel” to the the
curves being examined, see Figure 1. Fréchet distance is
the maximum length curve in the first family of curves,
H(s, ·), while the height of the homotopy is the maxi-
mum length curve in the second family, H(·, t).

We fix our model as a planar triangulation with
weighted edges satisfying the triangle inequality, where
the two input curves are constrained to lie along the
boundary of the graph. However, it is worth noting that
all proofs generalize to graphs embedded on surfaces,
where edges in the graph satisfy the triangle inequality
and the input curves are homotopic cycles; details of
those generalizations are omitted due to space, but will
appear in future work.

Borrowing the concept of thin position from 3-
manifold topology, we will show that among the minimal
height homotopies between disjoint paths there is one
that never “reverses direction” or “collides with itself”.
Thin position was developed by Gabai [6] and used by
Thompson in the 3-sphere recognition algorithm [10].
The technique focuses on studying local properties of a
sequence and then using local optimality conditions to
prove global properties. We use this concept to prove
the main theorem of the paper and also provide a char-
acterization of minimal “complexity” move sequences.
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2 Definitions

We will be working on a triangulated surface M , where
curves lie along the edges of the triangulation and the
edges of the triangulation are weighted and satisfy the
triangle inequality. In general, a path is a continuous
map p : [0, 1] → M . However, we restrict paths to
follow the edges of the triangulation, where each edge
is oriented consistently with traversing starting at p(0)
and ending at p(1). The length of a path p, written |p|,
is the sum of the weights of the edges (with multiplicity)
in the path.

A path is a geodesic if it is impossible to perform a
local reduction in its length. In other words (since the
underlying graph is unweighted), a path is a geodesic if
no edge in the path is immediately followed by its re-
versal and if no two cofacial edges appear consecutively
along the path. Note that this is not the same as being
a shortest path, as it is a purely local condition.

A path on a surface is simple or embedded if it is 1-1.
Since we will be restricting paths to lie along edges of
a graph on the surface, the same edge or vertex may
appear many times in a path. Because of this, we will
examine paths that have been perturbed in an infinites-
imally small neighborhood of the edges of the triangu-
lation. We will say a path is simple if there exists such
a perturbation to an embedded curve. Likewise, two
paths will be considered disjoint if, after an infinitesi-
mal perturbation, they have no points in common.

Two curves γ1, γ2 : [0, 1] → M are homotopic if there
is a continuous map H : [0, 1] × [0, 1] → M such that
H(0, t) = γ1(t) and H(1, t) = γ2(t). In other words, two
curves are homotopic if you can continuously deform
one to the other. We say the two curves are isotopic if
for each fixed t and x ∈ [0, 1], each curve H(x, t) is a
homeomorphism, or both onto and 1-1. This is much
stronger than simple homotopy, since it insures the the
continuous deformation consists of simple curves.

However, in our setting, paths are restricted to edges
of the triangulation, so the continuous deformation re-
quired for homotopy and isotopy are not well defined.
We will use an alternate mechanism to move from one
path to another. We will study a move sequence from
one path to another where each move is one of the fol-
lowing elementary moves.

• Face lengthening : A move from a single edge e0

across a face to two edges e1 and e2.

• Face shortening : A move from two consecutive
cofacial edges e0 and e1 across a face to a single
edge e2.

• Spike : Move across a single edge, so that an edge e
followed by its reversal is included in the new path.

• Reverse spike : A reverse spike move, where an
edge and its immediate reversal is removed from
the path.
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Figure 2: Elementary moves (top to bottom): face
lengthening, face shortening, spike and reverse spike.

We will refer to the set of paths obtained by applying
elementary moves one at a time as intermediate paths.

We can connect a move sequence with k moves to
an obvious implied homotopy H : [0, 1] → M , where
H(s, 1/i) is equal to the ith intermediate path in the
sequence; the homotopy remains fixed between these
paths except where the elementary move is being per-
formed. If each of these intermediate paths is simple,
then we will refer to the move sequence as simple. This
is equivalent to saying that the implied homotopy can
be perturbed to be an isotopy.

We would like to be able to say that, under appro-
priate conditions, move sequences never backtrack and
proceed monotonically from one path to another. To
be precise, consider a transverse orientation on a path
that (locally) indicates where the path was previously.
A move is considered (locally) forward if the move re-
spects the transverse orientation. Figure 3 shows a for-
ward move applied to a path where the transverse ori-
entation is represented by shading; here, the shading is
“behind” the curve, so the forward move goes away from
the shaded side. Note that since this is purely local, a
forward move may still cause the intermediate path to
be non-simple. Also, note that move sequences con-
sisting of only locally forward moves can have “spirals.”
We define a move sequence to be embedded if it is simple
and only uses forward moves. This is equivalent to say-
ing that after a perturbation, its associated homotopy
is an isotopy that is an embedding everywhere except
at the preimage of the two endpoints of the paths. Es-
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Figure 3: Two forward moves. Locally both move away
from the region previous visited. Globally, the second
results in a non-simple path.

sentially, an embedded move sequence has intermediate
paths that move smoothly across the disk, never cross-
ing themselves or other intermediate paths, so that the
situation on the right of Figure 3 can never happen.

The height of a homotopy is the maximum length
of any intermediate curve: maxt∈[0,1] |H(·, t)|; similarly,
the height of a move sequence is the length of the longest
curve in the sequence. We wish to determine the mini-
mum height homotopy between two curves which form
the boundary of a planar, unweighted triangulation; in
other words, we want the morphing between these two
curves that keeps the maximum length of an interme-
diate curve as small as possible. However, it is not im-
mediately obvious that this homotopy is embedded or
forward; our main result, stated formally and proven
in the next section, is that some minimum height move
sequence is embedded and proceeds uniformly from one
path to another without spirals or other degeneracies.

To accomplish this, we need a more precise way to
compare two move sequences. Given a sequence of
moves, the length spectrum is the set of all lengths of the
intermediate paths in the sequence. Two length spec-
trums can be compared by ordering each in decreasing
order and comparing the two lists lexicographically. A
move sequence is said to be in thin position if its length
spectrum is lexicographically minimal among all possi-
ble move sequences between the same paths. A move
sequence that is in thin position has minimal height.
Furthermore, every subsequence of moves also has min-
imal height.

A move sequence is locally thin if you cannot decrease
the lengths in its length spectrum by any of the following
local improvements:

1. Remove a pair of sequential moves where the inter-
mediate curves before and after the pair of moves
are combinatorially identical.

2. Reverse the order of a path lengthening move fol-
lowed by a path shortening move that are indepen-
dent of each other.

3. Replace a pair of moves that accomplish the result
as a single move. For example, a spike move fol-
lowed by an adjacent face shortening move can be
replaced by a single face lengthening move.

We will see that embedded locally thin move sequences
share many properties with move sequences that are in
thin position.

3 Weighted Planar Triangulations

The setting for all our results in the next two sections
is a planar, weighted triangulation (so our underlying
manifold is a disk) where the edges weights satisfy the
triangle inequality, with two distinguished vertices a and
b on the outer face of the graph. Our goal is to charac-
terize the minimum height homotopy from one side of
the outer face (a path from a to b along the outer face)
to the other side of the outer face.

At each stage of a homotopy from one boundary curve
to the other, we have a connected curve between a and
b. Our goal is to argue that in a minimum height homo-
topy, these intermediate paths never move backwards -
namely, once an elementary move occurs, it will never
be in our interest to move back across that face or edge.
We will show that any move sequence that contains a
backwards move is not in thin position (which immedi-
ately implies that it cannot be a minimum height ho-
motopy). Furthermore, the move sequence must be em-
bedded or, equivalently, the homotopy induced by the
move sequence can be infinitesimally perturbed to be
an embedded isotopy.

Theorem 1 Given a move sequence from one side of
the boundary of an unweighted planar triangulation to
the other side, if the move sequence is in thin position,
then it is embedded.

Corollary 2 There exists a minimum height moves se-
quences that is embedded.

The proof of Theorem 1 will follow from the follow-
ing two propositions. The first shows that there are no
backwards moves, and the second shows that any move
sequence consisting of only forward moves is embedded.

Proposition 3 Any move sequence in thin position will
never contain a backwards move.

The proof of this proposition relies on the observation
that if there is a backwards move for a move sequence
in thin position, then the move immediately prior to it
must share an edge with the backwards move. In a case
by case analysis, this pair of moves can be replaced by
different moves that reduce the complexity of the move
sequence.

Proposition 4 A forward move sequence from an arc
on the boundary of a disk to the complementary arc in
the boundary is embedded.

This can be proved using arguments involving covers
of topological spaces.
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Figure 4: The configurations of paths at the local max-
ima of a move sequence in (locally) thin position. The
paths from a to x and y to b are geodesics.

4 Characterizing Move Sequences in Thin Position

In applications of thin position to 3-manifold topology,
the local maxima and minima of sequences that are
in thin position have particularly nice properties. The
same is true for move sequences.

Theorem 5 If a move sequence is either in thin posi-
tion or is embedded and locally thin then:

1. A path in the move sequence whose length is a local
minimum is a geodesic.

2. A path in the move sequence whose length is a lo-
cal maximum is geodesic everywhere except two or
three points, and at these points the path has, up
to symmetry, one of the configurations shown in
Figure 4.

5 Extensions and Open Questions

The same case analysis used in the proof Proposition 3
plus a few additional arguments can be used to prove
similar results about move sequence between the bound-
ary components of a triangulated annulus; this naturally
gives a useful characterization of the minimum height of
a homotopy between two curves on a surface.

In Sections 3 and 4, we have characterized the move-
ment of any minimum height homotopy. The primary
remaining open question, of course, is to find a polyno-
mial time algorithm which, given two cycles on a com-
binatorial surface, computes a homotopy of minimum
height (or at least the height of the minimum homo-
topy). Some initial work in this area has been done for
the planar version of the problem, where the graph it-
self is a series parallel graph whose edges do not need
to satisfy the triangle inequality [5]. One possible strat-
egy for an algorithm in more general settings would rely
on proving that the shortest path appears in a move se-
quence in thin position, and then recursively computing
the minimum height homotopy in each half of the graph
using our characterization of local minimum and max-
imum intermediate paths. However, our proofs do not
give that the shortest path will appear in the minimum
height homotopy, although we conjecture that it does.

It is not clear that the problem is not NP-Complete,
since it bears a close resemblance to finding the cut
width of the dual graph. In fact, if we disallow spike
moves, the problem becomes equivalent to finding the
cut width of the dual graph, which is NP-Hard even in
planar graphs. (See [4] for a survey of cut width and
similar graph layout problems.)
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