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Abstract

When a graph is drawn in a classical manner, its vertices
are shown as small disks and its edges with a positive
width; zero-width edges exist only in theory. Let r de-
note the radius of the disks that show vertices and w
the width of edges. We give a list of conditions that
make such a drawing good and that apply to not nec-
essarily planar graphs. We show that if » < w, a vertex
must have constant degree for a drawing to satisfy the
conditions, and if r > w, a vertex can have any degree.
We also give an algorithm that, for a given drawing and
a ratio like r = 2w, computes the maximum r and w
without violating the conditions.

1 Introduction

Possibly the most basic way to draw a graph is to use
black, filled disks for the vertices and black, straight line
segments that connect two disk centers for the edges.
Although edges are usually thought of as having zero-
width, to be able to see them they must have at least
some positive width. In most cases this width is the
same for all edges, and the width is smaller than the
diameter of the disks that represent vertices.
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Figure 1: Left, an edge is drawn as a rectangle that con-
nects two centers of vertices in the natural way. Right,
a graph with three vertices and two edges, and different
ratios of r and w.

In this paper we adopt this rather geometric view of
graph drawings. We assume that vertices are drawn as
disks with radius r and edges are drawn as rectangles
with width w. Note that we cannot really see the ends
of an edge because they overlap the incident vertices,
see Figure 1. r and w are constants with r > w/2; if
r = w/2, vertices can be hidden in edges as in Figure 1.
It seems that the range w < r < 2w is reasonable.

Obviously, it is important to be able to see from a
graph drawing which graph you are looking at. No am-
biguity should be present. But also without ambiguity,
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Figure 2: (a) A drawing with an edge and a vertex that
intersect without being incident in the graph. (b) and
(¢) Two drawings of graphs where a black region arises.

drawings can look poor, for instance when the draw-
ing of an edge intersects the drawing of a vertex while
the vertex and edge are not incident in the graph, see
Figure 2(a). For a non-planar drawing of a graph, the
drawings of the edges form black regions that may be-
come so large that they can contain a disk as large as
a drawing of a vertex. In Figure 2(b), we cannot dis-
tinguish between the graph that contains four matching
edges and the same graph that additionally, contains
an isolated vertex (which may be invisible in the re-
gion of the union of the edges). The same problem can
show up in a planar drawing of a graph, where close
to a high-degree vertex a large black region can arise,
see Figure 2(c). Notice that in the latter two cases, the
possible ambiguity is resolved if we make r larger (w.r.t.
w), although this may cause other problems.

Another feature of a good drawing is that it is possible
to see at least some part of the boundary of the drawing
of each vertex. It may be that from a drawing one can
deduce that a vertex must be present even though no
part of its boundary can be seen, see Figure 3. Although
there is no ambiguity, such drawings are not good.

There has been only little research on graph draw-
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Figure 3: (a) No part of the boundary of the vertex in
the middle can be seen, but due to the black region we
know it is there. (b) A vertex is in the middle black
region because the leftmost edge stops there.



ing related to our setting. Barequet et al. [2] consider
drawings of planar graphs where the edge thickness rep-
resents a certain quantity or capacity of the edge, and
vertices are drawn as large squares. Duncan et al. [5]
study graph drawings with edges of a maximum width
for planar graphs. Edges are not straight, but are paths
between the endpoints which avoid vertices and other
paths for edges.

Graph drawing programs allow the standard, straight
edge drawings and may have options to draw vertices
and edges bold (for example, NEATO of Graphviz [7]).

2 Conditions on good bold graph drawings

Based on the above discussion, we give a list of con-
ditions for any good drawing of a graph using width-w
rectangles as edges and radius-r disks as vertices:

1. No two vertices intersect.
2. No edge intersects a non-incident vertex.

3. (Vertex presence ) For every vertex, at least part of
its boundary is visible.

4. (Edge presence) For every edge, at least part of its
boundary is visible.

5. (Vertex absence) The region occupied by the union
of the edges minus the union of the vertices does
not contain any area that can contain a radius-r
disk (which could have been an isolated vertex).

6. (Edge absence) The region occupied by the union
of the edges minus the union of the vertices does
not contain any area that can contain a width-w
rectangle that could have been an edge between
two vertices.

7. There is no point in the plane that is covered by
more than two edges, unless those edges are all in-
cident to the same vertex (no face collapse).

With these seven conditions, the arrangement of the
drawing will look the way it should, in the sense of no
collapsed (white) faces in the complement of the draw-
ing, and the only features that intersect are pairs of
edges, pairs of a vertex and an edge that are incident,
or multiple edges that share an incident vertex. Figure 4
shows two drawings of a K7, one where all conditions
are satisfied, and one where several are violated.

Notice that the third condition basically disallows an
optimal angular resolution at a vertex that has suffi-
ciently high degree (depending on r and w), so a star
graph cannot be drawn fully symmetrically. Also notice
that the last condition does not allow drawings where
there is a triple intersection on zero-width edges, so a Kg
cannot be drawn fully symmetrically where the vertices
form a regular hexagon.

We can show that for drawings that satisfy all seven
conditions, conditions 4 and 6 are redundant: they are

Figure 4: Two drawings of a K7. Left, one that satisfies
the seven conditions. Right, one that violates conditions
2, 5, and 7 (multiple times) at places shown by the grey
arrows.

implied by the other five conditions. We need to assume
that vertices and edges are closed disks and rectangles,
that is, they include their boundary.

Lemma 1 If a drawing satisfies conditions 1, 2, 3, 5,
and 7, then it also satisfies conditions 4 and 6.

Proof. (sketch) For any edge e = wv, when it departs
from one of its incident vertices, say wu, its sides may
be obscured by other edges that depart from w. At
some point, edge e will not overlap with any such edge
any more, otherwise e cannot end at v without violat-
ing condition 2. At the point where the boundary of e
becomes visible with respect to the other edges that de-
part from w, there cannot be any other edge containing
that point, because then that point would lie on three
edges simultaneously, violating condition 7.

If no edges departing from u overlap with e when e
leaves the disk of u, then no other edge can intersect
e immediately, because then that other edge intersects
the disk of u. In both cases, part of the boundary of e
is visible, and condition 4 is satisfied. Condition 6 can
be shown to hold in a similar manner. O

Assume an embedding of a planar graph is given, with
an assignment of coordinates to the vertices. We observe
that if the vertices and edges are in non-degenerate po-
sition, then there exist positive values of r and w (small
enough) that will make all seven conditions hold.

3 Degree of nodes

For two edges e and ¢’ incident to v, we say that they
are together at distance d if the circle centered at v and
with radius d intersects the union of the drawings of
e and ¢’ in one connected component. Similarly, more
edges incident to v can be together at distance d. When
edges are together, they define a diverging angle, which
is the largest angle between the edges that are together.

For a set of edges incident to v, we say that they
come loose at distance d if they are together at dis-
tances < d, but at distances > d, they are not together;
the set will be partitioned into two or more non-empty



subsets that are together at some distance d’ > d. The
diverging angles of these subsets are smaller than the
diverging angle of the original set, and their angular in-
tervals with respect to v do not overlap. We observe
that the diverging angle is 0 if and only if an edge is not
together with any other edge. If the diverging angle is
> 0, then two or more edges must be together, and at
some distance they must come loose. An edge can only
end at a vertex when it is not together with any other
edge, otherwise the drawing will violate condition 2.

Lemma 2 If w > r, then every vertex in a good bold
drawing has constant degree. If w < r, then some vertex
i a good bold drawing can have arbitrarily large degree.

Proof. Notice that both claims are true if and only if
they are true for star graphs, so let v be the high-degree
node of a star graph.

For the first claim, let w = r + § for some § > 0.
Take the two edges e and e’ incident to v that make the
smallest angle, and denote this angle by a. Let d be
the distance where these edges come loose, and let p be
the point on e and e’ furthest from v, so p is at distance
d from the center of v. Then the segment s through

2w/ cos(a/2) — 4w tan(a/2)

Figure 5: If r < w, then v must have constant degree.

p that makes an angle of 7/2 — a/2 with both e and
€’ and lies inside their union has length 2w/ cos(a/2).
Consider the isosceles trapezoid that has s as the base,
with height 2w, and which lies inside the union of e
and €. Then the top side has length 2w/ cos(a/2) —
dwtan(o/2) > 2w(l — a). We see that if o < J, then
a radius-r disk fits inside the isosceles trapezoid and
hence, in the union of e and ¢’. Hence, a must have at
least some constant value > § to not violate condition 5,
so v must have constant degree.

For the second claim, let w = r. Let E be a set of
edges incident to v that are together and that have a
diverging angle «; assume 0 < a < 7/4. We will show
that we can construct a drawing where E comes loose at
a distance d before a radius-r disk fits inside the union
of the drawings of the edges in F, and F is partitioned
into two subsets that both have a diverging angle > 0.
We can repeat the argument on the two subsets, which
shows that E can have arbitrarily many edges.

For the two outer sides of the union of the drawings
of the edges in the set E (the ones that determine the
diverging angle o), consider a ray s starting at v’s center

Figure 6: A set of edges that are together with diverging
angle a > 0 can come loose into two subsets so that both
have diverging angle > 0.

whose angle lies in the middle of the outer sides. Let g
be the point on s that has distance w to the outer sides,
and let p the point on s that is w/2 further from v. We
will make sure that F comes loose at p, and by construc-
tion, no radius-r disk fits inside E before p. Since the
distance from p to each of the outer sides is w’ > w, the
diverging angles of the new subsets is strictly greater
than 0, and therefore these subsets contain more than
one edge each. This finishes the proof. O

4 Optimizing r and w for a given drawing

We next study the problem of computing maximal val-
ues of r and w while satisfying the conditions. More
precisely, we assume that r/w is a fixed constant that is
at least 1, a drawing of a graph is given, and we wish to
determine the smallest value of r (and simultaneously
of w) that violates at least one of the conditions. From
now on, we will only refer to the value of r, since it
specifies the value of w.

For any value of r, all faces of the complement of
the union of vertices (disks) and edges (rectangles) are
bounded by circular arcs and straight edges. We denote
the collection of faces by F,. and its edges—called sides
to avoid ambiguity—by S,.. If condition 1 is not violated
and no vertex is isolated, then every circular side of S,
is adjacent to two straight sides. The circular sides are
concave for the faces of F,., whereas all endpoints of
sides in S, are convex.

Let n be the number of vertices and m the number
of edges of the graph that is drawn, and assume non-
degeneracy. Let r be small enough so that no condition
is violated, then we let M denote the number of sides in
Sy. There are O(m) circular sides and O(M) straight
sides in S,. We have m = O(n?) and M = O(m?) =
O(n*). Since we are interested in the smallest value of 7
where some condition is violated, we can assume when
we analyze some condition that the other conditions are
not yet violated. We will take the minimum over the
values of 7 for the first violation of each condition.

The smallest value of r such that condition 1 is vio-
lated can easily be computed in O(nlogn) time using a
closest pair algorithm.

For condition 2, we can use a brute-force algorithm
that runs in O(nm) time, but a more efficient algo-



rithm exists using partition trees [1]. For every edge
we can find the closest vertex in its perpendicular strip
by preprocessing the vertices into a partition tree with
associated structures that can answer tangent queries.
This leads to a running time of O*(m - n'/3 4+ n*/3) or
O*(m + n?), for example (O*-notation leaves out log-
factors). Which is better depends on how much larger
m is than n.

We can determine the smallest value of r such that
condition 3 is violated in O(mlogn) time (assuming
that conditions 1 and 2 are not violated). In fact, vi-
olation of condition 3 does not depend on the value of
r since r/w is fixed. For any vertex (disk), only the
incident edges can cause the boundary of the disk to be
invisible, and we can test this by sorting the incident
edges by angle.

For condition 7, we compute the faces of F,. and sides
of S, for an infinitesimally small r in O(mlogm + M)
time using a line segment intersection algorithm [3, 4, 6].
We claim that the smallest r that causes a violation of
condition 7 can be determined by checking each straight
side of S separately in O(1) time, assuming that con-
ditions 1 and 2 are not violated. Consider two values
r,r’ with » < r’ and assume that for both values condi-
tions 1 and 2 hold. Then we have that if a straight side
is in S,, then the corresponding side also occurs in S;..
In other words, when increasing r, sides may disappear
from S, but they cannot appear. The first violation
of condition 7 happens exactly at the lowest value of
r where a straight side does not occur anymore. Since
the test at which value of r a side disappears due to the
two adjacent sides can easily be performed in O(1) time,
condition 7 can be handled in O(mlogm + M) time.

For conditions 4 and 6, we observe by Lemma 1 that
they cannot be violated for any value of r as long as
conditions 1, 2, 3, 5, and 7 are not violated. Hence we
need not consider them.

Finally, for condition 5, we observe that by the as-
sumption r/w > 1 and the assumption that condition 7
is not violated, the intersection of two edges (not inci-
dent to the same vertex) cannot cause such a violation.
The only possibility of a violation of condition 5 is due
to at least three edges incident to the same vertex which
are together (in the meaning of Section 3). For a vertex
and its incident edges, the value of r does not influence
whether condition 5 is violated or not, since r/w is fixed.
Hence, we compute the union of all vertices (disks) and
edges (rectangles) for a sufficiently small r; this is the
complement of F,.. Then we remove the disks that are
the vertices, and compute the Voronoi diagram of the
sides (boundary parts) of this union minus the disks.
The largest enclosed disk has its center on a Voronoi
vertex, and hence we can decide if condition 5 is vio-
lated. The test takes O(M log M) time.

Theorem 3 For a given straight-line drawing of a
graph with n vertices and m edges, vertexr radius r and
edge width w, if r/w > 1 is fized, then we can com-
pute the smallest value of r that causes one of the seven
conditions for a good bold drawing to be wiolated in
O*(M 4+ m - n'/® + n*/3) or O*(M + n?) time, where
M is the complexity of the arrangement of the drawing
ifr=w=0.

5 Discussion

We have taken a geometric look at drawings of graphs,
and gave a list of conditions that may be used to define a
good drawing of a graph with disks as vertices and rect-
angles as edges. Perhaps the most interesting result we
proved is for what ratios of disk radius and rectangle
width we cannot have drawings with vertices of arbi-
trarily high degree. We also gave algorithmic results on
computing the largest radius and width while not vi-
olating the conditions. In the full paper we also study
drawings that satisfy conditions 1-6, as condition 7 may
be considered too strong.

Several questions arise from our research. The seven
conditions do not capture ambiguity perfectly. Does a
set of conditions exist that precisely captures ambigu-
ity? Secondly, if we assume that r/w is bounded by
some constant, does any graph (even K,,) have a draw-
ing that satisfies the seven conditions? What if we use
the conditions 1-6 but not 77 Finally, what are good
bold drawing conditions if vertices are shown as disks
filled white, or if they are shown as grey disks?
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