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An Inequality on the Edge Lengths of Triangular Meshes*
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Abstract

We give a short proof of the following geometric inequal-
ity: for any two triangular meshes A and B of the same
polygon C, if the number of vertices in A is at most the
number of vertices in B, then the maximum length of
an edge in A is at least the minimum distance between
two vertices in B. Here the vertices in each triangular
mesh include the vertices of the polygon and possibly
additional Steiner points. The polygon must not be
self-intersecting but may be non-convex and may even
have holes. This inequality is useful for many purposes,
especially in proving performance guarantees of mesh
generation algorithms. For example, a weaker corollary
of the inequality confirms a conjecture of Aurenhammer
et al. [Theoretical Computer Science 289 (2002), 879
895] concerning triangular meshes of convex polygons,
and improves the approximation ratios of their mesh
generation algorithm for minimizing the maximum edge
length and the maximum triangle perimeter of a trian-
gular mesh.

1 Introduction
We prove the following theorem:

Theorem 1 Let A and B be two triangular meshes of
the same polygon C (which must not be self-intersecting
but may be non-conver and may even have holes). If
the number of vertices in A is at most the number of
vertices in B, then the mazximum length of an edge in
A is at least the minimum distance between two vertices
in B.

Triangulation and mesh generation are fundamental
problems in computational geometry [2]. Most previous
algorithms for mesh generation focus on quality mea-
sures that either maximize the minimum angle or mini-
mize the maximum angle of a triangular mesh because,
in the predominant application to finite element anal-
ysis, triangular meshes should have neither too small
nor too large angles. The triangular meshes generated
by such algorithms are guaranteed to have bounded
maximum-to-minimum angle ratios, but not bounded
maximum-to-minimum edge length ratios.
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Recognizing the importance of length-uniform tri-
angular meshes in certain applications, Aurenhammer
et al. [1] studied the problem of approximating length-
uniform triangular meshes under the following three
optimality criteria: (i) minimizing the maximum-to-
minimum edge length ratio, (ii) minimizing the maxi-
mum edge length, and (iii) minimizing the maximum
triangle perimeter. They proposed an efficient algo-
rithm that, given a convex polygon P and a positive
integer n, triangulates P using n Steiner points. The
algorithm first applies a dispersion heuristic to select
the Steiner points, next constructs the Delaunay trian-
gulation of the polygon using the selected Steiner points,
and finally modifies the Steiner triangulation into a tri-
angular mesh that, with some reasonable assumptions
on the input, achieves a constant approximation ratio
for each of the three criteria.

For a convex polygon P and a positive integer n, de-
fine

diong = n}fin egEa():(F) length(e),
where T ranges over all Steiner triangulations of P with
n Steiner points, and E(T) is the set of edges in the
triangulation 7. Also define

d* = max min

distance(u, v),
S uweSUV(P)

where S ranges over all sets of n Steiner points in P,
and V(P) is the set of vertices of the polygon P.

The approximation ratios of Aurenhammer et al.’s al-
gorithm (for minimizing the maximum edge length and
the maximum triangle perimeter) crucially depend on
the ratio of the two numbers diong and d*. By a simple
area argument, Aurenhammer et al. were able to prove

the inequality
V3
diong > —d*,
long = 2
and they posed the following conjecture:

Conjecture 1 (Aurenhammer et al., 2002 [1]).
dlong > d.

Let C be the convex polygon P. Let A be a Steiner
triangulation of P with n Steiner points such that the
maximum edge length is diong. Let S be a set of n
Steiner points in P that realizes the minimum pairwise
distance d* among the point set S U V(P), and let B
be any triangulation of the point set S U V(P) such
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that the minimum edge length is d*. Then Theorem 1
confirms Conjecture 1. As a consequence, the approxi-
mation ratios of Aurenhammer et al.’s mesh generation
algorithm are immediately improved from 4+/3 to 6 for
minimizing the maximum edge length, and from 6+/3 to
9 for minimizing the maximum triangle perimeter.

A natural question is whether the following two state-
ments are also true:

1. For any two triangular meshes A and B of the same
polygon C, if the number of vertices in A is at
most the number of vertices in B, then the maxi-
mum edge length of A is at least the minimum edge
length of B.

2. For any two triangular meshes A and B of the same
polygon C| if the number of vertices in A is at most
the number of vertices in B, then the maximum
triangle perimeter of A is at least the minimum
triangle perimeter of B.

Both statements turn out to be false.
counter-examples in Figure 1 and Figure 2.

We give

2 Proof of Theorem 1

We first introduce some preliminaries. A d-simplex is
the convex hull of d + 1 affinely independent vertices
(that is, d + 1 points in general position) in some Eu-
clidean space of dimension d or higher. For example, in
the plane, a 0-simplex is a point, a 1-simplex is a line
segment, and a 2-simplex is a triangle. A simplex o is
a face of another simplex 7 if the vertices of o are a
subset of the vertices of 7. A simplicial complex is a set
K of simplices such that (i) any face of a simplex in K
is also a simplex in K, and (ii) the intersection of any
two simplices ¢ and 7 in K is a face of both ¢ and 7.

For a simplicial complex K in the plane, denote by
a,(K) the number of r-simplices in K, 0 < r < 2.
Define the Euler characteristic of K as x(K) = ao(K)—
a1(K) + ag(K). For example, in Figure 2, we have
Oéo(A) = 4, O[l(A) = 6, O[Q(A) = 3, Oéo(B) = 4, Oél(B) =
5, az(B) = 2, and x(A) = x(B) = 1. For a 1-simplex o,
denote by |o| the length of o, and denote by &(o, K) the
number of 2-simplices in K having o as a face. Then
e(o,K) =0, 1, or 2. Define the area of K as the total
area of the 2-simplices in K. Define the perimeter of
K as ) (2 —e(0,K))|o|, where o ranges over all 1-
simplices in K.

A triangular mesh of a polygon can be viewed as
a simplicial complex in the plane: the 2-simplices are
the triangles, the 1-simplices are the edges, and the
0-simplices are the polygon vertices and the Steiner
points. The Euler characteristic of the triangular mesh
is exactly one minus the number of holes in the poly-
gon. The area and the perimeter of the triangular mesh
(as a simplicial complex) are respectively the same as

A A’

Figure 1: Two triangular meshes A and B of the same
unit equilateral triangle C' such that A and B have the
same number of vertices but every edge of B is longer
than every edge of A. A has (5+ 1)(5+2)/2 = 21
vertices and uniform edge length 1/5. A’ has (44+1)(4+
2)/2 = 15 vertices and uniform edge length 1/4. Move
the Steiner points on the boundary slightly to change A’
into A” surrounded by three empty trapezoids. Add two
more Steiner points to each side of the unit equilateral
triangle, and triangulate each trapezoid Z. A” and the
three rotated copies of Z together form B, which has
154 2 -3 = 21 vertices and minimum edge length close
to 1/4. This construction can be generalized: for each
k > 5, there is a mesh A with (k+ 1)(k + 2)/2 vertices
and uniform edge length 1/k, and there is a mesh B
with k(k+1)/2+3(k—=3)=(k+1)(k+2)/2+2(k—5)
vertices and minimum edge length close to 1/(k — 1).

A B

Figure 2: Two triangular meshes A and B of the same
unit equilateral triangle C'. Each mesh has four vertices:
three vertices of the triangle and one Steiner point.
The maximum triangle perimeter of A is 1 + 2@ =
2.1547.... The minimum triangle perimeter of B is
1+ 1+ =23660....
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the area and the perimeter (in the normal sense) of the
polygon.

We will prove the contrapositive of Theorem 1. De-
note by lmax(T) and dmin(T'), respectively, the maxi-
mum length of an edge and the minimum distance be-
tween two vertices in a triangular mesh 7. Let A and
B be two triangular meshes of the same polygon C.
Suppose that dpmin(B) > lmax(A). We will show that
Oéo(B) < ao(A).

Our proof will use the following lemma by Folkman
and Graham [3], which is reminiscent of Pick’s theorem
on the area of a simple polygon with vertices of integer
coordinates:

Lemma 2 (Folkman and Graham, 1969 [3]). Let K
be a simplicial complex in the plane. Suppose that the
distance between any two 0-simplices in K is at least 1.
Then the total number of 0-simplices in K is at most
\/lg area(K) + 1 peri(K) + x(K).

We first bound the area of A. Each triangle in A has
edge length at most £y,ax(A). For any triangle of edge
length ¢, we can transform it into an equilateral trian-
gle of edge length exactly ¢ as follows. First move any
vertex of the triangle perpendicularly away from the op-
posite edge, until one of the two edges incident to the
vertex has length exactly ¢, next extend the other inci-
dent edge until its length is also ¢, and finally extend
the opposite edge also to length ¢. Note that the area of
the triangle does not decrease during this transforma-
tion. Since an equilateral triangle of edge length ¢ has
an area exactly ‘/T§€2, it follows that each triangle in A

has an area at most @éﬁwx(/l). Thus the area of A is

at most ag(A) - Y302 (A).

We next bound the perimeter of A. Denote by Go(T)
the number of vertices in a triangular mesh 7' that are on
the boundary of the underlying polygon, including the
polygon vertices and possibly additional Steiner vertices
on the boundary. For example, in Figure 2, we have
Bo(A) = 3 and Bo(B) = 4. Since A has exactly 5y(A)
edges on the boundary of C, the perimeter of A is at
most Fo(A) - bmax(A).

We now derive an equality that links the four pa-
rameters as(A), ag(A), Bo(A), and x(A). Note that
each boundary edge of a triangular mesh is incident to
one triangle, and that each internal edge of a triangular
mesh is incident to two triangles; on the other hand,
each triangle has three edges. Thus by double-counting
we have

L Bo(A) +2- (a1(A) = fo(A)) = 3 - aa(A)
_ 30a(4) + o(A)

- al(A) 5

Recall that x(A) = ap(A) — a1(A) + az(A). Thus
x(4) = ag(a) - 22ALBE |4
= a2(4) = 2a9(A) — Bo(A) — 2x(A4).

Finally, to complete the proof, we have

ao(B)

<% Zﬁfaéﬁg i gzmg)) +x(B) (by Lemma 2)
2 area(A) 1 peri(A)
=5 2B "2 ) T

2 area(A) 1 peri(4)
VB B @) T3 ) T

2 a2(A) : ﬁé?nax(A) 1 6 (A) : émax(A)
AT B T3 damia) XA
= 502(4) + 3 Ao(4) + x(4)

O NN

as required.
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