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Watchman tours for polygons with holes

Adrian Dumitrescu*

Abstract. A watchman tour in a polygonal domain (for
short, polygon) is a closed curve such that every point in
the polygon is visible from at least one point of the tour.
The problem of finding a shortest watchman tour is NP-
hard for polygons with holes. We show that the length of
a minimum watchman tour in a polygon P with k holes
is O(per(P) 4+ vk - diam(P)), where per(P) and diam(P)
denote the perimeter and the diameter of P, respectively.
Apart from the multiplicative constant, this bound is tight
in the worst case. A watchman tour of this length can be
computed in O(nlogn) time, where n is the total number
of vertices. We generalize our results to watchman tours in
polyhedra with holes in 3-space. We obtain an upper bound
O(per(P) + \/k - per(P) - diam(P) + k*/3 - diam(P)), which
is again tight in the worst case.

1 Introduction

Visibility and art gallery problems with stationary
guards (watchmen) have been studied extensively since
the early 1980s [13]. Mobile guards have been also con-
sidered soon after, see e.g. [6, 7, 12]. A watchman tour
in a polygonal domain (polygon, for short) is a tour (i.e.,
closed curve) inside the polygon such that every point
in the polygon is visible from some point along the tour.
Two points in a polygon are visible to each other if the
line segment between them lies in the polygon.

The watchman tour problem asks for a watchman
tour of minimum length [2, 11]. The problem has a poly-
nomial time solution for simple polygons with n vertices
(and no holes). Tan [16] gave an O(n®)-time algorithm
improving an earlier O(n®%)-time algorithm by Carlsson
et al. [4]. Other variants are discussed in [1, 11, 12].
In contrast, computing a shortest watchman tour in a
polygon with holes is known to be NP-hard [6]. In Sec-
tion 3, we revisit the old NP-hardness proof by Chin
and Ntafos [6] and make some necessary clarifications.

Our main result is a tight worst-case upper bound for
the minimum length of a watchman tour in a polygon
with holes. Our upper bound depends on three param-
eters of a polygon P: the number of holes, k = k(P),
the diameter, diam(P), and the perimeter, per(P). The
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perimeter of P is the total length of the boundary of P
(including the boundary of the holes). In Section 2 we
prove:

Theorem 1 The minimum length of a watchman tour
for a polygon P with k holes is O(per(P) + Vk -
diam(P)). This bound cannot be improved for polygons
with per(P) > ¢ diam(P) for any fized ¢ > 2. A watch-
man tour of this length can be computed in O(nlogn)
time, where n is the total number of vertices of P.

We have per(P) > 2 - diam(P) for every polygon P.
If, however, per(P) is very close to 2-diam(P), then the
polygon is long and skinny, and the above upper bound
is no longer tight up to constant factors.

Theorem 1 generalizes to polyhedra, possibly with
holes and handles, in three dimensions. The boundary
of a polyhedron is composed of piecewise linear mani-
folds. We define the perimeter per(P) of a polyhedron
P in 3-space as the total length of all edges of P.

Theorem 2 The minimum length of a watchman tour
for a polyhedron P in 3-space with k holes is at most
O(per(P) + \/k - per(P) - diam(P) + k%3 . diam(P)).
This bound cannot be improved for polyhedra with
per(P) > ¢ diam(P) for any fized ¢ > 3. A watchman
tour of this length can be computed in O((nk)*/>+%)
pected time for any d > 0, where n is the total number
of vertices, edges, and faces of P.

€ex-

2 Bounds on the length of an optimal tour

In this section we prove Theorems 1 and 2. By a classi-
cal result of Few [8], the shortest path through k points
in the unit square [0, 1] has (Euclidean) length at most
V2k+ 7/4. Few also proved that the minimum spanning
tree of these points has length at most vk + 7/4. Both
upper bounds are constructive. For constructing a span-
ning path, he lays out about vk equidistant horizontal
lines, and then visits the points layer by layer, with the
path alternating directions along the horizontal strips.

The currently best lower bound for the length of such
a path is also due to Few: it is (3) VAR - o(VkE),
where (4/3)/* = 1.075.... In every dimension d > 3,
Few showed that the maximum length of a shortest path

through & points in the unit cube is ©(k'~1/4).

Algorithm for constructing a watchman tour.
Observe that for a simple polygon P without holes, 0P
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Figure 1: Left: a polygon with k = 10 holes. Right: Connecting the circuits H;, i = 0, ...,k by adding connectors.

is a watchman tour of length per(P). Let now P be
a polygon with k£ > 1 holes, Hy,...,Hy. For conve-
nience, denote by Hy the unbounded hole defined by
the exterior of P. The boundary of P consists of £+ 1
pairwise disjoint circuits P = Uf:o OH;. We have
per(P) = Ef:o |0H;|, where the vertical bars | - | stand
for the Euclidean length.

Our algorithm works as follows. Compute an axis-
aligned bounding box B of the polygon P whose longest
side is of length at most diam(P). We augment the
disjoint union of circuits 0H;, i = 0, ..., k, with at most
2k line segments and possibly (at most 3k) new vertices
to a connected graph G. The new segments added are
called connectors. The connectors are either vertical or
horizontal. We replace each connector by double edges
and obtain a multi-graph G’ where every vertex has
even degree. The watchman tour we construct, W, is
an arbitrary Eulerian tour in G’, which traverses the
entire boundary of P (including the hole boundaries)
once, and traverses every connector twice. It is easy to
verify that each point p in the interior of P is seen from
some point along the tour W.

It remains to explain how to draw the connectors and
to bound their total length. As in Few’s method, sub-
divide the bounding box B into horizontal strips by a
raster of at most vk equidistant horizontal lines such
that consecutive raster lines are at diam(P)/vk dis-
tance apart. We construct the connectors in two phases
(refer to Fig. 1). In the first phase from a lowest point
(vertex) of each interior hole H;, drop a vertical ray ¢;
downwards until it hits the outer boundary, the bound-
ary of another hole, or a horizontal raster line. Let v;
denote this vertical segment, and let p; be its lower end-
point. If point p; is in the interior of P, then it lies on
one of the raster lines. In the second phase from every
point p; lying in the interior of P, draw a horizontal ray
leftwards until it hits the outer boundary, the bound-
ary of another hole, or another point p;, j # 7. Let
h; denote this horizontal segment. If p; is already on
the boundary of another hole or on 0Hy, then h; is an
empty segment (i.e., not needed).

It is clear that by adding at most 2k (horizontal and
vertical) connectors h; Uv;, we obtain a connected graph
G containing all the circuits 0H;, i = 0,..., k.

Upper bound. The total length of the horizontal
raster lines is at most diam(P)-v/k, so the total length of
the (at most k) horizontal connectors does not exceed
this bound. There are k vertical connectors, each of
length at most diam(P)/vk. Hence their total length
is also bounded by k - diam(P)/vk = diam(P) - Vk.
Consequently, the total length of W is

k
[W| = [0Ho| + Z (|0H;| + 2|vi| + 2|hi])

=1

= O(per(P) + Vk - diam(P)). (1)

Algorithm description and analysis. Let n denote
the total number of vertices of P. The bounding box B
and the raster lines can be computed in O(n) time. (We
do not compute the full arrangement of the raster lines
and P, which may have up to ©(nv/k) vertices.) The set
of connectors, henceforth the graph G can be computed
by a standard line-sweep algorithm [3] in O(nlogn)
time. Sweep a horizontal line ¢ top-down. For every po-
sition of ¢, we maintain in sorted order its intersection
points with the vertices and edges of P and with the ver-
tical connectors v;. This order changes only if ¢ passes
through a vertex of P or a point p;, or if ¢ coincides
with a raster line. So there are at most n+k+vk < 3n
events overall. When the sweep line £ coincides with one
of the raster lines, we can find the closest intersection
point in £ N OP to the left of each p; € ¢ in O(logn)
time.

Observe that the graph G, as well as the multi-
graph G’ have O(n) edges each. Once G’ is con-
structed, computing an Eulerian tour of G’ takes O(n)
time. Hence the total time taken by the algorithm is
O(nlogn) + O(n) = O(nlogn).

Lower bound. We now show that our upper bound for
the tour length in (1) is tight in the worst case for every
k > 0 and per(P) > ¢ - diam(P), where ¢ > 2 is a fixed
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constant. We may assume w.l.o.g. that diam(P) =
1. We construct a polygon lying in a disk D of unit
diameter. If per(P) > 2+/2, then let the outer boundary
Hy of P be a square inscribed in D combined with a
long and narrow zig-zag “snake” of total edge length
per(P) — 2v/2 and very small width 0 < ¢ < 1 (Fig. 2).
The snake lies in D such that the diameter of Hy is
1. If ¢ < per(P) < 2v/2, then let Hy be a thombus of
diameter 1 and side length 1 (per(P)—¢) for a small 0 <
e < ¢—2. In both cases, we have per(Hy) = per(P) —e,
and Hy contains a square of side length (1).

Figure 2: Lower bound constructions for the cases per(P) >
2v/2 - diam(P) and 2 - diam(P) < per(P) < 2v/2 - diam(P).

Arrange k small holes in a grid-like pattern in a maxi-
mal inscribed square of Hy. Each hole has O(1) vertices,
e/k perimeter, and a small hidden “cave” that can be
seen only by entering it; see e.g., Fig. 3(right). By Few’s
result, the length of the shortest watchman tour that
visits the caves in all holes is Q(Vk). If per(P) > 2v/2,
the length of any walk from the bottom of the zig-zag
snake to one of the furthest caves is Q(per(P)). We
conclude that in both cases the length of the shortest
watchman tour for P is

Q(per(P) + Vk) = Q(per(P) + Vk - diam(P)),

as required. This completes the proof of Theorem 1.

Generalization to 3-dimensions. A polyhedron
(possibly with holes) in 3-space is a piecewise-linear 3-
manifold with boundary. Let per(P) denote the total
length of the edges of a polyhedron P. Note that every
point p in the interior of P sees at least one point on
some edge of P. Indeed, consider an arbitrary plane
h containing p. The intersection P N h is a collection
of disjoint polygons (possibly with holes), one of which
contains p. In a triangulation of this planar polygon, p
lies in a triangle, and hence it sees the three vertices of
the triangle. All three vertices are intersection points
of h with some edges of P. It follows that a tour that
traverses every edge of P is a watchman tour: i.e., every
interior point of P is seen from some point of the tour.

Our algorithm for computing a watchman tour for P
is analogous to the planar case. We augment the 1-
skeleton of P to obtain a connected graph G. We then

double some of the edges in GG to make all vertex degrees
even, and our watchman tour is an arbitrary Eulerian
tour in this multi-graph.

Choose a lowest point w; in each interior hole Hj,
t = 1,..., k. Compute an axis-aligned bounding box
B of the polyhedron P of side length at most diam(P).
Subdivide B into horizontal strips by a raster of at most
k/3 equidistant horizontal planes such that consecu-
tive raster planes are at diam(P)/k/? distance apart.
Subdivide every strip by additional horizontal planes, if
necessary, such that there are at most k2% points w;
between consecutive horizontal planes. We have used
at most 2k'/3 horizontal planes. From each w;, drop a
vertical line ¢; downwards until it hits the outer bound-
ary, the boundary of another hole, or a horizontal plane.
Let p; be the lower endpoint of this vertical segment.

If point p; is in the interior of P, then it lies on some
horizontal plane. In each horizontal plane, we invoke
our planar algorithm with & = k%/3 to construct con-
nectors from every point p; to the outer boundary or
the boundary of another hole. The total length of the
vertical connectors and of the horizontal connectors in
the O(k'/?) planes is bounded by

0 (k - (diam(P)/k/3) + k13 (V/k2/3 . diam(P)))
-0 (k2/3 : diam(P)) . 2)

For each interior hole H;, we have computed a con-
nector from a lowest vertex w; to some point on the
outer boundary 0Hy or the boundary of another hole.
However, the endpoint of a connector may lie in the in-
terior of a face. For every face f of P, let ks denote the
number of connector endpoints in the interior of f, with
Ef ky < k. In each face f, with ky > 1, we construct a
minimum spanning tree of the &y connector endpoints
in f and an arbitrary vertex of f. By Theorem 1, the
length of an MST in a face f is O(y/ky - diam(f)). The
total length of these spanning trees is

O > Vky - diam(f)
f

\/Z k,\/z diam?(f)
f f

— o VEya@am(®) [ diam(p)
f

= 0 (\/k - diam(P) - per(P)) . (3)

In this chain of inequalities, we applied the Cauchy-
Schwarz inequality, the bounds maxsdiam(f) <
diam(P) and diam(f) < iper(f). We have
> pdiam(f) < 37, sper(f) < per(P), since every edge
is adjacent to exactly two faces.
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By adding the term per(P) to the lengths in (2) and
(3) the upper bound on the length of the tour in Theo-
rem 2 follows.

All vertical segments of the connectors can be com-
puted by a (randomized) batched ray shooting algo-
rithm due to Pellegrini [15]. If the total number of
vertices, edges and faces of P is n, then we can trian-
gulate the faces of P into O(n) triangles in O(nlogn)
time. Among O(n) interior-disjoint triangles in 3-space,
k batched ray shooting queries take O((nk)*/5+9) ex-
pected time for any § > 0, where the constant of pro-
portionality depends on d. Similarly, we can compute all
horizontal segments of the connectors simultaneously by
the same algorithm in O((nk)*/>*?9) expected time. All
minimum spanning trees over the O(k) connector end-
points in the faces of P can be computed in O(klogn)
time.

The lower bound constructions are similar to the pla-
nar case. We omit the details due to space constraints.

3 NP-hardness proof revisited

The Watchman Tour Problem (WTP) is the following.

WTP: Given a polygon P with k polygonal holes, and a
positive integer m, does there exist a watchman tour of
total Euclidean length at most m?

The Geometric Traveling Salesman
(GTSP) [10, 14] is the following.

GTSP: Given a set of n points in the plane, and a pos-
itive integer m, does there exists a tour of total length
at most m that visits all the points?

It is known that GTSP is NP-hard with respect to
both the Ly and the Ly metric [9, 14]. The NP-hardness
proof in [5], and similarly that in [6] use a reduction from
the Euclidean Geometric Salesman problem (Lo metric)
to the Watchman Tour Problem via a claim that relates
the length of a solution for GTSP in the Ly metric to
the length of a solution for WTP: [5, Theorem 1, p. 25]
and [6, Theorem 2.1, p. 40]. (Corollary 1 in [5] and
Corollary 2.2 in [6] add even more to the confusion.)
The correct reduction however is from GTSP in the L,
metric. See Fig. 3.
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Figure 3: Left: point set S. Middle: polygon P with holes.
Right: a small hole for each point in S.

Given set S of n lattice points, construct a polygon P
as the slightly enlarged (grid) axis aligned rectangle of

S. The holes are the cells of the grid, but only slightly
smaller so that they are disjoint. In addition to these
large (grid cell) holes, there are small holes correspond-
ing to each point, each containing a “cave” that can only
be seen by entering it. The holes are small enough so
that they fit in the narrow corridors left by the big grid
cell holes: the perimeter of each small hole is 1/80n.
The width of the corridors is 1/40n.

The reduction, hence the NP-hardness, follows via the
following claim, which is easy to verify:

Claim. For a positive integer m, there exists a tour of .S
of length at most m in the L; metric if and only if there
exists a watchman tour of P of length at most m + 0.1
(in the usual Ly metric).

Observe that the integrality requirement for m is cru-
cial. Furthermore, no such claim holds if the length of
the tour of the points in S is measured in the Lo metric.
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