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The Projection Median of a Set of Points in Rd
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Abstract

The projection median of a finite set of points in R2

was introduced by Durocher and Kirkpatrick [5]. They
proved the projection median in R2 provides a better
approximation of the 2-dimensional Euclidean median,
while maintaining a fixed degree of stability, than other
standard estimators, like the center of mass or the rec-
tilinear median. In this paper we study the projection
median of a set of points in Rd for d ≥ 3. We prove
new bounds on the approximation factor and stabil-
ity of the projection median in Rd, which show that
the d-dimensional projection median also maintains a
fixed degree of stability and provides a better approx-
imation of the d-dimensional Euclidean median than
the d-dimensional rectilinear median. For the special
case of d = 3, our results imply that the 3-dimensional
projection median is a (3/2)-approximation of the 3-
dimensional Euclidean median, which settles a conjec-
ture posed by Durocher [4].

1 Introduction

A median function on Rd is a function from the set of
all finite non-empty sets contained in Rd to Rd. The
median of a set S of n real numbers is a point M(S)
which partitions the points in S such that there are
at most n/2 points of S greater than M(S) and at
most n/2 points of S that are less than M(S). Let
S = {p1, p2, . . . , pn} be a set of n distinct real numbers
arranged in increasing order. If n = 2m + 1 is odd,
the median of S is the point pm+1, and when n = 2m
is even any point on the line segment joining pm and
pm+1 is a median of S. In such cases, the midpoint of
the line segment joining pm and pm+1 is often selected
to represent M(S).

Several attempts have been made to generalize the
notion of median to higher dimensions. Hayford [7]
suggested the vector-of-medians of orthogonal coordi-
nates. This involves selecting an orthogonal coordinate
system and then computing the coordinate-wise univari-
ate median along these axes. However, this definition
of multivariate median depends on the choice of the or-
thogonal coordinate system. It is easy to see that the
vector-of-medians of a set S in Rd is a point in Rd, to

∗Indian Statistical Institute, Kolkata, India, {rpbasu.riddhi,
bhaswar.bhattacharya, tanmoy.talukdar}@gmail.com

be denoted by MR(S), which minimizes
∑

s∈S |s − x|,
when x = MR(S) and where |.| denotes the ℓ1 norm.
For this reason, the vector-of-medians is also referred to
as the rectilinear median. The rectilinear median is in-
variant under translation and uniform scaling, but not
under rotation or reflection. If there are an even number
of points in S, then MR(S) may not be unique, and we
select MR(S) to be the midpoint of the d-dimensional
rectangular region of points that define rectilinear me-
dians of S. Since the one-dimensional median defined
above can be computed in O(n) time, the d-dimensional
rectilinear MR(S) can be computed in O(dn) time by
computing d independent one dimensional medians.

Analogous to Hayford’s definition, the Euclidean me-
dian of a set S in Rd (to be denoted by ME(S)) is de-
fined as the point in Rd which minimizes

∑
s∈S ||s−x||,

when x = ME(S) and where ||.|| denotes the ℓ2 norm.
The Euclidean median problem on three points in the
plane was first posed by Fermat and solved geometri-
cally by Torricelli early in the 17-th century [8]. The
problem was later revived by Weber [11] in 1909 in the
context of optimal facility location. The Euclidean me-
dian is invariant under uniform scaling, reflection, trans-
lation, and rotation. This makes it much more suitable
candidate for a multivariate median compared to the
rectilinear median. However, solving for the exact loca-
tion of the Euclidean median in two or more dimensions
is, in general, difficult. Bajaj [2] showed that even for 5
points, the coordinates of the Euclidean median may not
be representable even if we allow radicals, and that it
is impossible to construct an optimal solution by means
of ruler and compass. The most famous of all existing
algorithms is the iterative algorithm due to Weiszfeld
[13].

We say that a median function M is a λ-
approximation of the Euclidean median ME , if∑

p∈S ||p − M(S)|| ≤ λ
∑

p∈S ||p − ME(S)|| for all

nonempty finite sets S in Rd. Recently, motivated from
several problems in mobile facility location, Durocher
and Kirkpatrick [5] introduced the notion of stabil-
ity of a median function, which measures the behav-
ior of the median function to slight perturbations of
the data. Given ε > 0 and a finite set S of Rd, a
function f : S → Rd is an ε-perturbation on S if for
all p ∈ S, ||p − f(p)|| ≤ ε. Let Fε(S) denote the
set of all ε-perturbations on S. A median function
M(S) is κ-stable if for all ε > 0 and for all f ∈ Fε(S),
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κ||M(S) −M(f(S))|| ≤ ε, for all nonempty finite sets
S in Rd.
Using a small 4-point example, Durocher and Kirk-

patrick [5] showed that the Euclidean median is not
continuous even for small point sets, thus proving that
the Euclidean median is not κ-stable for any κ > 0.
They also showed that no median function can ensure
any fixed degree of stability while also guaranteeing an
arbitrarily-close approximation of the Euclidean median
sum.
It is well known that the center of mass of a set S of n

points in Rd is the point in Rd given by 1
n

∑
p∈S p. The

center of mass is invariant under affine transformations
and it is the unique point that minimizes the sum of
the squares of the distances to the points of S [12]. It
follows from results of Bereg et al. [3] that the center of
mass of a set of n points in Rd is 1-stable and provides a
(2−2/n)-approximation of the d-dimensional Euclidean
median, and both the bounds are tight.
Bereg et al. [3] also proved that the rectilinear median

in R2 provides a
√
2-approximation of the Euclidean me-

dian. Later, Durocher [5] showed that the d-dimensional
rectilinear median provides a

√
d-approximation of the

Euclidean median, and proved a 1+
√
d−1√
d

lower bound on

the approximation factor for any d ≥ 1. Generalizing
the results of Bereg et al. [3], Durocher [5] also proved
a tight stability bound of (1/

√
d) on the d-dimensional

rectilinear median for any d ≥ 1.
The main result of Durocher and Kirkpatrick [5] is

the introduction of the notion of the projection median.
Given a fixed positive integer d ≥ 2 and a finite set of
S points in in Rd, the d-dimensional projection median
of S is defined as

MP (S) = d

∫
Sd−1 med(Su)du∫

Sd−1 du
(1)

where Sd−1 = {x ∈ Rd : ||x|| = 1} is the unit d-
dimensional hypersphere and med(Su) is the median of
the projection of S onto the line through the origin par-
allel to vector u.
They show that for any set S in R2, MP (S) is (π/4)-

stable and it provides a 4/π-approximation to the Eu-
clidean median ME(S), thus proving that the projec-
tion median in R2 maintains a fixed degree of stabil-
ity while providing a better approximation of the 2-
dimensional Euclidean median than the center of mass
or the rectilinear median. They also showed that the
stability bound is tight and the lower bound on the ap-
proximation factor is

√
4/π2 + 1.

In this paper, we study the projection median of
a set of points in Rd. Using results from the the-
ory of integration over topological groups we show that
the d-dimensional projection median provides a J(d)-
approximation to the d-dimensional Euclidean median,
where J(d) = (d/π)B(d/2, 1/2) and B(α, β) denotes the

Beta function. We also show that the d-dimensional
projection median is 1/J(d)-stable and the bound is
tight. From this it follows that the projection median
in Rd also provides a better approximation of the d-
dimensional Euclidean median than the d-dimensional
rectilinear median, and maintains a fixed degree of sta-
bility. For the special case d = 3, our results imply
that the 3-dimensional projection median is a (3/2)-
approximation of the 3-dimensional Euclidean median,
which settles a conjecture posed by Durocher [4].

2 Topological Preliminaries

In this section we present the basics of the theory of
integration over topological groups, which gives us the
necessary mathematical machinery to deal with the pro-
jection median of a finite set of points in Rd. A rotation
ϑ is a isometry of Rd, which keeps the origin and the
orientation fixed. A rotation ϑ can be represented as
a linear transformation x 7→ Ax, where A is a d × d
orthogonal matrix with determinant 1. The group of
all rotations in Rd with the operation of composition is
denoted by SO(d), which stands for the special orthog-
onal group. Algebraically, the group SO(d) is the set
of all orthogonal matrices of order d with determinant
1, under matrix multiplication. With natural topology,
obtained by regarding the matrices in SO(d) as points

in Rd2

, it is a compact group.

It follows from a general theorem of topological
groups, that there exists an unique Borel probability
measure on SO(d), which is invariant under the action
of the elements of SO(d). This is called the Haar mea-
sure of SO(d) [10]. We denote by ν the normalized Haar
measure of SO(d).

As mentioned before, Sd−1 denotes the unit hyper-
sphere in Rd. As a subset of Rd, Sd−1 is a compact and
separable metric space. We denote the normalized uni-
form measure over Sd−1 by µ, which is invariant under
the action of SO(d).

We now state the following change of variable re-
sult, which will be crucial in the proofs of the following
claims. The proof of this result follows from a general
change of variable theorem in measure spaces (Theo-
rem 1.6.12, Ash and Doléans-Dade [1]) and a theorem
of group actions on locally compact Hausdorff spaces
(Theorem 14.6.25, Royden [10]).

Result 1 Consider the function ψ : SO(d) → Sd−1

given by ψ(A) = Au0, for A ∈ SO(d) and a fixed
u0 ∈ Sd−1. If f : Sd−1 → R is a continuous func-
tion, then

∫
SO(d)

f(ψ(A))dν(A) =
∫
Sd−1 f(x)dµ(x). 2
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3 The Projection Median in Rd

We now proceed to study the projection median of a set
of points in Rd. Let S = {p1,p2, . . . ,pn} be a set of n
points in Rd in a d-dimensional orthogonal coordinate
system which we denote by C. Let e1, e2, . . . , ed be
the canonical basis of Rd, which also corresponds to
the direction vectors along the d orthogonal coordinate
axes of C. Given a vector or a matrix M, we denote its
transpose as M′. For two vectors x1,x2 ∈ Rd, denote by
⟨x1,x2⟩ the standard Euclidean inner product between
the vectors x1 and x2.
Let CA denote the coordinate system obtained by ro-

tating C by an orthogonal matrixA ∈ SO(d). The coor-
dinate axes of CA are then given by Ae1,Ae2, . . . ,Aed.
Let SA = {A′p1,A

′p2, . . . ,A
′pd} be the points of S in

CA. LetM∗
R(SA) be the rectilinear median of the points

of SA in CA, and MR(SA) the coordinate of the point
M∗

R(SA) in C.
Now, we have the following simple observation:

Observation 1 In the coordinate system C,
MR(SA) =

∑d
i=1 med(SAei).

Proof. By definition, med(SAei) = M({⟨pj ,Aei⟩|pj ∈
S})Aei. Now, observe that

MR(SA) =
d∑

i=1

M({⟨pj ,Aei⟩|pj ∈ S})Aei

=

d∑
i=1

med(SAei).

�

Durocher [4] showed that in R2 the projection median
and the rectilinear median satisfy the following identity:

MP (S) =
2
π

∫ π/2

0
Mϕ(S)dϕ, where Mϕ(S) denotes the

rectilinear median relative to a rotation by ϕ of the ref-
erence axis. The main obstacle in the generalization
of their results to higher dimensions is the difficulty in
obtaining an analogous result in higher dimensions.
In the following lemma, we obtain a generalization of

this result to higher dimensions by integrating the rec-
tilinear median over the group of rotations SO(d) with
respect to the normalized Haar measure.

Lemma 1 For a finite set S of points in Rd, MP (S) =∫
SO(d)

MR(SA)dν(A).

Proof. Observation 1 implies that∫
SO(d)

MR(SA)dν(A) =
∑d

i=1

∫
SO(d)

med(SAei)dν(A).

Consider the map ψi : SO(d) → Sd−1 given by
ψ(A) = Aei and the function f : Sd−1 → Rd given
by f(x) = med(Sx), where ||x|| = 1. Therefore, we
have

∫
SO(d)

med(SAei)dν(A) =
∫
SO(d)

f(ψi(A))dν(A) =

∫
Sd−1 f(x)dµ(x) =

∫
Sd−1 med(Sx)dµ(x) by Result

1, where µ is the normalized uniform measure
over Sd−1. Therefore,

∫
SO(d)

MR(SA)dν(A) =∑d
i=1

∫
SO(d)

med(SAei)dν(A) = d
∫
Sd−1 med(Sx)dµ(x).

Next, observe that the denominator in the defini-
tion of the projection median is the volume of the
d-dimensional unit sphere. Therefore, from Equation
1, we get that MP (S) = d

∫
Sd−1 med(Sx)dµ(x) =∫

SO(d)
MR(SA)dν(A). �

3.1 Approximation

Equipped with the results of the previous section, we
now proceed to determine the approximation factor of
the projection median with respect to the Euclidean me-
dian in Rd. In order to find the approximation factor,
we need to bound the following ratio:

λ(d) =

∑n
i=1 ||MP (S)− pi||∑n
i=1 ||ME(S)− pi||

(2)

Using Lemma 1, we now write the above ratio as:

λ(d) =

∑n
i=1 ||

∫
SO(d)

MR(SA)dν(A)− pi||∑n
i=1 ||ME(S)− pi||

=

∑n
i=1 ||

∫
SO(d)

(MR(SA)− pi)dν(A)||∑n
i=1 ||ME(S)− pi||

≤
∑n

i=1

∫
SO(d)

||MR(SA)− pi||dν(A)∑n
i=1 ||ME(S)− pi||

where the last step follows from triangle inequality.

Now, let ui = ME(S)−pi

||ME(S)−pi||
and observe that for all A

and x, ||x|| ≤ |x|A, where |x|A is the ℓ1 norm of x in the
coordinate system CA. This implies that

λ(d) ≤
∑n

i=1

∫
SO(d)

|MR(SA)− pi|Adν(A)∑n
i=1 ||ME(S)− pi||

≤
∑n

i=1

∫
SO(d)

|ME(S)− pi|Adν(A)∑n
i=1 ||ME(S)− pi||

=

∑n
i=1 ||ME(S)− pi||

∫
SO(d)

|ui|Adν(A)∑n
i=1 ||ME(S)− pi||

=

∑n
i=1 ||ME(S)− pi||

∫
SO(d)

∑d
j=1 |⟨ui,Aej⟩|dν(A)∑n

i=1 ||ME(S)− pi||

=

∑n
i=1 ||ME(S)− pi||

∑d
j=1

∫
SO(d)

|(A′ui)
′ej |dν(A)∑n

i=1 ||ME(S)− pi||
.

(3)
We can now simplify Equation 3 using Result 1.

Observation 2 λ(d) ≤ d
∫
Sd−1 |x′e1|dµ(x).
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Proof. Consider the function ψi : SO(d) → Sd−1

given by ψi(A) = A′ui, for i ∈ {1, 2, . . . , n}. Let
for j ∈ {1, 2, . . . , d}, fj : Sd−1 → R be defined as
fj(x) = |x′ej |, where ||x|| = 1. Then from Result
1,

∫
SO(d)

|(A′ui)
′ej |dν(A) =

∫
SO(d)

fj(ψi(A))dν(A) =∫
Sd−1 fj(x)dµ(x) =

∫
Sd−1 |x′ej |dµ(x). Since the inte-

gral are taken over all the units vectors in Sd−1, it is
easy to see that for j ̸= k we have,

∫
Sd−1 |x′ej |dµ(x) =∫

Sd−1 |x′ek|dµ(x). The proof now follows from Equation
3. �

We shall now prove the main result of this paper,
where we determine a upper bound on λ(d).

Theorem 2 For any d ≥ 2, the d-dimensional
projection median provides a J(d)-approximation of
the d-dimensional Euclidean median, where J(d) =
(d/π)B(d/2, 1/2).

Proof. Let ϕ1, ϕ2, . . . , ϕd−1 denote the angular coordi-
nates in the d-dimensional spherical coordinates where
the last angle ϕd−1 has a range of 2π while the other
angles have a range of π [9]. Observe that x′e1 is the
first coordinate of the vector x. Using d-dimensional
spherical coordinates we get x′e1 = cosϕ1 [9]. If dSd−1V

denotes the area element of Sd−1, which is also the non-
normalized uniform measure over Sd−1, then using the
d-dimensional spherical coordinate system we obtain:

λ(d) ≤ d

∫ π

0

∫ π

0
. . .

∫ 2π

0
| cos(ϕ1)|dSd−1V∫ π/2

0

∫ π/2

0
. . .

∫ π

0
dSd−1V

= d

∫ π

0
| cos(ϕ1)| sind−2(ϕ1)dϕ1∫ π

0
sind−2(ϕ1)dϕ1

. (4)

The result now follows after minor simplifications and
on using the fact that for any two reals a, b > −1,∫ π/2

0
sina θ cosb θdθ = 1

2 ·B(a+1
2 , b+1

2 ) [6]. �

Since d is an integer, using standard formulae of Beta
functions [6], it is possible to find out the explicit ex-
pression for J(d) as follows

J(d) =

{
2d
π .

(d−2)(d−4)...4.2
(d−1)(d−3)...5.3 , if d is even;

d. (d−2)(d−4)...3.1
(d−1)(d−3)...4.2 , if d is odd.

For the special case d = 3, J(d) = 3/2, which im-
plies that in R3 the projection median gives a (3/2)-
approximation of the Euclidean median, thus answering
a question posed by Durocher [4].
As mentioned earlier, Durocher and Kirkpatrick [5]

proved the lower bound of
√
4/π2 + 1 on the approxi-

mation factor of the projection median in R2. Note that
the same quantity provides a lower bound on the ap-
proximation factor in Rd as well. However, the problem
of obtaining a non-trivial lower bound on the approxi-
mation factor in Rd remains open.

3.2 Stability

In 2D, Durocher and Kirkpatrick [5] showed the tight
bound on the stability of the projection median is the
reciprocal of the upper bound on the approximating fac-
tor. We claim that same is true for higher dimensions
as well. The proof follows by directly generalizing the
techniques of Durocher [4] to higher dimensions, which
finally involves integration of functions over the area el-
ement of the d-dimensional sphere.

Theorem 3 For any d ≥ 2, the d-dimensional projec-
tion median is 1/J(d)-stable and this bound is tight. 2
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