
CCCG 2010, Winnipeg MB, August 9–11, 2010

Computing Straight Skeletons of Planar Straight-Line Graphs Based on
Motorcycle Graphs∗

Stefan Huber† Martin Held†

Abstract

We present a simple algorithm for computing straight
skeletons of planar straight-line graphs. We exploit
the relation between motorcycle graphs and straight
skeletons, and introduce a wavefront-propagation al-
gorithm that circumvents the expensive search for the
next split event. Our algorithm maintains the simplic-
ity of the triangulation-based algorithm by Aichholzer
and Aurenhammer but has a better worst-case complex-
ity of O(n2 log n). Preliminary experiments with our
implementation demonstrate that an actual runtime of
O(n log n) can be expected in practice.

1 Introduction

Straight skeletons of simple polygons were introduced
by Aichholzer et al. [1] and later generalized to planar
straight-line graphs by Aichholzer and Aurenhammer
[2]. For planar straight-line graphs G with n vertices
two algorithms are known: an O(n3 log n) algorithm by
Aichholzer and Aurenhammer [2] and an O(n17/11+ε) al-
gorithm by Eppstein and Erickson [4]. The former al-
gorithm uses a triangulation of G to perform a wave-
front propagation; it is widely believed yet unproven
that its worst-case complexity is in O(n2 log n), cf. [6].
The latter algorithm exploits dynamic data structures
for fast nearest-neighbor queries and is quite complex
when considering all its sub-algorithms. In particular,
no implementation is known that matches the theoret-
ical complexity. Cheng and Vigneron [3] introduced a
randomized algorithm for simple polygons with holes.
They exploit the relation between motorcycle graphs
and straight skeletons to obtain an expected runtime
of O(n

√
n log2 n). Again, no implementation of their

algorithm is known.
Let us consider a planar straight-line graph G with n

vertices, none of them being isolated. Vertices of degree
one are called terminals. According to [2], the definition
of the straight skeleton S(G) is based on a wavefront-
propagation process. Roughly speaking, every edge e of
G sends two wavefronts out, which are parallel to e and
have unit speed. At terminals of G an additional wave-

∗Work supported by Austrian FWF Grant L367-N15.
†Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, Austria, {shuber,held}@cosy.sbg.ac.at

front orthogonal to the single incident edge is emitted.
In Fig. 1 we illustrated the wavefront of an input graph
at three different points in time. The wavefrontW(G, t)
of G at some time t can be interpreted as a 2-regular ki-
netic straight-line graph, where the vertices of W(G, t)
move along bisectors of straight-line edges of G (except
for the vertices originating from the terminals of G).
During the propagation of W(G, t) topological changes
occur: an edge may collapse (edge event) or an edge
may be split by a vertex (split event). The straight-line
segments traced out by the vertices ofW(G, t) form the
so-called straight skeleton S(G) of G, see Fig. 1.

Aichholzer and Aurenhammer [2] gave a versatile in-
terpretation of S(G) by considering a fixed-slope ter-
rain in R3 using the following construction. They em-
bed G and S(G) in the plane R2 × {0}. Now as-
sume that the propagating wavefronts W(G, t) of G are
moving upwards at unit speed. Then the wavefronts
contour a fixed-slope terrain T (G) ⊂ R3 of the form⋃
t≥0W(G, t)× {t}. The wavefront at some time t can

be interpreted as the isoline of T (G) at height t. The
straight skeleton S(G) is given by the projection of the
valleys and ridges of T (G) onto the plane.

We call an edge e of S(G) reflex (convex, resp.) if the
corresponding edge ê in T (G) is a valley (ridge, resp.).
Further, we call a vertex v of W(G, t) reflex (convex,
resp.) if the angle between the two incident edges on
the side where v propagates to is ≥ 180o (< 180o, resp.).
Hence, reflex edges of S(G) are traced out by reflex
vertices of W(G, t).

Figure 1: The straight skeleton (dashed) of the input
graph (bold) and three wavefronts (grey).



22nd Canadian Conference on Computational Geometry, 2010

p

m1 mk. . .

(a) (b) (c)

v(ε)

v(0)

Figure 2: Starting a new motorcycle. (a) a motorcycle
is launched because v is reflex. (b) at terminals of G
two motorcycles are launched. (c) forbidden case: mo-
torcycles m1, . . . ,mk crash simultaneously at p.

In a previous paper [6] we demonstrated how to
employ Steiner points in order to eliminate all flip
events from the triangulation-based algorithm of [2],
and sketched an algorithm for computing straight skele-
tons of simple polygons by means of motorcycle graphs.
In this paper we discuss this algorithm in detail, extend
it to planar straight-line graphs and report on experi-
ments. The basic idea is to simulate the wavefront prop-
agation on the motorcycle graph in order to make the
handling of a topological event computationally cheap.

2 Motorcycle graph of a PSLG

In order to extend the approach of our previous work
[6] to planar straight-line graphs we extend a result of
Cheng and Vigneron [3], see Thm. 1. Consider a set
of points in the plane, called “motorcycles”, that drive
along straight-line rays according to given speed vectors.
Further consider a set of straight-line segments, called
“walls”. Every motorcycle leaves a trace behind it and
stops driving — it “crashes” — when reaching the trace
of another motorcycle or a wall. The arrangement of
these traces is called motorcycle graph, cf. [5].

We denote by v(t) the position of the vertex v of
W(G, t). Let us considerW(G, ε) for a sufficiently small
ε > 0 such that no topological event occurred yet in
the wavefront propagation. ThenW(G, ε) is a 2-regular
planar straight-line graph. For every reflex vertex v
of W(G, ε) we define a motorcycle with start point v(0)
and speed vector 1

ε (v(ε)−v(0)), see Fig. 2. In particular,
at every terminal of G two motorcycles are launched.
Next, we consider the edges ofG as walls. We denote the
motorcycle graph resulting from this setup by M(G).

For the sake of simplicity we adopt the assumption
of Cheng and Vigneron [3]: we assume that no two or
more motorcycles crash simultaneously at some point p.
Hence, the case in Fig. 2 (c) is excluded. In particular,
this means that no two or more reflex vertices ofW(G, t)
meet simultaneously at some point p.

Theorem 1 Every reflex edge in S(G) is covered by a
motorcycle trace in M(G).

The following proof is given in [3] and has been
slightly adapted to our purposes.

p

m

m̂ m̂2

m2

e

ê

ê2

W

T (G)

e2 v

Figure 3: The terrain T (G) has two different heights at
position p, given by ê and W , which is a contradiction.

Proof. As in [3], the problem is lifted to R3 by consid-
ering T (G). We denote by ê the edge of T (G) which
corresponds to the edge e in S(G). Analogously, we de-
note by m̂ the tilted version of the motorcycle m, where
the slope is the reciprocal of the speed of m, see Fig. 3.

We first note that every reflex edge of S(G) is inci-
dent to a (reflex) vertex ofW(G, 0). (Topological events
in the wavefront propagation do not lead to new reflex
edges.) This means that every reflex edge of S(G) cor-
responds to a unique motorcycle trace inM(G). Hence
every valley of T (G) corresponds to a unique motorcycle
trace, except for the valleys lying on the plane, which
correspond to the input graph G.

Assume that there is a reflex edge e of S(G) which
is strictly shorter than the trace of the corresponding
motorcycle m. Within all such candidates we consider
an edge e where the upper endpoint of ê has minimum
height. Obviously, the upper endpoint is part of T (G).
Since m is shorter than e it follows that m did not crash
against a wall (an edge of G) but against another mo-
torcycle m2. We denote by p ∈ R2 the crash point, by
e2 the edge of S(G) corresponding to m2 and by v the
start point of m2. Further let t∗ denote the height of
the lower endpoint of ê.

Let us consider the vertical slab W having the base
line [v, p] and being bounded above by T (G), see Fig. 3.
We observe that W ∩ T (G) is convex: consider the cor-
responding vertices in the order as they appear on m2.
First, we consider the higher endpoint of ê2. If this ver-
tex would be reflex we would have discovered a valley
of T (G). Since the corresponding point is lower than t∗

there has to be a corresponding motorcyclem3 such that
m̂3 reaches this point. But then m2 and m3 would have
crashed simultaneously, which is excluded by the as-
sumption of Cheng and Vigneron. Every further vertex
of W ∩ T (G) is strictly below m̂2 by induction and the
following argument. Assume that such a vertex would
be reflex. Since motorcycles crash at walls (edges of G)
we can not have reached height zero. Hence there would
again be a motorcycle m3 which reaches the correspond-
ing position strictly before m2 and hence m2 would have



CCCG 2010, Winnipeg MB, August 9–11, 2010

been crashed against m3 but never reached p.
Finally, W ∩T (G) is at position p not above m̂2. But

on the other hand the height of T (G) is given at p by
the lower endpoint of ê which is a contradiction. �

3 Computing the straight skeleton

First, we add M(G) to the wavefront by the follow-
ing construction. Consider for a t ≥ 0 those parts
M(G, t) ofM(G) which have not yet been swept by the
wavefront W(G, t) and insert M(G, t) into W(G, t) by
splitting the edges ofW(G, t) at the intersection points.
Those intersection points are called moving Steiner ver-
tices. Each vertex ofM(G) not lying on W(G, t) is due
to a crash of a motorcycle into the trace of another mo-
torcycle and will be called resting Steiner vertices. The
resulting graph will be denoted by W∗(G, t), see Fig. 4.
Again W∗(G, t) can be interpreted as a kinetic planar
straight-line graph.

Lemma 2 For any t ≥ 0 the set R2 \⋃t′∈[0,t]W∗(G, t′)
consists of open convex faces.

This is easy to see since reflex angles at reflex vertices
of W(G, t) are split by (parts of) motorcycle traces ac-
cordingly. In particular, for t = 0, the lemma implies
that G+M(G) induces a tessellation of the plane into
(possibly unbounded) convex faces. A consequence of
the lemma is that during the propagation of W∗(G, t)
only adjacent vertices can meet.

Our straight skeleton algorithm simply simulates the
propagation of W∗(G, t). While simulating the origi-
nal wavefront W(G, t) leads to the problem of finding
the next split event (a reflex vertex meets a wavefront
edge) we circumvent this problem due to Lemma 2: ev-
ery topological change is indicated by the collision of
two neighboring vertices of W∗(G, t). Theorem 1 guar-
antees that a split event occurs within the corresponding

resting
Steiner vertex

moving
Steiner vertex

reflex
vertex

convex
vertex

Figure 4: The graphW∗(G, t) (dotted) is the embedding
ofM(G, t) intoW(G, t) for the input graph (bold). The
shaded area has been already swept by W∗(G, t).

motorcycle trace and hence reflex vertices do not move
beyond them.

In order to compute S(G), we put every edge e of
W∗(G, t) into a priority queue Q where the priority is
given by the collapsing time of e. We fetch the next
event in Q, apply the corresponding topological change
toW∗(G, t) and repeat until Q gets empty. We consider
the following event classes1:

(Classical) edge event Two convex vertices u and v
meet. We add the convex straight skeleton arcs
traced out by u and v. Then we merge u and v to
a new convex vertex. As a special case we check
whether a whole triangle collapsed due to u and v.

(Classical) split event A reflex vertex u meets a
moving Steiner vertex v and both are driving
against each other. First, we add a reflex straight
skeleton arc which has been traced out by u. Then
we consider the left side of the edge e = (u, v). If
this side collapsed we add corresponding straight
skeleton arcs. Otherwise a new convex vertex
emerges, which is connected to the vertices adja-
cent to u and v lying left of e. Likewise for the
right side of e.

Start event A reflex vertex or a moving Steiner vertex
u meets a resting Steiner vertex v. So v becomes a
moving Steiner vertex and one of the incident edges
of u (but not (u, v)) is split by v.

Switch event A convex vertex u meets a moving
Steiner vertex or a reflex vertex v. The convex ver-
tex u is migrating from one convex face to a neigh-
boring one by jumping over v. If v was a reflex
vertex then it becomes a moving Steiner vertex.

Remaining events If two moving Steiner vertices
meet we can simply remove the corresponding edge.
All other events (e.g. a convex vertex meets a rest-
ing Steiner vertex) are guaranteed not to occur.

For each event we have to update Q for those edges
where the collapsing times change. Note that only O(1)
edges are changed per event. Therefore a single event is
handled in O(log n) time. Edge, split and start events
occur in total Θ(n) times. Since a single convex ver-
tex does not meet a moving Steiner vertex twice the
number of switch events is in O(n2). The construction
of the initial wavefront W∗(G, t) can be done easily in
O(n log n) time.

Lemma 3 If M(G) is given then our algorithm takes
O((n + k) log n) time, where k is the number of switch
events, with k ∈ O(n2).

1For technical reasons we have a further vertex type “multi
convex vertex” in our implementation. It is used when a moving
Steiner vertex and a convex vertex move identically. We do not
further discuss this technical detail here.



22nd Canadian Conference on Computational Geometry, 2010

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

100 1000 10000 100000 1e+06

Number n of input vertices

Runtime in sec. / n log n

Figure 5: A point depicts the runtime on one dataset.
The runtime is given in seconds and is scaled by n log n.

For practical applications it seems unlikely that more
than O(n) switch events occur and hence an actual run-
time of O(n log n) may be expected, as confirmed by ex-
periments; see below. (However, a worst-case example
for the number of switch-events can be constructed.)

Sub-quadratic algorithms for the computation of
M(G) are given in [4, 3]. Besides, it is well known
that M(G) can be computed in O(n2 log n) time by a
priority-queue enhanced brute-force algorithm, cf. [3].

4 Experimental results

We have implemented our algorithm in C++ using or-
dinary double-precision floating-point arithmetic and
the STL for standard data structures. The motorcy-
cle graph is computed by our code Moca, which has an
average runtime2 of O(n log n).

The following runtime experiments have been done on
a 32-bit Debian Linux machine with a 2.66 GHz Core
Duo processor. We used the C function getrusage() to
obtain the user time consumption. Our implementation
is still under development. However, the current code is
already mature enough to allow a glimpse at the runtime
for about 3 100 datasets.

In Fig. 5 we plotted the runtime in seconds of our im-
plementation (including the computation of the motor-
cycle graph). For a better illustration we scaled the val-
ues by a factor n log n. It turns out that our implemen-
tation takes about 30n log nµs on almost all datasets.
In Fig. 6 we excluded the time taken by the computa-
tion of the motorcycle graph. About 20n log nµs are
used to compute S(G) if M(G) is already known. In
both figures only datasets with at least 100 vertices have
been plotted since the runtime is hardly measurable for
smaller datasets. If the runtime for a single dataset was
less than 0.1 seconds our code was launched multiple
times and the average runtime was taken.

2While experiments in [5] already showed this runtime behav-
ior we were able to improve the corresponding stochastic analysis.
A full version of that paper is currently under review for publica-
tion.

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

100 1000 10000 100000 1e+06

Number n of input vertices

Runtime in sec. / n log n

Figure 6: The same plot as in Fig. 5 but without the
runtime for the motorcycle graph.

5 Conclusion

In this paper we discuss a simple algorithm for the com-
putation of the straight skeleton of a planar straight-
line graph. As the algorithm by Aichholzer and Au-
renhammer [2] our algorithm is suitable for implemen-
tation but its worst-case runtime is O(n2 log n) instead
of O(n3 log n) for an n-vertex PSLG. Experiments with
our C++ implementation on a few thousand datasets
demonstrate a runtime of about O(n log n) in practice.

References

[1] O. Aichholzer, D. Alberts, F. Aurenhammer, and
B. Gärtner. Straight Skeletons of Simple Polygons. In
Proc. 4th Internat. Symp. of LIESMARS, pages 114–124,
Wuhan, P.R. China, 1995.

[2] O. Aichholzer and F. Aurenhammer. Straight Skele-
tons for General Polygonal Figures in the Plane. In
A. Samoilenko, editor, Voronoi’s Impact on Modern Sci-
ence, Book 2, pages 7–21. Institute of Mathematics of the
National Academy of Sciences of Ukraine, Kiev, Ukraine,
1998.

[3] S.-W. Cheng and A. Vigneron. Motorcycle graphs and
straight skeletons. Algorithmica, 47(2):159–182, 2007.

[4] D. Eppstein and J. Erickson. Raising Roofs, Crashing
Cycles, and Playing Pool: Applications of a Data Struc-
ture for Finding Pairwise Interactions. Discrete Comput.
Geom., 22(4):569–592, 1999.

[5] S. Huber and M. Held. A Practice-Minded Approach
to Computing Motorcycle Graphs. In Proc. 25th Europ.
Workshop Comput. Geom., pages 305–308, Brussels, Bel-
gium, Mar 2009.

[6] S. Huber and M. Held. Straight Skeletons and their Re-
lation to Triangulations. In Proc. 26th Europ. Workshop
Comput. Geom., pages 189–192, Dortmund, Germany,
Mar 2010.


