
On k-Enclosing Objects in a Coloured Point Set

Luis Barba∗ Stephane Durocher†‡ Robert Fraser† Ferran Hurtado§¶ Saeed Mehrabi†

Debajyoti Mondal† Jason Morrison† Matthew Skala† Mohammad Abdul Wahid†

Abstract

We introduce the exact coloured k-enclosing object
problem: given a set P of n points in R2, each of
which has an associated colour in {1, . . . , t}, and a vec-
tor c = (c1, . . . , ct), where ci ∈ Z+ for each 1 ≤ i ≤ t,
find a region that contains exactly ci points of P of
colour i for each i. We examine the problems of find-
ing exact coloured k-enclosing axis-aligned rectangles,
squares, discs, and two-sided dominating regions in a
t-coloured point set.

1 Introduction

Given a set P of n points in R2 and a positive in-
teger k, the problem of finding a region (e.g., a disc,
square, or rectangle) that encloses exactly k points of
P while optimizing specific parameters (e.g., minimiz-
ing area or perimeter) has been examined extensively
[3, 17, 19, 20, 25]. In many applications, the input data
are classified into categories, or colours, leading us to
consider the following natural generalization. Given a
set P of n points in R2, each of which has an associated
colour in {1, . . . , t}, and a vector c = (c1, c2, . . . , ct),
where ci ∈ Z+ for each 1 ≤ i ≤ t, find a region enclosing
at least ci points in P of colour i for each i. Such prob-
lems commonly appear in pattern recognition [25] (e.g.,
when features are represented as a point set, and the ob-
jective is to identify a precise cluster with the prescribed
number of features), as database queries (e.g., find a hol-
iday destination with five tourist attractions, two hotels,
and six restaurants), and in facility location [1] (e.g., se-
lecting a location for a bus stop in a densely populated
area). Unlike the smallest k-enclosing rectangle or disc
problems, the solution to the exact coloured k-enclosing
object problem may not always exist. Therefore, in the

∗Carleton University, Canada, and Université Libre de Brux-
elles, Belgium. luis barbaflores@carleton.ca
†University of Manitoba, Canada.

{durocher,fraser,mehrabi,jyoti}@cs.umanitoba.ca,
Jason.Morrison@umanitoba.ca, {mskala,wahid}@cs.umanitoba.ca
‡Work of the author is supported in part by the Natural Sci-

ences and Engineering Research Council of Canada (NSERC).
§Universitat Politècnica de Catalunya (UPC), Spain.

Ferran.Hurtado@upc.edu
¶Work of the author is supported in part by projects MINECO

MTM2012-30951, Gen. Cat. DGR2009SGR1040, and ESF-
EuroGIGA-CRP ComPoSe, MICINN EUI-EURC-2011-4306.

exact coloured k-enclosing object problem, the primary
objective is to find any coloured k-enclosing object that
contains exactly the required number of points of each
colour (if such a region exists), rather than finding the
smallest such object. The problem is defined formally
as follows.

Exact Coloured k-Enclosing Object Problem

INPUT: A set P of n points in R2, each of which
is assigned a colour in {1, . . . , t}, and a t-tuple c =
(c1, . . . , ct), where ci ∈ Z+ for each i.

QUESTION: Find a region (such as an axis-aligned
rectangle, square, or disc) in R2 that encloses exactly ci
points of P of colour i for each i.

Although smallest k-enclosing object problems are
well explored, very little is known about the exact
coloured k-enclosing object problem. In this paper we
introduce the exact coloured k-enclosing object problem
for axis-aligned rectangles, squares, discs, and two-sided
dominance regions in polychromatic point sets. Sec-
tion 2 begins with an examination of related work. In
Sections 3–5, we show that exact coloured k-enclosing
axis-aligned rectangles, discs, and two-sided dominance
regions can be found in O(n2k), O(KVD(n, k)), and
O(n log n) time, respectively, where KVD(n, k) denotes
the time required to construct the kth order Voronoi
diagram. In Section 6, we discuss generalizations to
higher dimensions.

Throughout the paper, n denotes the number of
points in P , t denotes the number of distinct colours
of points in P , and k denotes the number of points to
be contained in the bounding object, i.e., k =

∑t
i=1 ci.

Also, we assume that points are in general position.

2 Related Work

The exact coloured k-enclosing object problem general-
izes several known problems, and was motivated by a de-
sire to generalize the jumbled pattern matching problem
to higher dimensions. Jumbled pattern matching [9, 10]
asks whether a given sequence contains any permutation
of some given query string. Given an arbitrary binary
sequence of length n (i.e., t = 2), Burcsi et al. [9] show
how to construct an O(n)-space data structure in O(n2)
preprocessing time that supports queries in O(k) time

25th Canadian Conference on Computational Geometry, 2013

for any arbitrary query string of length k. Given an ar-
bitrary sequence of length n (i.e., any t ≥ 2), Burcsi et
al. gave an O(n)-space data structure with O(n) prepro-
cessing time to report all occurrences of a query string in
O(n

√
t/(k log t)) expected time. The one-dimensional

exact coloured k-enclosing problem reduces to jumbled
pattern matching, since a t-coloured set of n points in R
can be mapped to an array A of length n. One can slide
an interval of width k over A to find an exact coloured
k-enclosing interval in O(n) time (or O(n log n) time if
the point set is unsorted).

The problem of finding a smallest axis-aligned square,
rectangle or disc that encloses k of n uncoloured points
in R2 has been studied for over two decades. In 1991,
Aggarwal et al. [3] showed that a smallest k-enclosing
rectangle or square can be computed in O(nk2 log n)
time and O(nk) space. Both the time and space com-
plexities were subsequently improved several times [11,
17, 20, 29], and the current best known algorithms
in R2 require O(nk2 + n log n) time and O(n) space
for rectangles [20] and O(n log n + n log2 k) time and
O(n) space for squares [17]. The smallest k-enclosing
disc problem also has a long history. The current best
known algorithms require O(n log n+nk log k) time and
O(nk + k log2 k) space [20], and O(nk log2 n) time and
O(nk) space [19]. The lower bound on time is believed
to be Ω(nk) [26].

A generalization of the smallest k-enclosing object
problem with respect to a t-coloured point set is to find
the smallest colour-spanning object, i.e., the smallest
rectangle or disc that contains at least one point of each
colour. Abellanas et al. [1] showed how to compute the
smallest colour-spanning rectangle in O(n(n− t) log2 t)
time, which was later improved to O(n(n− t) log t) [16].
The best known algorithm for computing the smallest
colour-spanning disc takes O(nt log n) time [22].

In R2, the exact coloured k-enclosing rectangle prob-
lem reduces to a subarray sum problem considered by
Takaoka [30] that, given an m × m array and a value
v, asks to find a subarray such that the sum of its val-
ues is v. Takoaka showed that such a subarray can be
computed in O(m3 logm) time. The exact coloured k-
enclosing rectangle problem can be solved in O(n3 log n)
time by reduction to this reverse range query problem.
In Section 3, we show how to achieve O(n2k) time, im-
proving the running time by a linear factor for small
values of k.

Problems that involve finding discs that enclose a pre-
scribed set of points with few outliers can be viewed as
variants of the exact coloured k-enclosing object prob-
lem. For example, consider a point set with r red and
b blue points, and the problem of finding a disc that
encloses all of the red points and at most cb blue points.
Cheung and Daescu [13] showed that the existence of

such a disc can be decided in O(n+n1/4c
11/4
b logO(1) n)

time, and later gave an improved O(rb log b + r log r)-
time algorithm to find the smallest disc that minimizes
the number of blue points [7]. Backer and Keil [5]
showed that given a red-blue point set, an axis-aligned
rectangle with the maximum number of red points but
no blue points can be computed in O(n log3 n) time.
Dobkin et al. [18] considered the problem of computing
a rectangle that maximizes the difference between the
numbers of enclosed red and blue points, and gave an
O(n2 log n)-time algorithm to find such a rectangle.

Finding an exact coloured k-enclosing object is an in-
verse formulation of the range query problem in a poly-
chromatic point set. One may consider such inverses for
a variety of different shapes of query ranges. For exam-
ple, in Section 5 we examine an inverse problem of the
dominance range query that, given a t-coloured point
set P in R2, asks whether there is a point in P that
dominates exactly ci points of P of colour i for each i.
JáJá et al. [23] gave an O(n log n/ log log n)-space data
structure for dominance counting queries, i.e., counting
the number of points dominated by the query point, in
O(log n/ log log n) time. One could use such data struc-
tures for every colour class to determine whether there
is a point in P that dominates exactly ci points of P of
colour i for each i, but it is not obvious how to combine
the dominance counts efficiently since the dominating
points returned will not coincide in general. In Sec-
tion 5, we give an algorithm to solve this problem in
O(n log n) time.

3 Axis-Parallel Rectangles

In this section, we study the exact coloured k-enclosing
rectangle problem. Given a set P of n coloured points in
R2, where the colour of a point is an integer in {1, . . . , t},
and given a query as a t-tuple c = (c1, . . . , ct), where
∀i, ci ∈ Z+, the problem is to determine whether there
exists an axis-aligned rectangle which covers exactly ci
points of colour i for all i. The algorithm works by
considering every possible choice for the top and bottom
of the rectangle. That is, the algorithm checks whether
a solution exists within any of the horizontal strips of the
plane determined by a pair of horizontal lines passing
through points of P .

We proceed by fixing the bottom of the strip and then
increasing its height monotonically, i.e., new points are
added to the strip, one by one, in order of increasing
y-coordinates. We store all the points contained in the
strip in a linked list L sorted by x-coordinates in in-
creasing order. As the height of the strip increases, new
points are inserted to L. Upon insertion of a point, we
check each window of width k (i.e., a horizontal interval
on the strip containing exactly k points) containing the
new point (recall that k =

∑t
i=1 ci). Since this involves

sliding a fixed window from left to right, this check may

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

be performed in O(k) time. For example, keep an ar-
ray A of width t, where A[i] is the number of points of
colour i in the window, and a counter a that tracks the
current number of colours satisfied in the query. When
the window moves one step, a single point is added to
the window and one is removed. For each of these, up-
date A[i] accordingly and compare A[i] with ci to see
whether a should be updated. If a = t, then a solution
exists containing the points in the window.

To insert a point in L, we use a preprocessing step
that allows us to perform this insertion in O(1) time.
Prior to starting the algorithm, sort the points of P
and store them in order of increasing x-coordinates in a
linked list Lx.

With the bottom of the strip fixed on a line through
some point pj of P , we assume that list Lx is updated
to store only the points of P that lie above pj . The
preprocessing is described as follows. We copy list Lx
into a list L in O(n) time. Then, remove points from
list L, one by one, in order of decreasing y-coordinates.
Before removing a point p, we store two pointers p.left
and p.right to the predecessor and successor of p in L.

After preprocessing, to insert a point pi into L, we
splice it between pi.left and pi.right. Because points
were removed from top to bottom, both pi.left and
pi.right have y-coordinates less than pi. Thus, as the
insertions into L occur from bottom to top, both pi.left
and pi.right belong to L when pi is inserted. Since Lx
stored the points in sorted order by x-coordinates, pi
lies to the right of pi.left and to the left of pi.right.
Moreover, no point with y-coordinate less than pi and
larger than pj lies between pi.left and pi.right. The cor-
responding pseudocode is given in Algorithm 1.

Theorem 1 The exact coloured k-enclosing rectangle
problem can be solved in O(n2k) time.

Proof. The outer for-loop iterates n times, and O(n)-
time preprocessing is performed on each iteration. An
insert operation is performed in the inner loop in
Step 11. As each insert requires only to splice a new
point in the list, it is performed in O(1) time. By
Step 31, list Lx always contains the points at or above
pj sorted by x-coordinates and, consequently, list L is
also kept sorted in order of increasing x-coordinates.

Each iteration of the inner loop to determine whether
a solution exists around the inserted point takes O(k)
time, resulting in a total running time of O(n2k).

For correctness, consider a solution whose lowest
(resp., highest, leftmost, rightmost) point is pbot (resp.,
ptop, p`, pr). We consider all pairs of top and bottom
points, so one iteration of the inner loop exists where
i = top and j = bot. Since ptop is the point inserted into
the linked list at this step, the algorithm checks all rect-
angles whose highest and lowest points are ptop and pbot
and also contain exactly k points, one of which is ptop.
Every solution, if any exists, is such a rectangle. �

Algorithm 1 RECT(P, c)

1: Sort P ∪ {(0,−∞), (0,∞)} by x-coordinates and
store its points in order of increasing x-coordinates
in a linked list Lx.

2: Sort P in order of increasing y-coordinates. Let pi
be the i-th point in this ordering.

3: k ←
∑t
i=1 ci

4: for j := 0 to n− 1 do
5: Copy list Lx into a list L.
6: for i := n− 1 to j + 1 do
7: pi.left← predL(pi), pi.right← succL(pi).
8: Remove pi from list L.
9: L ← [(0,−∞), pj , (0,∞)]

10: for i := j + 1 to n− 1 do
11: Splice pi into L between pi.left and pi.right.
12: A[1 . . . t]← 0, a← 0
13: prev← pi, next← pi
14: % Put the nodes for the k predecessors and

successors of pi into an array C.
15: for l := 0 to k do
16: C[k − l]←prev, prev← predL(prev)
17: C[k + l]←next, next← succL(next)
18: % Slide a window of width k along the array.
19: for l := 0 to 2k − 1 do
20: cur←col(C[l])
21: Increment A[cur]
22: If A[cur] = ccur then increment a.
23: If A[cur] = ccur + 1 then decrement a.
24: if l ≥ k then
25: cur←col(C[l − k])
26: Decrement A[cur]
27: If A[cur] = ccur then increment a.
28: If A[cur] = ccur − 1 then decrement a.
29: if a = t then
30: return a rectangle bounded by pj , pi,

C[l], and C[l − k + 1]
31: Remove pj from list Lx.
32: % There is no rectangle satisfying the query in P .
33: return ∅

See Section 6.1 for a discussion of modifications to
Algorithm 1 to reduce running time.

4 Discs and Axis-Parallel Squares

The kth order Voronoi diagram of a set P of n points
in the plane is a partition of the plane into maximal
convex cells such that any two points in a common cell
have the same k nearest neighbours in P . The number
of kth order Voronoi cells is Θ(k(n − k)) [24]. Thus,
if C is a kth order Voronoi cell whose set of nearest
neighbours is PC = {p1, . . . , pk} ⊆ P , for any point
p ∈ C, there exists a disc Dp centered at p such that
Dp∩P = PC . If the points of P are coloured, it suffices

25th Canadian Conference on Computational Geometry, 2013

to verify whether there exists a kth order Voronoi cell
C such that the frequencies of the colours of the points
in PC correspond to the input colour t-tuple c.

Traversing the cells of the kth order Voronoi dia-
gram by a breadth-first or depth-first search on the
dual graph requires O(k(n − k)) steps. The sets of k
nearest neighbours in any two adjacent cells Ca and
Cb differ in exactly two points. Specifically, there exist
points {pa, pb} ⊆ P such that the edge e common to
Ca and Cb is on the bisector of pa and pb and for any
point in Ca close to e, pa and pb are respectively its
kth and (k + 1)st closest points in P , whereas the re-
lationship is reversed for Cb. When transitioning from
Ca to Cb, the set of k nearest neighbours is updated in
O(1) time by PCb

= (PCa ∪ {pb}) \ {pa}. We find the
k nearest neighbours for the first cell in the traversal
in O(n) time using selection and partitioning, compute
the frequencies of the corresponding colours, and initial-
ize a count s of the number of frequencies that match
the input t-tuple c. Upon moving from the cell Ca to
its neighbouring cell Cb during the traversal, it suffices
to increment the frequency count for the colour of pb,
check whether this new value matches the correspond-
ing value in c, decrement the frequency count for the
colour of pa, check whether this new value matches the
corresponding value in c, and update s accordingly. If
s = t, then a disc centered at any point in Cb with ra-
dius r = maxq∈PCb

dist(p, q) is a solution to the exact
coloured k-enclosing disc problem. Since the kth order
Voronoi diagram has size Θ(k(n − k)) in general, con-
structing it requires Ω(k(n− k)) time in the worst case.
This gives the following theorem.

Theorem 2 The exact coloured k-enclosing disc prob-
lem can be solved in O(KVD(n, k)) time, where
KVD(n, k) denotes the time required to construct the
kth order Voronoi diagram.

Efficient deterministic algorithms for constructing the
kth order Voronoi diagram include those of Chazelle
and Edelsbrunner in O(n2 + k(n − k) log2 n) time us-
ing O(n2) space and O(n2 log n + k(n − k) log2 n) time
using O(k(n − k)) space [12], Lee in O(nk2 log n) time
using O(n2(n − k)) space [24], and Aurenhammer in
O(nk2 log n) time using O(k(n − k)) space [4]. Effi-
cient randomized algorithms include those of Clarkson
in O(n1+εk) expected time for any fixed ε > 0 [14],
Ramos in O(n log n + nk2c log

∗ n) expected time, where
c is constant [28], and Agarwal et al. inO(k(n−k) log n+
n log3 n) expected time [2].

Under `∞ distance, a disc of radius r centered at
a point p is realized as an axis-parallel square of side
length 2r centered at point p. Consequently, just as we
did for discs under `2 distance, the kth order Voronoi
diagram under `∞ distance can be used to find a square
that contains exactly ci points of P of colour i for each
i, if any such square exists. Equivalently, `1 distance

can be used with a π/4 rotation of the axes. Sev-
eral of the algorithms for constructing the kth order
Voronoi diagram under `2 distance can be applied un-
der `1 or `∞ distance. For example, Lee [24] states that
his O(nk2 log n)-time algorithm applies to the `∞ and
`p distance metrics for any p ∈ [1,∞). This gives the
following corollary.

Corollary 3 The exact coloured k-enclosing axis-
parallel square problem can be solved in O(KVD(n, k))
time, where KVD(n, k) denotes the time required to con-
struct the kth order Voronoi diagram under the `∞ dis-
tance metric.

5 Two-Sided Dominating Regions

Let P be a set of n points in the plane, each with a
colour from {1, . . . , t}. For each i, let Pi denote the
subset of P of colour i and let ni = |Pi|. The point p =
(px, py) dominates the point q = (qx, qy) if px > qx and
py > qy. We show how to determine in O(n log n) time
if there exists some point r in the plane that dominates
c = (c1, . . . , ct) points of P , i.e., r dominates ci points of
Pi for each i, and to return such a point r if one exists.

For each i, the region of points that dominate at least
ci points of Pi is bounded by a monotonic non-increasing
orthogonal polygonal chain. The region of points that
dominate exactly ci points of Pi is bounded by two such
chains. This boundary is defined by Bose and Morrison
[8] as the ci- and ci+1-levels in Pi, consisting of a stair-
case that can be partitioned into an x-monotone set
of O(ni) rectangles, as shown in Figure 1. Any solution
point r must be contained in one of these rectangles. For
each colour i, the corresponding rectangles are bounded
by O(ni) segments [8] and can be constructed in O(ni)
time (or O(ni log ni) time if the points must be sorted).

Once the t sets of candidate rectangles are con-
structed and stored in t lists, each in order of increas-
ing x-coordinates, the rectangles for any pair of colours
(i, j) can be intersected in O(ni + nj) time. The time
bound follows from the constant complexity of each set
of rectangles for any given y-coordinate using Bentley
and Ottman’s line sweep [6]. Since any pair of rectan-
gles intersect in either zero or one rectangle, recursive
pairwise intersection of these sets requires only O(n)
space with O(n) time per round and O(log t) rounds.
Thus our algorithm requires O(n log t) time, O(n log n)
preprocessing time for sorting, and O(n) space.

Theorem 4 The exact coloured k-enclosing two-sided
dominating region problem can be solved in O(n log n)
time.

6 Discussion

In this section, we address generalizations and refine-
ments of the exact coloured k-enclosing object problem.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 1: Points in the shaded region dominate exactly
two black points. The partition into O(ni) rectangles is
illustrated, at most one of which intersects any horizon-
tal line. Analogous candidate regions are constructed
for each colour set Pi. Their common intersection is
non-empty if and only if there exists a solution to the
k-enclosing two-sided dominating region problem.

6.1 Improved Time for Axis-Parallel Rectangles

Considering that the fastest known algorithm for the un-
coloured version of the problem takes O(nk2 + n log n)
time in the worst case [20], the running time of Theo-
rem 1 compares relatively favourably. Nevertheless, in
this section we present two refinements which slightly
improve our upper bound.

Since a solution must contain at least k points, Algo-
rithm 1 can be modified so that the two outer loops skip
k points and iterate O(n − k) times each. This results
in a running time of O(n log n + (n − k)2k). In the re-
mainder of this section, we discuss reducing the factor k
of the running time. Complete details are omitted due
to space constraints.

Let m denote the most frequent colour in the query,
i.e., cm = maxi∈{1...t} ci. A point that does not have
colour m is called m-coloured. Let k′ = k − cm denote
the number of m-coloured points in the query.

To improve the running time, the approach described
in Algorithm 1 is used to search for a solution satisfy-
ing the query on the m-coloured points. Upon finding a
match, it is determined whether a rectangle (still an in-
terval of the strip) containing exactly these m-coloured
points may also contain cm m-coloured points.

To address this, the linked list L of Section 3 is built
containing only m-coloured points. Given a point pi in
the strip, let succjL(pi) denote the jth successor in L.

Let succ0
L(pi) = pi, and let nm(succjL(pi)) denote the

number of m-coloured points with x-coordinate between
succj−1L (pi) and succjL(pi) in this strip. A rightmost
dummy point p∞ at x = ∞ is used so that nm(p∞)
counts the m-coloured points to the right of the last
m-coloured point. Therefore, a solution exists with a

leftmost m-coloured point pi if the query (except cm)
is satisfied by pi and its k′ − 1 successors in L, and∑i+k′

j=i+1 nm(succjL(pi)) ≤ cm ≤
∑i+k′+1
j=i nm(succjL(pi)).

The challenge is to update the values of nm(i) and
nm(i+1) following the insertion of an m-coloured point.
The preprocessing step may be augmented to track the
number of m-coloured points on each side of an inserted
m-coloured point. For example, the disjoint set union
data structure of Gabow and Tarjan [21] would allow
(with some extra bookkeeping) to track the numbers
of m-coloured points between consecutive m-coloured
points using find when encountering an m-coloured
point, and storing the sizes of the sets prior to using
union upon the removal of an m-coloured point. Com-
plete details are omitted due to space constraints. O(n)
union and find operations are performed on the data
structure, which requires O(n) time total. Therefore,
the algorithm runs in O(n log n+n2(k−maxi ci)) time,
which may again be improved by substituting (n− k)2

for n2 as discussed at the beginning of this section. Note
that for a binary alphabet, this yields an overall running
time of O(n log n+ (n− k)2 mini ci).

6.2 Smallest Exact Coloured k-Enclosing Object

The algorithms described are straightforward to modify
to return the smallest exact coloured k-enclosing ob-
ject with at most an O(k) increase in running time.
For example, in the case of discs it suffices to compute
the minimum enclosing disc of the k points associated
with each candidate kth order Voronoi cell, which can
be achieved in O(k) time per cell using the algorithm of
Megiddo [27]. In the case of axis-parallel rectangles, Al-
gorithm 1 can be easily modified to compute the area of
every window and return the smallest rectangle without
any asymptotic increase in running time.

6.3 Higher Dimensions

Several of the algorithms described have natural gen-
eralizations to higher dimensions. For example, a kth
order Voronoi diagram in Rd has O(nbd/2ckdd/2e) cells
[15], and so generalizing Theorem 2 to Rd gives a run-
ning time of O(d ·KVDd(n, k)), where KVDd(n, k) de-
notes the time required to construct the d-dimensional
kth order Voronoi diagram. Similarly, Theorem 1 gen-
eralizes to give a running time of O(n2(d−1)kd).

6.4 Directions for Future Research

Several questions remain open. Can the time com-
plexity be reduced in R2? For discs and axis-parallel
squares, can the problem be solved faster than the time
required to construct a kth order Voronoi diagram? Can
the time complexity be improved if the input set of
points is bichromatic (i.e., when t = 2)?

25th Canadian Conference on Computational Geometry, 2013

Acknowledgements

The authors thank the participants of the 2013 Bellairs
Workshop on Geometry and Graphs for stimulating dis-
cussion of ideas related to this paper. The authors also
thank Sharma Thankachan for discussion of query data
structures for jumbled pattern matching in strings.

References

[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein,
E. Langetepe, L. Ma, B. Palop, and V. Sacristan. Small-
est color-spanning objects. In Proc. ESA, volume 2161
of LNCS, pages 278–289, 2001.

[2] P. K. Agarwal, M. de Berg, J. Matoušek, and
O. Schwarzkopf. Constructing levels in arrangements
and higher order Voronoi diagrams. SIAM J. Comp.,
27(3):654–667, 1998.

[3] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding
k points with minimum diameter and related problems.
J. Algorithms, 12(1):38–56, 1991.

[4] F. Aurenhammer. A new duality result concerning
Voronoi diagrams. Disc. & Comp. Geom., 5:243–254,
1990.

[5] J. Backer and J. M. Keil. The bichromatic square and
rectangle problems. Technical Report 2009-01, Univer-
sity of Saskatchewan, 2009.

[6] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans-
actions on Computers, C-29:643–647, 1979.

[7] S. Bitner, Y. K. Cheung, and O. Daescu. Minimum
separating circle for bichromatic points in the plane. In
Proc. ISVD, pages 50–55, 2010.

[8] P. Bose and J. Morrison. Translating a star over a point
set. In Proc. CCCG, pages 179–182, 2005.

[9] P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták. Algo-
rithms for jumbled pattern matching in strings. Int. J.
Found. Comput. Sci., 23(2):357–374, 2012.

[10] P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták. On ap-
proximate jumbled pattern matching in strings. Theory
Comput. Syst., 50(1):35–51, 2012.

[11] T. M. Chan. Geometric applications of a random-
ized optimization technique. Disc. & Comp. Geom.,
22(4):547–567, 1999.

[12] B. Chazelle and H. Edelsbrunner. An improved al-
gorithm for constructing kth-order Voronoi diagrams.
IEEE Trans. Comp., 36(11):1349–1354, 1987.

[13] Y. Cheung and O. Daescu. Minimum separating circle
for bichromatic points by linear programming. In Proc.
FWCG, 2010.

[14] K. L. Clarkson. New applications of random sampling
to computational geometry. Disc. & Comp. Geom,
2:195–222, 1987.

[15] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Disc. & Comp.
Geom., 4:387–421, 1989.

[16] S. Das, P. P. Goswami, and S. C. Nandy. Smallest color-
spanning object revisited. Int. J. Comp. Geom. & App.,
19(5):457–478, 2009.

[17] A. Datta, H.-P. Lenhof, C. Schwarz, and M. H. M.
Smid. Static and dynamic algorithms for k-point clus-
tering problems. J. Algorithms, 19(3):474–503, 1995.

[18] D. P. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy with appli-
cations to computer graphics and machine learning. J.
Comp. & Sys. Sciences, 52(3):453–470, 1996.

[19] A. Efrat, M. Sharir, and A. Ziv. Computing the smallest
k-enclosing circle and related problems. Comp. Geom.:
Theory & App., 4(3):119–136, 1994.

[20] D. Eppstein and J. Erickson. Iterated nearest neighbors
and finding minimal polytopes. Disc. & Comp. Geom.,
11:321–350, 1994.

[21] H. N. Gabow and R. E. Tarjan. A linear-time algorithm
for a special case of disjoint set union. J. Comp. & Sys.
Sci., 30(2):209 – 221, 1985.

[22] D. P. Huttenlocher, K. Kedem, and M. Sharir. The
upper envelope of Voronoi surfaces and its applications.
Disc. & Comp. Geom., 9:267–291, 1993.

[23] J. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient
and fast algorithms for multidimensional dominance re-
porting and counting. In Proc. ISAAC, volume 3341 of
LNCS, pages 558–568, 2004.

[24] D. T. Lee. On k-nearest neighbor Voronoi diagrams in
the plane. IEEE Trans. Comp., C-31:478–487, 1982.

[25] P. R. S. Mahapatra, A. Karmakar, S. Das, and P. P.
Goswami. k-enclosing axis-parallel square. In Proc.
ICCSA, volume 6784 of LNCS, pages 84–93, 2011.

[26] J. Matoušek. On geometric optimization with few vi-
olated constraints. Disc. & Comp. Geom., 14:365–384,
1995.

[27] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM J. Comp.,
4:759–776, 1983.

[28] E. A. Ramos. On range reporting, ray shooting and
k-level construction. In Proc. SoCG, pages 390–399,
1999.

[29] M. Segal and K. Kedem. Enclosing k points in
the smallest axis parallel rectangle. Inf. Proc. Let.,
65(2):95–99, 1998.

[30] T. Takaoka. The reverse problem of range query. Elec.
Notes Theor. Comp. Sc., 78:281–292, 2003.

