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1. Introduction

Aging is characterized by changes in the neuromuscular system that decrease muscle strength,
balance, proprioception and reaction time (Bassey, 1997). Aging may be accompanied by
adjustments in muscle activation such as a decrease in voluntary activation and alterations in
the rate of agonist/antagonist coactivation (Häkkinen et al., 1998). This progressive decline in
physical capacities reduces the ability of older adults to perform complex motor tasks and is
associated with impaired mobility and a reduction in the ability to live independently
(Meuleman et al., 2000).

Assessment of muscle activation by electromyography (EMG) provides important information
about age-related neuromuscular adjustments (Schmitz, et. al., 2009). EMG contributes to the
identification of factors that generate impairments to the performance of daily activities and
an increase in the risk of falls for older adults. Additionally, identifying age-related abnormal
muscle activation may be helpful in preventing mobility impairments.

The aim of this chapter is to provide a global understanding of the EMG parameters used
to identify age-related neuromuscular fatigability alterations. Towards this end, issues that
affect  EMG  results  in  older  adults  will  be  presented,  such  as  weakness  and  muscle
activation  abnormalities,  muscle  activation  and  fatigability,  performance  in  daily  activi‐
ties,  postural  control  changes,  and the effects  of  physical  activity on the neuromuscular
system.

© 2013 Cardozo et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2. Weakness and muscles activation abnormalities

It is well described that age-related muscle strength loss causes a reduction in maximal
voluntary joint torque and power production, resulting in clinical implications for older adults,
particularly when this strength loss involves weakness in the lower limbs (Bento et al., 2010,
LaRoche et al., 2010). It is also clear that this age-related weakness is not fully explained by
muscle mass loss (Clark & Fielding, 2012). Recent studies have demonstrated that the decline
of muscle mass only explains 6-10% of strength impairments and that muscle mass gains in
older adults do not prevent this age-related weakness (Clark et al., 2006a, Clark et al., 2006b,
Delmonico et al., 2009). Explanations of these phenomena have proposed that age-related loss
of muscle strength is associated with impaired intrinsic force generation capacity and abnor‐
malities in muscle fiber contractile and metabolic properties, excitation-contraction coupling
and patterns of muscle activation (Clark & Fielding, 2012, Manini & Clark, 2012).

EMG is widely used to assess muscle activation and is used to highlight the relationship
between muscle recruitment and age-related weakness (Clark et al., 2010, Ling et al., 2009,
Watanabe et al., 2012, Wheeler et al., 2011). Muscle activation is a result of the excitation of
motor neurons leading to force production in muscle fibers (Clark et al., 2010). Additionally,
the quantity of motor units and the firing rates of these motor neurons play important roles in
determining the intrinsic muscular force (Clark et al., 2010). Along these lines, age-related
losses may be related to a suppressed ability of the central nervous system to maximize motor
unit recruitment, resulting in a lower activation of agonist muscles (Clark et al., 2010). Other
studies have proposed that age-related weakness is also associated with increased antagonist
activation (Macaluso et al., 2002).

Recent studies showed that muscle strength is a good predictor of mobility and disability in
older adults (Clark & Field, 2012). Clark et al. (2010) assessed the isometric strength of knee
extensors (3 maximal trials of 3-5 seconds at 60º of knee flexion), the isokinetic strength of knee
extensors (5 consecutive contractions at 60, 90, 180 and 240°.s-1) and the EMG activation of knee
extensors (Vastus Medialis, Vastus Lateralis and Rectus Femoris) and knee flexors (Biceps
Femoris and Semimembranosus) in older adults with normal and impaired mobility. These
authors identified that older adults with impaired mobility had lower activation of knee
extensor muscles in all maximal isokinetic voluntary contractions. Additionally, the lower
activation of knee extensor muscles was associated with lower torque and power in all
isokinetic trials. Thus, the most novel result of this study is the demonstration that agonist
muscle activation deficits may contribute to reduced lower limb strength. However, the
findings of this study did not support the hypothesis that increases in antagonist coactivation
leads in strength deficits during fast contractions (Clark et al., 2010).

Higher antagonist coactivation may not limit strength in older adults with different levels of
mobility (Clark et al., 2010). However, age-related weakness may be influenced by increased
antagonist coactivation (Macaluso et al., 2002). Macaluso et al. (2002) assessed vastus lateralis
and biceps femoris activation during isometric contractions of knee extensors and knee flexors
in young and older women. This study demonstrated that older women were on average 45%
weaker than young women in knee flexor and extensor maximal torque. However, only in the
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contraction of knee extensors was a significantly higher antagonist coactivation found in older
women. Thus, antagonist coactivation may contribute to decreased strength in older adults
and, in agreement with Clark et al (2010), Macaluso et al. (2002) also proposed that decreased
neural activation of the agonist muscles is another potential explanation for age-related
weakness.

Ling et al. (2009) compared the surface-represented motor unit size and firing rate of the vastus
medialis (VM) during knee extension at 10, 20, 30 and 50% of maximal voluntary contraction
in young and old adults. These authors used EMG positioned at the VM motor point and
discharged supramaximal stimulation on the femoral nerve. This study demonstrated that
aging causes neuromuscular compensations that counteract Henneman’s size principle
(Henneman & Olson, 1965; Ling et al, 2009). According to this principle, the recruitment of
larger motor units and the increase in their firing rates are progressive and consistent with
increases in force level (Henneman & Olson, 1965, Ling et al., 2009). However, Ling et al.
(2009) demonstrated that in contrast to young adults, old adults recruit larger motor units and
have higher firing rates at low loads.

Figure 1 presents the relationship between knee extensor maximum voluntary torque and
rectus femoris activation during a knee extensor isokinetic concentric movement in older
women with impaired or normal mobility.

Figure 1. The relationship between knee extensor maximum voluntary torque and rectus femoris activation during a
knee extensor isokinetic concentric movement in older women with impaired or normal mobility. * p < 0.05 (Cardozo
et al., unpublished data).
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Thus, we can see that age-related muscle strength loss decreases maximal joint torque and
power production, yet the muscle activation mechanisms that promote this behavior are still
not well described.

3. Muscles activation and fatigability

Despite is expected a reduced fatigability in older adults, the findings of several studies is
controversial (Allman & Rice, 2002, Avin & Frey Law, 2011).

During muscular fatigue, there are changes in the amplitude and frequency of the EMG signal
(Cardozo & Gonçalves, 2003, Cardozo et al., 2011), which is dependent on the number of active
motor units, their firing rates and the conduction velocity (Oliveira & Gonçalves, 2009). These
changes are described in figure 2. Along these lines, EMG is widely used to highlight the
muscular fatigue phenomenon in several populations, including people who suffer from back
pain, athletes and, recently, older adults (Croscato et al., 2011, Fraga et al., 2011, Hunter et al.,
2004, Lindström et al., 2006).

Figure 2. Amplitude (root mean square-RMS) and frequency (median frequency) behavior due to an isometric fatigu‐
ing protocol (Cardozo et al., unpublished data).

Hunter et al. (2004) compared the time to task failure, physiological responses (mean arterial
pressure, heart rate, and rating of perceived exertion) and EMG responses at a sustained
submaximal isometric contraction (20% of MVC) for elbow flexion in young and old men and
women. The main finding of this study was that the time to task failure was longer with older
adults, regardless of gender, and longer with young women than with young men. However,
older adults had a reduced rate of increase in physiological parameters (mean arterial pressure,
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heart rate and rating of perceived exertion) and in EMG burst relative to younger adults. The
authors speculated that changes in the EMG pattern were related to torque fluctuations. The
authors concluded that motor unit activity increased most slowly during fatiguing submaxi‐
mal efforts in older adults, possibly leading to increases in the time of task failure (Hunter et
al., 2004).

Lindstrom et al. (2006) assessed the EMG activation of the vastus lateralis and rectus femoris
during 100 repeated maximum knee extension contractions at 90º.s-1 in young and old men
and women. The authors found that older male adults were most fatigable according to the
peak torque and EMG parameters (with a higher area based fatigue index and lower root mean
square for the vastus lateralis in older men), but this group did not see the greatest fatigue
according to the Borg scale. The authors suggested that the EMG amplitude revealed that
fatigue is a combination of age-related changes in muscle and central activation failure
(Lindstrom et al., 2006).

Aging leads to selective atrophy of type II fibers and increases the contribution of type I fibers
to the generation of torque (Avin et al., 2011). However, even in low intensity activities (e.g.,
rising from a sitting position and walking) when torque is generated by the recruitment of type
I fibers, older adults have a higher metabolic cost and higher fatigability than young subjects
(Hortobágyi et al., 2011, Wert et al., 2010). This phenomenon is related to a declining VO2max
(which occurs at a rate of approximately 8% per decade) and leads to older adults performing
their daily activities at higher relative intensities (as measured by percentage of VO2max) than
young people (Wilson and Tanaka, 2000). Additionally, recent studies have shown that the
rate of consumption of VO2 during walking is also related to the EMG activation pattern
(Peterson & Martin, 2010, Hortobágyi et al., 2011).

Peterson and Martin (2010) and Hotobágyi et al. (2011) found a moderate association between
higher Cw and increased antagonist coactivation of the thigh and calf muscles in older adults
(Peter & Martin, 2010, Hortobágyi et al., 2011). According to Hortobágyi et al. (2011), older
adults had an 18.4% higher Cw than young adults and this higher Cw was associated with
increased antagonist coactivation (Vastus Lateralis x Biceps Femoris and Tibialis Anterior x
Gastrocnemius Lateralis). Peterson and Martin (2010) determined that antagonist coactivation
of the thigh (vastus medialis, biceps femoris and semitendinosus) had a higher contribution
to the increase in Cw than the contribution from the shank (tibialis anterior, lateral soleus and
medial gastrocnemius). Both studies suggested that age-related neuromuscular adaptations
in the lower limbs decrease the joint instability and that a higher antagonist coactivation is
required to maintain dynamic stability during a normal gait, which increases the Cw.

4. Performance in daily activities

Everyday tasks are motor acts performed during a day that contribute to physical independ‐
ence, such as rising from a seated position, ascending or descending stairs, walking and taking
a shower. Challenges encountered during daily activities, which are easily overcome by young
adults, may represent a potential risk for falls among the elderly. Functional motor activities
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are especially difficult for older adults due to sensorimotor deficits related to age, exposing
these older adults to fatal accidents and serious injuries (Korteling, 1994, Roeneker et al., 2003).

An age-related decline in the ability to perform physical tasks associated with daily living as
well as in strength and muscle size may occur regardless of physical fitness or amount of
training (Klitgaard et al., 1990, Schulz & Curnow, 1998). The decline in force and task per‐
formance may be related to alterations in the activation of motor units, decreases in muscle
mass and increases in fat mass (Lexell, 1995).

Performance in daily tasks may be investigated by EMG in young and old persons. A study
performed by Landers et al. (2001) analyzed integrated electromyography (IEMG) in two tasks
of daily living: while the subjects sat down on a chair and while they carried a small load. The
muscles analyzed were rectus femoris and biceps brachii. The raw EMG signal was recorded
over six seconds for each collection point at a sample rate of 100 Hz. Subjects were given three
practice trials, followed by three maximum isometric contractions at each test angle. The results
showed that higher normalized integrated EMG values indicate greater muscular effort and,
when combined with other tests, that biomechanical measures can provide information about
muscle function in older adults.

The ability to walk efficiently and safely is important to maintain independence (Callisaya et
al., 2010). However, the energy cost of gait in the elderly is higher than in young people, which
can cause early fatigue (Hortobagyi et al., 2009). However, little is known about what makes
the elderly more prone to fatigue during the gait, but existing hypotheses are that this fatigue
is related to neuromuscular mechanisms, such as increased muscle coactivation (Burnett et.
al., 2000, Hortobagyi et al., 2009, Macaluso et al., 2002). Increased coactivation might be used
to optimize power generation and compensate for aging-related decline of neuromotor
functioning, as manifested by reduced strength and power of muscles, reduced proportions
of fast twitch muscle fibers and increased response times (Ishida et al., 2008).

Older adults also require greater effort relative to their available maximal capacity to execute
daily motor tasks when compared with younger adults (Hortobagyi et al., 2003). This is due
to a change in muscle fiber type with aging and a higher percentage of peak oxygen uptake
required to perform daily tasks (Astrand et al., 1973, Waters et al., 1983). Higher physiological
relative effort in elderly people may be the cause of premature fatigue associated with decline
of motor function and, consequently, falls. Hortobagyi et al. (2003) tested the hypothesis that
the relative effort to execute daily activities is higher in old adults compared with young adults.
They assessed the vastus lateralis and biceps femoris muscles by EMG during the ascent and
descent of stairs, the rise from a chair and the performance of maximal-effort isometric supine
leg presses. The EMG signals were sampled at 1000 Hz, and the dependent variables included
the average root mean square (RMS) EMG and EMG coactivity, expressed as a ratio of biceps
femoris root mean square EMG with vastus lateralis RMS EMG activity. The results show that
the relative vastus lateralis EMG activity is higher in old adults than young adults during some
daily activities, and an association exists between the increased relative effort at the knee joint
and increased muscle activation.
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Stair descent and ascent are also important functional abilities (Holsgaard et al., 2011). Studies
indicate that the elderly operated at a higher proportion of their maximal capacity than did
young adults when performing tasks such as the safe descent of stairs (Reeves et al., 2008).
Hinman et al. (2005) used EMG to record muscle activity during stair descent. They determined
the effects of age on the onset of vastus medialis obliquus activity relative to that of vastus
lateralis and the onset of quadriceps activity in the terminal swing relative to heel-strike during
stair descent. Muscle onset was identified from individual EMG traces with a computer
algorithm and was validated visually. The results show that older adults activated their
quadriceps significantly earlier than the younger group during stair descent. Thus, quadricep
activation may compensate for strength and balance impairments in older people during
challenging activities.

Dexterous manipulations, such as eating and writing, may deteriorate due to aging (Keogh
et  al.,  2007).  Reduced  hand  function  is  related  to  the  loss  of  finger-pinch  force  control
(Keogh et al., 2006, Lazarus & Haynes, 1997, Ranganathan et al., 2001). Keogh et al. (2007)
determined the effect of unilateral upper-limb strength training on the finger-pinch force
control  of  older men by EMG. The EMG activity of  the flexor pollicis  brevis  and flexor
digitorum superficialis muscles was recorded using a sample rate of 1000 Hz, and the EMG
data were subsequently filtered with a second-order Butterworth low-pass filter with the
cutoff  frequency  set  at  400  Hz.  The  amplitude  of  the  electromyographic  signals  was
obtained by using the RMS procedure with a bin size of 100 ms. The results show that a
nonspecific  upper-limb  strength-training  program  may  improve  the  finger-pinch  force
control of older men. However, additional studies are required to create strategies for the
improvement of hand-held movements in older adults.

5. Changes in postural control

The capacity to maintain the body in an upright position in a stable state is critical to prevent
falls in old people. This capacity requires the integration of visual feedback, the vestibular
system, proprioception, reaction times and muscular responses. However, these mechanisms
are negatively affected by aging, and therefore, the adaptive reflexes that respond to distur‐
bances of balance are damaged (Abreu & Caldas, 2008). As a result of these changes, the elderly
become more prone to falls (Tinetti, 2003).

EMG can evaluate the response of muscles during postural control in different situations
requiring the integrity of the neuromuscular system. Figure 3 presents the time delay between
a perturbation (accelerometer signal) and the muscle activation (EMG onset) response obtained
by EMG analyses of the tibialis anterior muscle. This time delay is negatively affected by the
aging process, promoting slower responses in old adults. This behavior may increase the risk
of falls in this population when the muscle activation may not be fast enough to maintain
stability after a perturbation.
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Figure 3. EMG response due to perturbation (Cardozo et al., unpublished data).

Older people have different strategies to maintain posture in balance situations: the ankle
strategy responds to slow disturbances; the hip strategy is used on larger and faster displace‐
ments of the center of pressure (COP); and the step strategy is used when the others are not
able to return the COP to the support base, using quick jumps or steps (Vanicek et al., 2009).

Another  strategy  used  by  older  adults  is  an  increase  in  antagonistic  muscle  activation
during balance recovery (Mixco et al., 2012). This coactivation can be a necessary change
to compensate for the decline in postural control associated with aging (Nagai et al., 2011).
Additionally, Freitas et al. (2009) have shown that older adults activated their muscles and
were able to reach the peak of activation. However, they retained a higher level of activation
longer than younger adults.

As a result of the aging process, reaction time tends to increase due to the atrophy of fast twitch
fibers with aging. This atrophy contributes to a lower power output, slower sensory feedback
and slower muscle onset, resulting in ineffectiveness of equilibrium recovery after disturban‐
ces (Pijnappels et al., 2008).

Due to physiological changes resulting from the aging process, recovery strategies are slower
and therefore less effective in old adults (Mian et al., 2007). Thus, to minimize these changes,
physical activity is highly recommended and widely used as an intervention to prevent falls.

Electrodiagnosis in New Frontiers of Clinical Research120



6. Effects of physical activity on the neuromuscular system

Decreases in maximal isometric, concentric, and eccentric forces, force development rate and
muscle power are all age-related effects (Granacher et al., 2010, Petrella et al., 2005, Skelton et
al., 1994). Regular physical exercise for the elderly population has been identified as an
important intervention in the treatment and recovery of some diseases (Bassey, 1997). As the
functional benefit of exercise may be greatest in older adults, in recent years, there have been
several studies about the effects of physical activity on the neuromuscular system of this
population.

Traditional strength training protocols can still be recommended to improve muscle strength
and voluntary neural activity in older adults (Fung & Hughey, 2005, Runge et. al., 1998).
However, other types of training have been shown to develop strength, power and balance in
this population. Resistance training with power training and ballistic strength training may be
effective for improving explosive force production and functional performance in old age
(Granacher et al., 2011). Orr et al. (2006) show that power training at low intensities can improve
balance, power, strength and endurance in the lower limb muscles of older adults. Recent
studies have also shown that whole body vibration and resistance exercises combined with
vascular occlusion may improve muscle strength (Granacher et al., 2012, Rabert et al., 2011,
Takarada et al., 2000). Figure 4 shows the influence of an active lifestyle on increasing healthy
life expectancy.

The assessment of lower limb muscle activity provides important information about neuro‐
muscular behavior before and after physical activities (Schmitz et al., 2009). EMG can identify
changes in the motor skills of older adults and help create prevention strategies for age-
associated changes in neuromuscular factors that can impair daily activities and increase the
rate of falls among this population.

A recent study investigated the effects of strength and endurance exercises over the course of
12 weeks in older adults. The maximal neuromuscular activity of agonist muscles was
evaluated using EMG (RMS) in the vastus lateralis and rectus femoris and antagonist co-
activation in the biceps femoris long head. The sampling frequency was 2000 Hz, and the data
were filtered using a Butterworth band-pass filter of the fourth order with a cutoff frequency
between 20 and 500 Hz. The RMS values of the antagonist biceps femoris muscle were
normalized by the maximum RMS values of this muscle. After determination of the maximal
neuromuscular activity, the submaximal neuromuscular activity was evaluated to determine
the isometric neuromuscular economy. The results show that training in older adults resulted
in greater changes in neuromuscular economy as assessed by EMG (Cardore et al., 2012).
Similarly, Cardore et al. (2011) investigated the effects of concurrent training on endurance
capacity and dynamic neuromuscular economy in elderly men. During the maximal test,
muscle activation was measured at each intensity by means of electromyographic signals from
the vastus lateralis, rectus femoris, biceps femoris long head, and gastrocnemius lateralis to
determine the dynamic neuromuscular economy. Changes in the myoelectric activity of the
Rectus Femoris and Vastus Lateralis muscles were observed as an adaptative response after
strength and endurance training.
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Figure 4. An active lifestyle enhances physical activity and decreases sedentary behaviors (Cardozo et al., unpublished
data).

Valkeinen et al. (2006) examined the EMG activity after a 21 week strength training period in
elderly woman with fibromyalgia. The EMG activity of the right vastus lateralis and vastus
medialis muscles was recorded during maximal isometric leg extensions, and the results were
expressed as the mean integrated EMG activity. There was a large increase in the maximal
force and EMG activity of the muscles, indicating that strength training for elderly people can
increase neuromuscular functional performance. Hakkinen et al. (2001) examined neuromus‐
cular adaptations in middle-aged and older men and women during a resistance training
period of 6 months. The EMG activity during the unilateral extension actions of the knee
muscles was recorded from the agonist muscles vastus lateralis and vastus medialis and from
the biceps femoris. The EMG signal was collected at 1000Hz, full wave rectified and integrated.
The results show that there were increases in the EMG integrated magnitude of the agonist
muscle during isometric and concentric leg extensions at maximal voluntary contraction in
older women after training. This finding may be related to changes in the muscle activation
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pattern providing a recruitment pattern (Hakkinen et al., 1998, Hakkinen et al., 2001, Ling et
al., 2009). Additionally, the EMG changes can also be related to reduced antagonist muscle
coactivation (Hakkinen et al., 2001). This phenomenon may enhance the agonists’ force
production, which is important in older adults during multijoint actions (Hakkinen et al., 1998).

Furthermore, the maintenance of balance during daily activities may represent a challenge for
older adults (Bugnariu & Fung, 2007). Aging is also associated with a decrease in the ability
to control the body’s position, requiring input from the afferent receptor systems to generate
an appropriate motor response in dynamic and static activities (Alexander, 1994, Granacher
et al., 2012, Woollacott & Shumway-Cook, 2002). Due to age-related decline in the integrity of
many postural regulating systems, rehabilitation is needed to promote the re-acquisition of
motor skills (Maki & Mcllroy, 1996). Along these lines, physical exercise is the most common
intervention to prevent the consequences of balance perturbations, such as falls, fractures and
death (Alfieri et al., 2012, Morey et al., 2008).

To improve balance, physical activity protocols include progressively difficult postures that
reduce the base of support as well as dynamic movements that perturb the center of gravity,
stress postural muscle groups and reduce sensory input (Granacher et al., 2012). In addition,
multisensory exercises that stimulate all three afferent systems can be a good strategy for
intervention (Alfieri et al., 2010, Bruin & Murer, 2007, Nitz & Choy, 2004, Orr et al., 2008;).
Bugnariu & Fung (2007) investigated the effects of aging and adaptation on the capability of
the central nervous system to select pertinent sensory information and resolve sensory
conflicts. EMG activity was collected from the tibialis anterior, gastrocnemius medialis, vastus
lateralis, semitendinosus, tensor fascia lata, erector spinae, neck extensor and neck flexor
sternocleidomastoideus. Functional balance and mobility were assessed before and after
virtual environment exposure and perturbation trials. The group found that after exposure to
sensory conflicts, the central nervous system can adapt to the changes and improve balance
capability in the elderly.

7. Conclusion

This chapter presents a global understanding of age-related neuromuscular alterations, such
as weakness and fatigue, and the use of EMG parameters in their identification. Neuromus‐
cular adaptations due to aging influence the ability of the elderly to maintain the capacity to
perform daily activities and to modulate their postural control. Additionally, physical activity
can improve neuromuscular functional ability in older people.

Acknowledgements

The authors would like to thank the Biomechanics Laboratory of the Department of Physical
Education (Instituto de Biociências de Rio Claro, UNESP – Univ Estadual Paulista) and the
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Age-Related Neuromuscular Adjustments Assessed by EMG
http://dx.doi.org/10.5772/55053

123



Author details

Adalgiso Coscrato Cardozo, Mauro Gonçalves, Camilla Zamfolini Hallal and
Nise Ribeiro Marques

UNESP – Univ Estadual Paulista, Brazil

References

[1] Abreu SSE & Caldas CP. Velocidade de marcha, equilíbrio e idade: um estudo corre‐
lacional entre idosas praticantes e idosas não praticantes de um programa de exercícios
terapêuticos. Rev Bra. Fisioter 2008; 12(4): 324-330.

[2] Alexander NB. Postural control in older adults. J Gerontol A Biol Sci Med Sci. 1994; 42:
93-108.

[3] Alfieri FM, Guirro RRJ & Teodori RM. Postural stability of elderly submitted to
multisensorial physical therapy intervention. Electromyogr Clin Neurophysiol 2010; 50:
113–119.

[4] Alfieri FM, Riberto M, Gatz LS, Ribeiro CPC, Lopes JAF & Battistella LR. Comparison
of multisensory and strenght training for a postural control in the elderly. Clin Interv
in Aging 2012; 7: 119-125.

[5] Allman BL & Rice CL. Neuromuscular fatigue and aging: central and peripheral factors.
Muscle and Nerve 2002: 25: 785-796.

[6] Astrand I, Astrand PO, Hallback I & Kilbom A. Reduction in maximal oxygen uptake
with age. J Appl Physiol 1983; 35: 649–654.

[7] Avin KG & Frey Law LA. Age-related differences in muscle fatigue vary by contraction
type: a meta-analysis. Physic Ther J 2011; 91: 1153-1165.

[8] Bassey EJ. Physical capabilities, exercise and aging. Rev Clin Geront 1997; 7: 289-297.

[9] Bento PCB, Pereira G, Ugrinowitsch C & Rodacki ALF. Peak torque and rate of torque
development in elderly with and without fall history. Clin Biomech 2010; 25: 450–454.

[10] Bruin ED & Murer K. Effect of additional functional exercises on balance in elderly
people. Clin Rehabil 2007; 21: 112–121.

[11] Bugnariu N & Fung J. Aging and selective sensoriomotor strategies in the regulation
of upright balance. J NeuroEng Rehab 2007; 4: 1-7.

[12] Burnett RA et al. Coactivation of the antagonist muscle does not covary with steadiness
in old adults. J Appl Physiol 2000; 89: 61-71.

[13] Callisaya ML et al. Ageing and gait variability - a population - based study on older
people. Age and Ageing 2010; 39: 191-197.

Electrodiagnosis in New Frontiers of Clinical Research124



[14] Cardore EL et al. Effects of strength, endurance, and concurrent training on aerobic
power and dynamic neuromuscular economy in elderly men. J Strenght Cond Res 2011;
25(3):758-766.

[15] Cardore, EL et al. Neuromuscular adaptations to concurrent training in the elderly:
effects of intrasession exercise sequence. Age 2012 (Epub ahead of print).

[16] Cardozo AC & Gonçalves M. Eletromyographic fatigue threshold of erector spinae
muscle induced by a muscular endurance test in health men. Electromyogr Clin Neuro‐
physiol 2003; 43: 377-380.

[17] Cardozo AC, Gonçalves M & Dolan P. Back extensor muscle fatigue at submaximal
workloads assessed using frequency banding of the electromyographic signal. Clin
Biomech 2011; 26: 971-976.

[18] Charansonney OL. Physical activities and aging: A life-long story. Discov Med 2011; 12:
177-185.

[19] Clark BC, Fernhall B & Ploutz-Snyder LL. Adaptations in human neuromuscular
function following prolonged unweighting: I. Skeletal muscle contractile properties
and applied ischemia efficacy. J Appl Physiol 2006a; 101: 256–263.

[20] Clark BC, Manini TM, Bolanowski SJ & Ploutz-Snyder LL. Adaptaptions in human
neuromuscular function following prolonged un-weighting: II. Neurological proper‐
ties and motor imagery efficacy. J Appl Physiol 2006b; 101: 264–272.

[21] Clark DJ & Fielding RA. Neuromuscular contributions to age-related weakness. J
Gerontol A Biol Sci Med Sci 2012; 67A: 41-47.

[22] Clark DJ, Patten C, Reid KF, Carabello RJ, Phillips EM & Fielding RA. Impaired
voluntary neuromuscular activation limits muscle power in mobility-limited older
adults. J Gerontol A Biol Sci Med Sci 2010; 65: 495-502.

[23] de Freitas PB, Knight CA & Barela JA. (2009). Postural reactions following forward
platform perturbation in young, middle-age, and old adults. Conf Proc IEEE Eng Med
Biol Soc 2009; 6271-6275.

[24] Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al.
Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J
Clin Nutri 2009; 90: 1579–1585.

[25] Geel SE & Robergs RA. The effect of graded resistance exercise on fibromyalgia
symptoms and muscle bioenergetics: a pilot study. Arthritis Rheum 2002; 47: 82–86.

[26] Granacher U, Gruber M & Gollhofer A. Force production capacity and functional reflex
activity in young and elderly men. Aging Clin Exp Res 2010; 22: 374–382.

[27] Granacher U, Muehlbauer T & Gruber M. A Qualitative review of balance and strength
performance in healthy older adults: impact for testing and training. J Aging Res 2012
(Epub ahead of print).

Age-Related Neuromuscular Adjustments Assessed by EMG
http://dx.doi.org/10.5772/55053

125



[28] Granacher U, Muehlbauer T, Zahner L, Gollhofer A & Kressig RW. Comparison of
traditional and recent approaches in the promotion of balance and strength in older
adults. Sports Medicine 2011; 41: 377–400.

[29] Hakkinen A, Hakkinen K, Hannonen P & Alen M. Strenght training induced adapta‐
tions in neuromuscular function of premenopausal women with fibromyalgia: com‐
parison with healthy women. Ann Rheum Dis 2001; 60: 21-26.

[30] Hakkinen K, Hakkinen A, Kraemer WJ, Hakkinen A, Valkeinen H & Alen M. Selective
muscle hypertrophy, changes in EMG and force, and serum hormones during strength
training in older women. J Appl Physiol 2001; 91: 569-580.

[31] Hakkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer WJ,
Newton RU & Alen M. Changes in agonist-antagonist EMG, muscle CSA and force
during strength training in middle-aged and older people. J Appl Physiol 1998; 84: 1341–
1349.

[32] Hakkinen K, Kraemer WJ, Newton RU. Changes in electromyographic activity, muscle
fiber and force production characteristics during heavy resistance/power strength
training in middle-aged and older men and women. Acta Physiol Scand 2001; 171: 51–
62.

[33] Henneman E & Olson CB. Relationship between structure and function in the design
of skeletal muscles. J Neurophysiol 1965; 28: 581-590.

[34] Hinman RS et al. Age-related changes in electromyographic quadriceps activity during
stair descent. J Orthop Res 2005; 23(2): 322-326.

[35] Holsgaard LA et al. Stair-ascent performance in elderly women: effect of explosive
strength training. J aging Phys Act 2011; 19(2): 117-136.

[36] Hortobagyi T, Mizelle C, Beam S & DeVita P. Old adults perform activities of daily
living near their maximal capabilities. J Gerontol A Biol Sci Med Sci 2003; 58(5): 453–460.

[37] Hortobágyi T et al. Interaction between age and gait velocity in the amplitude and
timing of antagonist muscle coactivation. Gait & Posture 2009; 29: 558-564.

[38] Hortobágyi T, Finch A, Solnik S et al. Association between muscle activation and
metabolic cost of walking in young and old adults. J Gerontol A Biol Sci Med Sci 2011;
66A: 541-547.

[39] Hunter SK, Critchlow A & Enoka RM. Influence of aging and sex differences in muscle
fatigability. J Appl Physiol 2006; 97: 1723-1732.

[40] Ishida A et al. Stability of the human upright stance depending on the frequency of
external disturbances. Med Biol Eng Comput. 2008; 46: 213-221.

[41] Keogh J. W, Morrison S, Barrett R. (2006). Age-related differences in interdigit coupling
during finger pinching. Eur J Appl Physiol, Vol. 97, pp. 76-88.

Electrodiagnosis in New Frontiers of Clinical Research126



[42] Keogh J. W, Morrison S, Barrett R. (2007).Strength Training Improves the Tri-Digit
Finger-Pinch Force Control of Older Adults. Arch Phys Med Rehabil, Vol. 88, pp.
1055-1063.

[43] Klitgaard H, Mantoni M, Schiaffino S. (1990). Function, morphology and protein
expression of ageing skeletal muscle: a cross-sectional study of elderly men with
different training backgrounds. Acta Physiol Scand, Vol. 140, pp. 41–54.

[44] Korteling, J. (1994). Effects of aging, skill modification and demand alternation on
multiple-task performance. Hum Factors, Vol. 32, No.5, pp. 597-608.

[45] Landers K. A., Hunter G. R., Wetzstein C. J., Bamman M. M., Weinsier R. L. (2001). The
interrelationship among muscle mass, strength, and the ability to perform physical
tasks of daily living in younger and older women. Journal of Gerontology, Vol. 56 (10),
pp. 443-448.

[46] Laroche, D. P., Cremin, K. A., Greenleaf, B., Croce, R. V. (2010). Rapid torque develop‐
ment in older female fallers and nonfallers: A comparison across lower-extremity
muscles. Journal of Electromyography and Kinesiology, Vol.20, pp. 482-488.

[47] Lazarus J. C, Haynes J. M. (1997). Isometric pinch force control and learning in older
adults. Exp Aging Res, Vol. 23, pp. 179-199.

[48] Lexell J. (1995). Human aging, muscle mass, and fiber type composition. J Gerontol Biol
Sci Med Sci, Vol. 50, pp. 11–16.

[49] Lindström, B., Karlsson J. S., Lexell J. (2006). Isokinetic torque and surface electro‐
myography during fatiguing muscle contraction in young and older men and women.
Isokinetic and Exercise Exercise, Vol.14, pp. 225-234.

[50] Ling SM, Conwit RA, Ferrucci L, Metter EJ. (2009). Age-associated changes in motor
unit physiology: observations from the Baltimore Longitudinal Study of Aging. Archive
of Physical Medicine and Rehabilitation, Vol.90, pp. 1237-1240.

[51] Macaluso, A. et. al. (2002). Contractile muscle volume and agonist-antagonist coacti‐
vation account for differences in torque between young and older women. Muscle
Nerve, Vol. 25, pp. 858-863.

[52] Macaluso, A., Nimmo, M.A., Foster, J.E., Cockburn, M., McMillan, F.R.C.P., DeVito, G.
(2002). Contractile muscle volume and agonist-antagonist coactivation account for
differences in torque between young and older women. Muscle & Nerve, Vol.25, pp.
858-863.

[53] Maki B. E, McIlroy W. E (1996). Postural control in the older adult. Clin Geriatr Med,
Vol. 12, pp. 635-658.

[54] Manini, T. M., Clark, B. C. (2012). Dynapenia and Aging: an Update. The Journal of
Gerontology Series A: Biological Science and Medicine Science, Vol.67A, pp. 28-40.

[55] Meuleman, J. R. et. al. (2000). Exercise training in the debilitates aged: strength and
functional outcomes. Arch. Phys. Rehabil, Vol.81, pp. 312-318.

Age-Related Neuromuscular Adjustments Assessed by EMG
http://dx.doi.org/10.5772/55053

127



[56] Mixco A., Reynolds M., Tracy B., Reiser R. F. (2012). Aging-related cocontraction effects
during ankle strategy balance recovery following tether release in women. J Electro‐
myogr Kinesiol, Vol. 22(1), pp. 31-36.

[57] Morey M. C, Sloane R, Pieper C. F. (2008). Effect of physical activity guidelines on
physical function in older adults. J Am Geriatr Soc, Vol. 4, pp. 1873-1878.

[58] Nagai K., Yamada M., Uemura K., Yamada Y., Ichihashi N., Tsuboyama T. (2011).
Differences in muscle coactivation during postural control between healthy older and
young adults. Age, Vol. 33(3), pp. 393-407.

[59] Nitz J. C, Choy N. L. (2004). The efficacy of a specific balance-strategy training program
for preventing falls among older people: a pilot randomized controlled trial. Age Agein,
Vol. 33, pp. 52–58.

[60] Orr R, Raymond J, Sigh M. F. (2008). Efficacy of progressive resistance training on
balance performance in older adults. Sports Med, Vol. 38, pp. 317–343.

[61] Orr R, Vos N. J, Singh N. A, Ross D. A, Stavrinos T. M, Fiatarone-Singh M. A. (2006).
Power training improves balance in healthy older adults. The Journals of Gerontology,
Vol. 61, pp. 78–85.

[62] Peterson, D. S., Martin, P. E. (2011). Effects of age and walking speed on coactivation
and cost of walking in healthy adults. Gait and Posture, Vol.31, pp. 355-359.

[63] Petrella J. K, Kim J. S, Tuggle S. C, Hall S. R, Bamman M. M. (2005). Age differences in
knee extension power, contractile velocity, and fatigability. Journal of Applied Physi‐
ology, Vol. 98, pp. 211–220.

[64] Pijnappels M, Reeves ND, Maganaris CN, Van Dieen JH. (2008). Tripping without
falling; lower limb strength, a limitation for balance recovery and a target for training
in the elderly. J. Electromyogr. Kinesiol. Vol. 18(12), p. 188-196.

[65] Rabert M. S, Zapata M. J. M, Vanmeerhaeghe A. F, Abella F. R, Rodríguez D. R, Bonfill
X. (2011). Whole body vibration for older persons: an open randomized, multicentre,
parallel, clinical trial. BMC Geriatrics, Vol. 11, pp. 1-6.

[66] Ranganathan V. K, Siemionow V, Saghal V, Yue G. (2001). Effects of aging on hand
function. J Am Geriatr Soc 2001;49:1478-84. 3. Carmeli E, Patish H, Coleman R. The
aging hand. J Gerontol A Biol Sci Med Sci, Vol. 58, pp. 146-152.

[67] Reeves, N. D. et. al. (2008). The demands of stair descent relative to maximum capacities
in elderly and young adults. J Electromyogr Kinesiol, Vol. 12, No. 2, pp. 218-227.

[68] Roeneker D. et al. (2003). Speedof-processing and driving simulator training result in
improved driving performance. Hum Factors, Vol. 45, No.2, pp. 218-234.

[69] Russ, D.W., Kent-Braun, J.A. (2003). Sex difference in human skeletal muscle fatigue
are eliminate under ischemic condition. Journal of Applied Physiology, Vol.94, pp.
2412-2422.

Electrodiagnosis in New Frontiers of Clinical Research128



[70] Schmitz, A. et. al. (2009). Differences in lower-extremity muscular activation during
walking between healthy older and young adults. Journal of Electromyography and
Kinesiology, Vol. 19, pp. 1085-1091.

[71] Schulz R, Curnow C. (1998). Peak performance and age among superathletes: track and
field, swimming, baseball, tennis, and golf. J Gerontol, Vol. 43, pp. 113–120.

[72] Skelton D. A, Greig C. A, Davies J. M., Young A. (1994). Strength, power and related
functional ability of healthy people aged 65–89 years. Age & Ageing, Vol. 23, pp. 371–
377.

[73] Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. (2000). Effects of
resistance exercise combined with moderate vascular occlusion on muscular function
in humans. J Appl Physiol, Vol. 88, PP. 2097–2106.

[74] Tinetti M. (2003) Preventing falls in elderly persons. N. Eng. J. Med. Vol. 348(1), pp.
42-49.

[75] Valkeinen H, Alen M, Hannonen P, Hakkinen A, Airaksinen O, Hakkinen K. (2004).
Changes in knee extension and flexion force, EMG and functional capacity during
strength training in older females with fibromyalgia and healthy controls. Rheumatol‐
ogy (Oxford), Vol. 43, pp. 225–228.

[76] Valkeinen H, Hakkinen A, Hannonen P, Hakkinen K, Alen M (2006). Acute heavy-
resistance exercise induced pain and neuromuscular fatigue in elderly women with
fibromyalgia and healthy controls: effects of strength training. Arthritis & Rheumatism,
Vol. 54, pp. 1334-1339.

[77] Vanicek N, Strike S, McNaughton L, Polman R. (2009). Postural responses to dynamic
perturbations in amputee fallers versus nonfallers: a comparative study with able-
bodied subjects. Arch. Phys. Med. Rehabil. Vol. 90(6), pp. 1018-1025.

[78] Watanabe, K., Kouzaki, M., Merletti, R., Fujibayashi, M., Moritani, T. (2012). Spatial
EMG potential distribution pattern of vastus lateralis muscle during isometric knee
extension in young and elderly men. Journal of Electromyography and Kinesiology, Vol.22,
pp. 74-79.

[79] Waters R. L., Hislop H. J., Perry J, Thomas L, Campbell J. (1983). Comparative cost of
walking in young and old adults. J Orthop Res, Vol. 1, pp. 73–76.

[80] Wheeler, K. A., Kumar, D. K., Shimada, H., Arjunan, S. P., Kalra, C. (2011). Surface EMG
model of the bicep during aging: a preliminary study. Conference Procedures of IEEE
Engenering in Medicine and Biological Society. 2011;2011:7127-30.

[81] Woollacott M, Shumway-Cook A. (2002). Attention and the control of posture and gait:
a review of an emerging area of research. Gait Posture, Vol. 16, pp. 1-14.

[82] Mian, OS, Baltzopoulos V, Minetti AE, Narici MV. The impact of physical training on
locomotor function in older people. Sports Med.2007; 37(8):683-701.

Age-Related Neuromuscular Adjustments Assessed by EMG
http://dx.doi.org/10.5772/55053

129




