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Abstract—Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities 

in a broad range of application domains, such as health care, emergency management, fitness and behaviour 

surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that 

require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and 

processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper 

proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-

assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates  a Cloud computing 

platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid 

development of community BSN applications. This work describes the general architecture of the proposed approach 

and presents a case study for the real-time monitoring and analysis  of cardiac data streams of many individuals.  

Keywords: Body Sensor Networks; Cloud Computing; Software Engineering; SaaS; Sensor Data as a Service; 

Analytics as a Service 

 

1. Introduction 

Wireless Sensor Networks (WSNs) [4, 58] consist of spatially distributed, interconnected, wireless 

sensor nodes, which are typically employed to cooperatively monitor physical, environmental, or human 

conditions such as temperature, sound, vibration, pressure, motion, heart rate and blood pressure. When 

WSNs are deployed in large scale applications, they can generate a large amount of dense, in-situ 

contextual data. The capabilities of WSNs are not just limited to observing and forwarding raw sensor 

readings, they enable innovative real-time applications in a wide range of domains. They can support 

different applications and services, ranging from home automation to process monitoring, healthcare 

analysis, weather forecasting, military logistics, and traffic control. 

Body Sensor Networks (BSNs) [16, 57] are a particular type of WSNs that have emerged as a result of 

the advancements of ubiquitous and increasingly powerful wearable devices. BSNs provide a platform 
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for many human-centered applications, spanning from health care to sports performance monitoring, 

gaming and social networking. There is currently an enormous public interest in products that allow 

individuals, ranging from children to elders, to monitor and improve their health and lifestyle. In a 

common healthcare scenario, assisted livings are monitored by BSNs to gather data streams to process 

them in real-time [23] and to store them in remote medical data repositories for offline analysis. This 

scenario implies a huge amount of data being transmitted, stored and analyzed. 

In the coming years, BSNs are likely to be exploited to enable implicit social interactions among 

people who exchange private/public information through their worn BSN nodes when they come into 

contact [9]. BSNs of co-located people can also be utilized as an infrastructure of mobile sensors to 

support other context-aware applications such as disaster management, medical emergencies and mass 

event monitoring. In such contexts, the management and the cooperation [8] of a large number of BSNs is 

an important aspect still to be addressed. 

The huge amount of data that is expected to be generated by BSNs requires a powerful and scalable 

storage and processing infrastructure that is able to support both online and offline analysis of data 

streams. Such requirements can be met by an integrated platform based on Cloud computing [24] with the 

following characteristics: (a) the ability to utilize heterogeneous sensors; (b) scalability of data storage; 

(c) scalability of processing power for different kinds of analysis; (d) global access to the processing and 

storage infrastructure; (e) easy sharing of results; and (f) pay-as-you-go pricing for using BSN services. 

In this paper, we propose a system architecture, BodyCloud, that integrates BSN services with a Cloud 

computing infrastructure. BodyCloud is a SaaS architecture that supports the storage and management of 

sensor data streams and the processing (online and offline analysis) of the stored data using software 

services hosted in the Cloud. In particular, BodyCloud endeavors to support several cross-disciplinary 

applications and specialized processing tasks. It enables large-scale data sharing and collaborations 

among users and applications in the Cloud, and delivers Cloud services via sensor-rich mobile devices. 

BodyCloud also offers decision support services to take further actions based on the analyzed BSN data. 

The BodyCloud approach is centered around four main decentralized components (or sides): Body, 

Cloud, Viewer, Analyst. The Body-side is the component, currently based on SPINE Android [23], that 

monitors an assisted living through wearable sensors and stores the collected data in the Cloud by means 

of a mobile device. The Cloud-side is the component, currently implemented atop Google App Engine 

[33], that provides fully support for specific applications through data collection, processing, analysis and 

visualization. The Viewer-side is the Web browser-enabled component able to visualize the output of data 
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analysis through advanced graphical reporting. The Analyst–side is the component that supports the 

development of BodyCloud applications. 

The core of the BodyCloud architecture is the Cloud-side that offers high-level Web-based 

programming abstractions for the rapid prototyping of Cloud-assisted BSN applications: group, modality, 

workflow, and view. A group formalizes a specific application which manipulates a specific BSN data 

source. A modality formalizes a specific interaction between the Body-, Cloud- and Viewer-sides within 

a group. It specifies the input data, the actions to be performed on the input data, and the output data. A 

workflow formalizes an analysis process, producing output data from input data; it is specifically 

composed of one or more nodes (organized in an acyclic graph) representing specific algorithms. A view 

formalizes the graphical visualization of output data for the Viewer-side. 

The proposed SaaS approach is, to the best of our knowledge, the first general-purpose software 

engineering approach for Cloud-assisted community BSNs. It notably allows for rapid prototyping of 

Cloud-assisted BSN applications, customizability of the architectural components through Web 

standards-based procedures, and scalability due to the employed Google App Engine PaaS infrastructure. 

A case study for electrocardiography (ECG) is presented to highlight the effectiveness of BodyCloud 

in supporting the development of Cloud-assisted BSN applications. An application based on the ECG as 

a Service allows to collect, process, store and analyze ECG data streams generated by sensors worn by 

several individuals. 

The rest of the paper is structured as follows. Section 2 discusses the motivations and challenges of the 

integration of BSNs and Cloud computing. Section 3 presents the overall BodyCloud architecture, details 

its main programming abstractions, and highlights the distinctive properties of the BodyCloud approach. 

Section 4 presents ECG as a Service, the case study developed atop BodyCloud. Section 5 discusses 

some related work. Finally, conclusive remarks, lessons learned and directions of future work are 

outlined. 

 

2. BSN and Cloud Integration: Motivations and Challenges 

The integration of BSNs and Cloud computing can provide evident benefits in the following four 

aspects. 

• Management: Data management in BSNs deals with the challenging task of defining how BSN-

originated data are efficiently collected, managed, stored and conveyed for processing. Activities related 

to the acquisition and management of data feeds from numerous body sensors in real-time may be 
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distributed in time and/or space [21]. Time distribution refers to activities taking place at different times, 

while being coordinated to have a coordinated effect. Space distribution means that activities may take 

place at different locations, while they are connected by a data network. A Cloud computing 

infrastructure can facilitate the management of distributed data and support advanced functionalities such 

as data fusion. 

• Processing: The collected data from BSN nodes are processed into physical measurements and 

combined into composites, e.g. combining body temperature readings and blood pressure into a health 

chart for a particular patient. In the presence of numerous incoming data streams from a BSN, processing 

of data to make critical decisions in real-time requires fast processing that may be computing/resource 

intensive. Harnessing the computational resources of a Cloud infrastructure can be performed for the 

required provisioning of computing resources.  

• Service invocation: Processed data from BSNs is associated with meaning, confidence and quality 

information. Specifically, the data is associated with information on how it was processed (derivation), 

for whom and why it was collected (agency), and how it may be distributed (rights). This process is 

performed through automatic formation of workflows and invocation of services. Such operational flow 

requires a platform to support automatic workflow formation and service invocation, potentially through 

a Cloud infrastructure. 

• Analysis: Annotated BSN datasets are imported into analysis tools and modeling is performed for 

further use in various applications and decision making systems. The analysis operations along with the 

enrichment hierarchy depend on suitable storage and middleware technologies to perform highly swift 

data processing. It can be availed by exploiting the processing power of Cloud to provide quick response. 

2.1.Body Sensor Networks 

BSNs rely on the feasibility of wearing very small bio-sensors on the human body that are 

comfortable and that do not impair normal activities. The sensors worn on the human body collect 

various physiological changes to monitor a patient’s health status, regardless of their location and 

activity. The information is transmitted wirelessly to an external processing unit. This device in turn 

instantly streams all information in real-time to doctors who are responsible to the patient. In the face of 

an emergency, physicians can provide instructions in the form of messages or alarms to the patient 

through a computer system. It can be considered a breakthrough improvement in healthcare and will be 

the cornerstone for telemedicine as it comes into fully comprehensive existence. Examples of the use of 



Elsevier Journal on Future Generation Computer Systems, Volume 35, June 2014, pp.62–79 [in press] 

BSNs include recognizing activities through arm/leg/waist-worn accelerometer/gyroscope sensors, 

detecting heart attack events by measuring changes in a patient’s vital signs, specifically the ECG 

(electrocardiogram), auto-injecting insulin with an implanted pump as soon as the patient’s insulin level 

declines, detecting emotions or human statuses (such as fear, stress, happiness) through EMG 

(electromyography), GSR (galvanic skin response) and ECG sensors. 

Practical applications of BSNs aim at improving the quality of life by enabling continuous and real-

time non-invasive medical assistance at low cost [36, 47]. Applications where BSN can be useful include 

early detection or prevention of diseases, e.g. heart attacks, Parkinson, diabetes, asthma; elderly 

assistance at home, e.g. fall detection, pills reminder, activity monitoring; e-fitness, e.g. calorie 

expenditure, posture/gesture correctness; rehabilitation after surgeries, e.g. knee or elbow rehabilitation; 

motion and gestures detection for interactive gaming; cognitive and emotional recognition for driving 

assistance or social interactions; and medical assistance in disaster events, e.g. terrorist attacks, 

earthquakes, bush fires. In the following we provide a brief description of some application areas of 

BSNs: 

•  Health monitoring: In a health-care scenario, BSN-based systems allow monitoring health and 

motion information in real-time. The collected data is transmitted wirelessly to a local or remote 

diagnosis and storage service for processing and display [30, 40, 45, 49]. Analysis of the sensed data can 

be performed in real-time or offline by doctors depending on the need [44]. 

• Sports performance/fitness monitoring: Wearable motion sensors can be used to monitor and 

analyze physiological data to gauge the movement of sports’ players [6]. Such sensors may be worn at 

both hands and elbows or around the chest. After analysis of the data, features are extracted to assist users 

in exercise routine and achieve desired performance goals. 

• Interactive games: Motion sensor-based games such as Nintendo Wii use body sensors to enable 

gamers to perform actual body movements, such as sword fighting, boxing, shooting. Gamers’ movement 

information is feedback to the gaming console that processes it to deliver an interactive gaming and 

entertainment experience. 

• Information sharing: Business applications can make use of body sensors to improve customers’ 

shopping experience. Information collected from body sensors can be transmitted to a processing server 

to provide recommendation to the customers based on their profiles and preferences. 
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• Secured authentication: BSN can also be used in physiological and behavioral biometrics 

schemes such as facial pattern, iris recognition and finger prints. This can increase the level of provided 

security in commercial settings, by exploring the physical/behavioral characteristics of the human body. 

 

In Figure 1, a BSN reference network and software architecture [12] is portrayed. In particular, the 

architecture is organized into multiple wearable sensor nodes and one coordinator node. The coordinator 

manages the on-body sensors, collects, stores and analyzes the data received from the sensor nodes, and 

act as a gateway to connect the BSN with a remote control center for coordination and monitoring. Sensor 

nodes measure biophysical parameters (e.g. heart pulses, ECG, body movements) and send raw or pre-

processed data to the coordinator. 

The software architecture of the system consists of two main components, implemented, respectively, 

on the coordinator (e.g. a notebook or a PDA/smart-phone) and on the wearable sensor nodes (e.g. inertial 

and bio sensors). The coordinator side includes three layers: User applications, Coordinator and 

Comm(unication) Adapter. The Coordinator layer allows registered User applications to be notified of the 

following events generated by the wearable sensors: discovery of new nodes, data coming from sensor 

nodes, node alarms, and system messages such as low battery warnings. Commands issued by user 

applications and sensor network-generated events are both coded in lower-level messages and decoded in 

higher-level information by the Comm Adapter layer according to a specific application-level over-the-air 

protocol. This component handles packet generation and retrieval and is interfaced with specific software 

components of the host platform to access the physical radio module to transmit/receive packets to/from 

the wearable sensors. 

At the sensor node side, the software architecture provides abstractions of hardware resources such as 

sensors and the radio, a default set of ready-to-use common signal processing functions and, most 

importantly, a flexible and modular architecture to be customized and extended to support new physical 

platforms and sensors and introduce new signal processing services. In particular, the Comm(unication) 

Manager acts as the counterpart of the Comm Adapter. The Sensor Manager manages the sensors on the 

node platform, providing a standard interface to the diverse sensor drivers. It is responsible of sampling 

the sensors and storing the sensed data in properly defined data buffers. The Node Manager is the 

orchestrating component, responsible for interpreting the remote requests and dispatching them to the 

proper components. Finally, the Processing Manager consists of a dispatcher for the actual processing 

services and a standard interface for user-defined services integration. 
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Figure 1.  A BSN reference architecture. 

2.2.Cloud computing ecosystem 

Cloud Computing provides flexible, robust and powerful storage and computing resources, which 

enables dynamic data integration and fusion from multiple data sources. In addition a Cloud-based 

approach can offer flexibility and adaptability in the management and deployment of data analysis 

workflows. The dynamic deployment of software components as Cloud services eliminates the need for 

new client applications to be developed and deployed when the user requirements change. This also 

introduces an intrinsic competitive environment for the development of better services. 

Cloud computing layers (IaaS, PaaS, SaaS) and software components (e.g., databases, data mining 

workflow tools) can be customised to support a distributed real-time system for the monitoring and 

analysis of BSNs data streams. Figure 2 shows the diagram of the Cloud computing ecosystem. The 

Cloud Computing Provider exports the Infrastructure (IaaS) integrated with a Data Mining development 

environment as a Platform as a Service (PaaS) to the Application Workflow Developer. The Workflow 

Developer deploys a particular application as Software as a Service (SaaS) to the End User (e.g. the 

cardiovascular biologist collecting data of many patients or the medical staff at the point-of-care). The 

front end of the application can be developed, for example, for a mobile device to ensure mobility and 

portability. The approach is based on the customisation of an open-source Cloud computing toolkits using 
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Cloud Computing standards [11] and integrated with data mining development tools and workflow 

management systems (e.g. KNIME [13], RapidMiner [42], Weka [28]). 

 

 

Figure 2.  The Cloud computing ecosystem. 

 

2.3.Integration challenges 

While there are main advantages of BSN adoption in various applications, there are a number of 

associated challenges that need to be addressed [29]. Moreover, integration of BSN with a Cloud 

infrastructure poses additional challenges related to data management, system implementation and real-

time computing. In the following we first list BSN-related challenges, followed by specific challenges 

regarding the BodyCloud system that integrates BSN with Cloud to perform effective data stream 

processing. 

• Interoperability: A BSN system requires ensuring seamless data transfer across different 

standards to promote information exchange, plug-and-play device interaction and uninterrupted 

connectivity. 

• Heterogeneity: A BSN system should be capable of integrating various different sensors in terms 

of complexity, power efficiency, storage, and ease-of-use. Moreover, it should provide a common 

interface between the sensors and a storage service to facilitate remote storage and viewing of sensed data 

as well as access to external processing and networked analysis tools. 
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• Security: Transmission of BSN data streams should be secured to prevent potential intruders. 

Moreover, integrity of each patient’s data has to be maintained with guarantee that one patient’s data is 

not mixed with another patient’s data. 

• Protecting privacy: One key concern of BSN users is to protect the privacy of personal data. A 

BSN system should ensure that patient’s privacy is maintained even when data is being analyzed using an 

external tool. In addition, social awareness and acceptance is required for wider applications of BSN. 

• Data validation and consistency: Data collected from multiple sensor nodes need to be collected 

and analyzed in a seamless fashion. BSN sensors are subject to inherent communication, hardware and 

network failures that may result in erroneous datasets. It is crucial that the sensed data is validated and 

data quality is maintained to reduce any noise in the data and identify possible weakness in the 

infrastructure. 

• Interference reduction: BSN mostly uses wireless connectivity for data communication. The 

wireless link should be able to reduce interference and increase the co-existence of sensor nodes with 

other networked devices. This is to ensure that the functionalities of BSN nodes are not degraded due to 

the presence of other devices capable of possible interruption in seamless data transmission. 

In addition to the above-mentioned BSN challenges, integration of BSN with a Cloud computing 

infrastructure to develop the BodyCloud system poses the following research challenges: 

• Complex event processing and management: Real-time data streams from BSN may trigger 

certain events and services in the Cloud. These data streams are analyzed and results are used in 

applications for decision making by identifying contextual and situational information. 

• Massive scale and real time processing: Integration of heterogeneous BSN generating vast 

amounts of data is a challenge, especially in the presence real time requirements. If a BSN is used to 

generate real-time multimedia content such as streaming video, audio and images, it poses additional 

challenge to accurately process and store the data in a Cloud environment. 

• Large scale computing frameworks: The allocation of computational and storage resources as well 

as data migration in the Cloud is critical when multiple BSN data sources are not co-located. This is 

particularly challenging when the data sets and their corresponding access/search services are 

geographically distributed within the Cloud. 

• Harvesting collective intelligence: While heterogeneous and real-time BSN data feeds allow 

improving decision making by using data and decision level fusion techniques, to maximize the 

intelligence that can be exploited from massively co-located information in the cloud is a challenge. 
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• Data stream management: Data management will include data format conversion into standard 

formats, data cleaning and aggregation to improve data quality, and data transfer to storage Clouds.  

• Interfacing the Cloud with BSN: There should be an interface between BSN resources and the 

Cloud fabric. Communication interfaces are required to manage network connectivity between BSN and 

the Cloud. BSN nodes will be exposed as Cloud services and indexed via indexing services. There also 

has to be provision to manage sensing jobs and data from sensor networks. Virtualization will be a key 

technology. The proposed is framework provides various services for the underlying sensor resources, 

such as power management, security, availability, and QoS. 

3.  A SAAS ARCHITECTURE FOR UBIQUITOUS BODY SENSOR NETWORK APPLICATIONS 

BodyCloud is an architecture for the integration of BSNs and a Cloud PaaS infrastructure. The system 

architecture and its basic components and services are shown in Figure 3. The design of the general 

architecture follows some requirements to support sensor data management, concurrent application 

execution, mashup service invocation and data analysis: 

- Provide functionality to receive and manage sensor data in a highly seamless manner from a BSN.  

- Set up a scalable framework to support the processing of multiple data streams for concurrent 

application services. 

- Persistent storage and exchange of sensor data and analysis results to enable further decision 

making. 

- Reuse of a PaaS infrastructure, thus providing a SaaS level approach. 
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Figure 3.  BodyCloud architecture. 

 

In particular, the architecture is composed of four main subsystems (or sides): 

- Body is the system side that monitors the assisted living by means of wearable sensors and sends 

the collected data to the Cloud, e.g. via a mobile device. 

- Cloud is the system side that provides full support for specific applications through data 

collection, processing/analysis and visualization. Specifically, each specific application can be 

defined in terms of Groups, Modalities, Workflows, Nodes, Views.  

o Groups: a Group formalizes a specific application which manipulates a specific BSN data 

source. 

o Modalities: a Modality formalizes a specific interaction between Body, Cloud and Viewer, 

within a Group. It specifies the input data, the actions to be performed on the input data, 

and the output data. 

o Workflows/Nodes: a Workflow formalizes a data-flow process that analyzes input data to 

generate output data. A Workflow is composed of one or more Nodes organized in a 

directed acyclic graph. Nodes represent specific algorithms and links between nodes are 

data flows. 
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o Views: a View formalizes the visualization of the output data for Viewers. 

- Viewer is the system side able to visualize the output of data analysis through advanced graphical 

reporting. 

- Analyst is the side of the system that supports the development of new BodyCloud applications.  

 

The abstractions of the Cloud-side are supported by a RESTful web service, implemented using the 

Restlet Framework, making the interaction with the Cloud-side HTTP based. Requests are handled by a 

special servlet provided by the framework and dispatched according to its URI. Each request must 

include the HTTP authorization header. The authorization system is based on OAuth 2.0 [31] using the 

access token as authorization string [34], which is validated by the OAuth Verifier and used for user 

authentication. Requests are handled synchronously but, as analysis processes can take a long time to be 

computed, the web service also provides the capabilities to queue them for asynchronous execution. 

The application business logic is built around an object oriented Domain Model [25] of the Cloud-side 

abstractions, as shown in Figure 4. The abstract class Entity identifies a concept within the abstraction. 

Each instance of Entity has a type, represented by its concrete class, a name that identifies the Entity 

among the others of the same type and an UUID (Universal Unique Identifier) that univocally identifies 

the object among all other entities. The underlying Persistence Layer deals with entities persistence: it is 

accessed by the web service through a Java interface which keeps the data source completely 

independent. 

The Workflow Engine is the component that is delegated of workflows execution. Similarly to the 

persistence layer, it is an independent component, accessible through interfaces. The design of the 

Workflow Engine interfaces facilitates either the implementation of ad-hoc data analysis applications  or 

the adoption and integration of third party data mining workflow software (e.g., e.g. KNIME [13], 

RapidMiner [42], Weka [28]). In the case study presented in this work, an ad-hoc implementation of a 

simple Workflow Engine has been used. This implementation supports processing tasks pipelines and 

workflow definition is based on XML. 

BSN data (gathered through the web service) and analyzed data (output of the workflow engine) are both 

encoded as a table (data), each column representing a particular variable. 

The SaaS layer relies on the Google App Engine (GAE) PaaS, which provides a Servlet Container and 

Cloud Computing services. The Datastore API allows the application to access GAE scalable datastore 
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and is used to implement the persistence layer, while the Task Queue API is used by the Web service 

(through a Java interface) to queue requests. 

 

 

Figure 4.  Domain Model 

 

The interactions among the BodyCloud sides can be of the following types. 

- The interaction between Body and Cloud (see Figure 5), is formalized in three steps: 

1. Retrieve the list of all available modalities, making an HTTP GET request a standard 

URL. Cloud will reply with an XML document containing a list of available modalities, 

their descriptions and URLs; 

2. Select desired modalities and retrieve their specifications via the associated URLs; 

3. As new data are generated by Body, they are sent to Cloud by means of an HTTP PUT 

request to a specific server resource that refers to a specific group, as specified in the 

selected modality. 

- The interaction between Viewer and Cloud (see Figure 6), is formalized in four steps: 
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1. Retrieve the list of all available modalities, making an HTTP GET request to a known 

URL. The server will reply with an XML document containing a list of available 

modalities, their descriptions and URLs; 

2. Select desired modalities and retrieve their specifications via the associated URLs; 

3. Make an HTTP POST request to a specific Cloud resource that refers to the specific 

analysis process (workflow), as specified in the modality. The request must contain all the 

required parameters such as target user and group, encoded as post form. As soon as 

Cloud performs the task, the viewer receives the output data, encoded as CSV; 

4. Download a view, making an HTTP GET request to the view URL specified in the 

modality. 

- The interaction between Analyst and Cloud (see Figure 7) involves: 

1. Defining a new workflow; 

2. Defining a new group; 

3. Defining a new view; 

4. Defining a new modality. 

Each definition consists of an XML document describing a new resource, which is uploaded by 

means of an HTTP PUT request, using the resource type and name as endpoint. 
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Figure 5.  Basic interaction beween Body and Cloud 

 

 

Figure 6.  Basic interaction beween Viewer and Cloud 
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Figure 7.  Basic interaction beween Analyst and Cloud 

 

In the following subsections the architectural components of BodyCloud are described in detail. 

 

3.1.Body-side: data acquisition 

Data acquisition is currently based on Android-SPINE, the Android version of the SPINE middleware 

[23]. It allows Android-enabled smartphones and tablets to be used as coordinator of the BSN and, at the 

same time, as Body-side of the BodyCloud platform. In particular, data collected through Android-

SPINE are then streamed up to the Cloud-side, using the real-time data feed modality (see next 

subsection). In Android-SPINE wearable sensors communication is based on Bluetooth. The prototype 

implementation fully supports Shimmer nodes. The following functionalities are provided by the 

application-level SPINE protocol [12]. 

- Sensor Discovery allows for the discovery of wearable sensor nodes and their supported sensing 

and processing capabilities. 

- Sensor Configuration allows the selection of specific sensors in a sensor node and the 

specification of their parameters (e.g., the sampling rate). 

- In-node Processing allows to compute one or more functions on the collected sensor data and to 

send the merged data streams (if more than one) to the base station. In particular, each function is 

computed on a data window according to a given shift, defined as percentage of the data 

window. For each node, it is possible to enable one or more functions independently. The 

processing functions may be activated over-the-air via additional specific parameters. 
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- BSN activation(deactivation), which allows to control the synchronized start-up (or stop) of the 

activity of the BSN sensor nodes. 

- Data collection allows to gather raw or preprocessed data coming from the sensors, at the 

coordinator. 

- Logging allows to archive and visualize log messages produced by the sensor node for 

debugging purposes, at the coordinator. 

It is worth noting that the Body-side could use different BSN middlewares/frameworks [12, 23]. 

 

3.2.Cloud-side: programming abstractions 

The Cloud-side is based on the programming abstractions group, modality, workflow and view, as shown 

in the domain model of Figure 4. Such programming abstractions are implemented as HTTP resources 

and their representations (encoding of the current or intended state of the resource), thus exposing a Web 

API. 

On each resource one or more HTTP methods can be executed, their meaning is analogue to the 

HTTP/1.1 standard  [22], as shown in Table 1. 

Table 1: HTTP Methods 

GET Retrieves the current representation of the resource. 

PUT Uploads the intended representation of the resource. If the resource doesn’t exist, it will be 

created. The user who created a resource is its owner, the only one who can edit or delete it. 

POST Requests that the server accepts the entity enclosed in the request as a new subordinate of the 

resource. The enclosed entity is encoded as post form. 

DELETE Deletes the resource. A resource can be deleted only by its owner. 

 

In the following subsections each programming abstraction is described in detail. 

 

3.2.1 Group 

A group is defined by three correlated resources (collector, data, contributor) described respectively in 

Tables 2-4. 
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Table 2: Group Collector 

DESCRIPTION A data collector is intended to gather Group Data (e.g., data tables) which 

comply to the same specification. 

URL STRUCTURE https://bodycloud.appspot.com/group/<name>/collector 

name is the unique name of the group 

SUPPORTED METHODS GET, PUT, DELETE 

REPRESENTATION XML 

Specifies the data specification to be accepted (see Figure 9) 

An example: 
 <dataSpecification>  

  <data>  

   <name>ECGShimmerSample </name> 
   <type>INTEGER</type> 

   <source>ECGShimmerSensor</source> 

  </data>  

 <dataSpecification> 

Table 3: Group Data 

DESCRIPTION Data is a group subresource that represents the actual data collected by the group. 

Data is then grouped on a per user basis. 

URL STRUCTURE https://bodycloud.appspot.com/group/<name>/data 

name is the unique name of the group 

SUPPORTED METHODS GET, PUT, DELETE 

REPRESENTATION A table of data encoded according to the HTTP Content-Type 

- CSV (with header record) for text/csv 

- Arff for text/plain 

- Json for application/json 

 

Table 4: Group Contributor 

DESCRIPTION The contributor is a group subresource that contains the users who uploaded data 

to the specified group. 

URL STRUCTURE https://bodycloud.appspot.com/group/<name>/contributor 
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name is the unique name of the group 

SUPPORTED METHODS GET 

REPRESENTATION An XML document with the identity of the users 

An example: 
 <users> 

  <user>user1@gmail.com</user> 

  <user>user2@gmail.com</user> 

 </users> 

 

3.2.2 Modality 

A modality encodes a body-cloud or a viewer-cloud interaction and is intended to be interpreted and 

executed by a client application (see Table 5). 

 

Table 5: Modality  

DESCRIPTION A modality formalizes a specific interaction between Body, Cloud and Viewer 

URL STRUCTURE https://bodycloud.appspot.com/modality/<name> 

name is the unique name of the modality 

SUPPORTED METHODS GET, PUT, DELETE 

REPRESENTATION XML 

<modality> 
 <inputSpecification/> 
 <init-action/> 
 <action/> 
 <outputSpecification/> 
</modality> 

 

Each modality defines a specific service, such as data feeds, data analysis tasks, single-user or 

community applications, etc. A modality defines the specifications of input and output data format, 

protocols for data transfer, the flow of processing tasks to transform input data into output data and the 

specifications of output data visualization. Modalities can be activated individually and in groups to 

provide a service to the user. 

A modality is defined according to the XML schema portrayed in Table 5. The data input and output 

specifications, inputSpecification and outputSpecification, are needed if the 
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modality can, respectively, receive and send data. The tags init-action and action are used to 

specify Web API calls. In particular, the tag action is used to specify an operation that sends input 

data and/or retrieves output data to/from a Cloud-based workflow, according to 

inputSpecification and outputSpecification. The tag init-action is optional and 

can be used to initialize a resource or to retrieve data needed for the execution of an action. 

The tags inputSpecification and outputSpecification are data specifications defined 

according to the XML schema dataSpecification reported in Figure 8. The tag 

dataSpecification encodes the header of a dataset, includes one or more data sections and an 

optional view. The tag data represents a single dataset column and is specified by a name, which a 

type (e.g. DOUBLE, INTEGER, TIMESTAMP) and (optionally) a source, which specifies the 

source sensor to be used to gather data (e.g. HEARTBEATER, CLOCK, TERMOMETER, ECGSENSOR). 

The tag view is for visualization purposes and can be used to specify the URI of the view specification. 

 

<dataSpecification>  
 <data>  
  <name/> 
  <type/> 
  <source/> 
 </data>  
 <view/> 
</dataSpecification> 

Figure 8.  XML schema of dataSpecification 

The tags init-action and action are defined according to the schema reported in Figure 9. The 

tag uri is the relative URI to be used for the action request. The tag method is the HTTP method to be 

used for the request. The tag repeat (optional) can be either true or false (default) and specifies 

whether or not the action must be repeated. The tag trigger (optional) has some XML attributes, 

which define the trigger that activates the action. Currently the only trigger supported is after, which 

activates the action after a specified time (in seconds). The tag parameter is only valid for POST 

requests and specifies a parameter <name, value> for POST forms. The value of the parameter can 

also be taken from an external XML code using an XPath expression; in this case, the tag reference 

is used instead. The tag reference has two attributes: xpath specifies the expression and type 

defines how the expression output must be used.  
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<action> 
 <uri/> 
 <method/> 
 <parameter> 
   <name/> 
   <value/> 
   <reference xpath=”” type=””/> 
 <parameter/> 
 <repeat/> 
 <trigger/> 
</action> 

Figure 9.  XML schema of action 

The execution of a modality is carried out as follows: 

- The client (Body-side or Viewer-side) starts collecting data according to 

inputSpecification, whether it is specified. This is a typical Body-side scenario. 

- The init-action is intended either to prepare the server for the proper action or to retrieve 

run-time information. The optional XML output of such action must be stored. The init-

action can be executed at the beginning or when triggered if a trigger is specified. Any 

parameter of the init-action cannot include the reference tag. The action must be 

executed after the init-action (if any) and when triggered (if a trigger is specified). The 

parameter reference should be resolved as follows: 

o use the init-action XML output to evaluate the XPath expression; 

o if the reference is of type CHOICE (default), then let the user choose between the 

expression results; 

o If the reference is of type MAP a different request should be made using each of the 

expression results. 

The action output must match the outputSpecification (if it is present, otherwise must be 

empty). The client must also fetch the view specification according to the URI enclosed in the 

tag view and generate the report (this is a typical Viewer-side scenario). 

 

 

3.2.3 Workflow 

A workflow describes a set of operations the server engine should perform (see Table 6). 
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Table 6: Workflow 

DESCRIPTION A workflow is pipeline of operations to perform on data. 

URL STRUCTURE https://bodycloud.appspot.com/engine/workflow/<name> 

name is the unique name of the workflow 

SUPPORTED METHODS GET, PUT, POST, DELETE 

REPRESENTATION Workflow XML schema 

<workflow> 
  <node> 
    <type/> 
    <parameter> 
      <name/> 
      <value/> 
    </parameter> 
  </node> 
</workflow> 

 

 

Worlflows in BodyCloud are direct acyclic graphs (DAGs). A node (see Table 7) may have static and 

dynamic parameters. Static parameters are defined directly in the workflow XML schema, whereas 

dynamic parameters must be supplied at runtime through the web service. Nodes can be developed as 

Java code from the workflow engine library (see Figure 3). The library contains the Node interface, 

which every node must implement, utility classes, and a simple testing environment. Once implemented, 

the node can be packed within a jar and uploaded to the Cloud-side, where it can be used in workflows. 

A node should only perform operations on data, but BodyCloud also provide three built-in nodes for 

accessing the datastore: 

• UserDataReader reads data given a user and a group. The dynamic parameters are 

sourceGroup and sourceUser. 

• GroupDataReader reads all data associated to a given group. It takes sourceGroup as 

dynamic parameter. 

• UserDataWriter writes data to a group by username. The dynamic parameters are  

destinationGroup and destinationUser. 
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Table 7: Node 

DESCRIPTION Node of the back-end engine. 

URL STRUCTURE https://bodycloud.appspot.com/engine/node/<name> 

name is the unique name of the node 

SUPPORTED METHODS PUT, DELETE 

REPRESENTATION A jar file to be sent as binary data. 

The Content-Type should be application/octet-stream. 

The jar must contain a Java class with the same name specified in the URL 

implementing the Node interface. 

 

A workflow is defined according to the XML schema portrayed in Table 6. node is an execution unit; 

additional nodes can be uploaded as plug-ins. type is the name of a Java class implementing the Node 

interface. parameter is a static parameter of a node; specifically, multiple workflows could use the 

same node with different parameters. name is the name of the parameter whereas value is the value of 

the parameter. The POST method is used for workflow executions and its usage is shown in Table 8. 

 

 

Table 8: Workflow Execution 

DESCRIPTION Server request that executes a workflow 

URL STRUCTURE https://bodycloud.appspot.com/engine/workflow/<name> 

name is the unique name of the workflow 

SUPPORTED METHODS POST 

REPRESENTATION The Internet media type (application/x-www-form-

urlencoded ) data including the dynamic parameters required by the nodes of the 

specific workflows; CSV data encoding the workflow output (if any) 

 

 

3.2.4 View 

The resource view specifies the visualization layout of output data and is shown in Table 9. 
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Table 9: View 

DESCRIPTION A view is a specification describing a graphical representation of output data. 

URL STRUCTURE https://bodycloud.appspot.com/view/<name> 

name is the unique name of the view 

SUPPORTED METHODS GET, PUT, DELETE 

REPRESENTATION Main part of the XML schema: 

<xs:element name="report" type="reportType"/> 

<xs:complexType name="reportType"> 

  <xs:choice minOccurs="1" maxOccurs="unbounded"> 

  <xs:element name="htmlTitle" type="xs:string" maxOccurs="1" minOccurs="0" /> 

  <xs:element name="bodyCss" type="cssType" maxOccurs="1" minOccurs="0" /> 

  <xs:element name="cssScript" type="xs:string" maxOccurs="1" minOccurs="0" /> 

  <xs:element name="lineChart" type="lineChartType"/> 

  <xs:element name="barChart" type="barChartType"/> 

  <xs:element name="pieChart" type="pieChartType"/> 

  <xs:element name="textContent" type="textContentType"/> 

  <xs:element name="table" type="tableType"/> 

  </xs:choice> 

</xs:complexType> 

The complete XML schema can be found here: 

http://code.google.com/p/jxreport/source/browse/trunk/src/schema.xsd 

 

 

3.2.5 Common operations 

Instances of node, workflow, view and modality can be listed as shown in Table 10. Furthermore, each of 

them is associated to a metadata resource, which is described in Table 11. 

 

Table 10: Index 

DESCRIPTION This endpoint represents an index of  resources 

URL STRUCTURE https://bodycloud.appspot.com/<type> 

where type can be group, modality or view 

or 
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https://bodycloud.appspot.com/engine/<type> 

where type can be workflow or node 

SUPPORTED METHODS GET 

REPRESENTATION XML 

An index resource URLs, with another optional link to their metadata 

An example: 
<index> 

 <item> 

  <reference href=”https://bodycloud.appspot.com/modality/sample”/> 

  <metadata href=”https://bodycloud.appspot.com/metadata/sample”/> 

  </item> 

</index> 

 

Table 11: Metadata 

DESCRIPTION A set of metadata that describes another resource 

URL STRUCTURE https://bodycloud.appspot.com/metadata/<uuid> 

uuid is an alphanumeric string that identifies univocally a resource 

SUPPORTED METHODS GET, PUT 

REPRESENTATION An XML with four optional text fields: 
<metadata> 

  <name/> 

  <owner/> 

  <organization/> 

  <description/> 

</metadata> 

 

3.3.Analyst-side: data analysis 

At the Analyst-side, users can create new BodyCloud applications (or services) by defining workflows , 

groups, modalities, and views. Each entity can be created with an HTTP PUT request to the 

corresponding Cloud-side resource, thus requiring only a simple HTTP client as Analyst-side supporting 

application. As the workflow requires new nodes to be developed, the Analyst-side also requires an 

appropriate development environment. Once developed, new nodes are also uploaded with an HTTP 

PUT request to the corresponding Cloud-side resource. A predefined set of nodes is typically available, 
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depending on the adopted implementation of the Workflow Engine. A complete service is centered 

around the analysis process to be performed. The service definition can be summarized as follows (see 

Figure 10): 

1. Algorithms: Implementation and uploading of all required algorithms as nodes. All uploaded 

nodes are stored and can be used by every other user. 

2. Data Source: Definition of a group containing the specification of data that can be gathered by 

the BSN and processed by the algorithms. 

3. Workflow: Definition of the data analysis process, through the combination of existing nodes and 

their static parameters. The first node should read input data from the Data Source, this can be 

done using the built-in nodes UserDataReader or GroupDataReader. 

4. View: Definition of one or more graphical formats of the workflow output. 

5. Modalities: At least a Body-side specific modality and a Viewer-side specific one must be 

defined. The Body-side modality should have an input specification similar to the Data Source, 

an action that will upload the data to the group defined at point 2 and no output specification. 

The Viewer-side modality should perform the workflow execution as action, the parameters of 

which must be defined accordingly to the node documentation. Its output specification must 

match with the workflow output and contains the relative reference to the view. 

 

Figure 10.  Service definition activity diagram 

3.4.Viewer-side: data visualization 

On the Viewer-side when the user requests the execution of an analysis process (workflow), the 

generated output is a data object (model) that complies to the outputSpecification. Output data 

are visualized (view) in the client application in a particular layout. The formatting of the output data 
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into a view follows the XML schema of the resource view (see Table 9). The client application applies 

the view specification to the model to generate the view. 

As part of the current prototype, a Java library, jxReport1

The model is a set of data, presented in tabular form, the view is a jxReport compliant XML document, 

which includes, through special tags, references to the model columns. During report generation 

jxReport reads then the model, from a CSV file for example, and draws the graphic elements specified 

in the XML document based on the model data. 

, has been developed and integrated to the 

client application: jxReport provides the functionalities to generate HTML reports from an XML schema 

and a model. The root node of the XML specification is the report element, which contains a set of 

graphical elements to be drawn in the report and populated by the output data. The approach based on 

jxReport provides the desirable separation between the model and the view. 

The jxReport library can be used in any Java based environment (e.g. mobile or desktop). The use of 

HTML as formatting language has been chosen because of its portability: almost every device is able to 

render an HTML page by using a Web browser or an embedded HTML viewer. The prototype 

implementation of the client application based on jxReport includes an HTML viewer. The report can 

contain text, charts and tables. Every chart is customizable and the tables are sortable and filterable by 

using the relative text field. Table data can also be paginated. A view contains a sequence of objects, 

each one has a type and a set of attributes. Objects currently supported by jxReport are tables, text 

containers, pie charts, bar charts and line charts. Each object has some specific attributes and all objects 

share a set of generic attributes. The common attributes are: 

- Id, which univocally identifies the object within the report; 

- Class, which is used to group a family of objects with the same properties; 

- Title, which is an optional string which will be rendered on top of the object; 

- CSS rules, which is a list of CSS rules to apply directly to the HTML output. 

Every object can be customized by using its own properties and CSS rules. The user can customize the 

report: for example, table column can be rearranged, text size, font and color changed, padding and 

margins fixed. It’s also possible to add containers and other HTML objects. Additional tags can be used 

to format the page more easily than using CSS rules, for example <left> and <right> tags can be used 

to create a two columns layout without write all the CSS rules. 

                                                 
1 http://code.google.com/p/jxreport/ 
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The library jxReport is used to generates a single HTML document that represents the whole report. 

Two external JQuery plug-ins for plotting [39] and controls [54] are embedded in the generated HTML 

document. An example of how a report can be represented by XML code following the jxReport 

specifications is show in Figure 11. 
<report> 

<barChart> 
. . . 
</barChart> 
<table> 
. . . 
</table> 
<textContent> 
. . . 
</textContent> 
<lineChart> 
. . . 
</lineChart> 
<pieChart> 
. . . 
</pieChart> 

</report> 

Figure 11.  XML formatted report 

3.5. Features 

BodyCloud provides the following features: 

- Rapid Prototyping. The software engineering approach of BodyCloud supports rapid prototyping 

of community BSN applications. Specifically, by using the provided basic programming 

abstractions of group, modality, workflow, and view, new applications can be quickly defined and 

timely deployed by means of the simple web-based interface. The flexibility of the Android-

SPINE framework, enables the adoption of new sensors at the Body-side, which can be easily 

integrated in in a BodyCloud application by defining new XML schemas for the data streams 

produced by the new sensors. 

- Extensibility and Customizability. A large volume of streaming data generated by numerous 

sensors can swamp even the most robust servers designed for online transaction processing 

applications. The BodyCloud system endeavors to be extensible and re-targetable in such a 

scenario. When intermediate software components or operating systems are to be changed, the 

SaaS system takes care of the changes in a seamless fashion with minimal disruption to the 

services provided to end-users already using the system. 
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- Scalability. The scalability of BodyCloud relies on its PaaS level. The current BodyCloud 

prototype is based on Google App Engine (GAE) [52], which provides automatic resource scaling 

for Web applications. 

4. A CASE STUDY: ECG AS A SERVICE 

The electrocardiogram (ECG) is the standard method for measuring the electrical and functional activity 

of the heart. The ECG as a Service (ECGaaS) has been developed through the BodyCloud approach and 

allows to monitor (collect, process, store, analyze and visualize) the ECG data coming from individuals 

or group of people (e.g. assisted livings, athletes, emergency teams). Figure 12 shows the architectural 

schema of the overall ECGaaS system. 

 

Figure 12.  The ECGaaS distributed system. 

A typical ECG tracing of the cardiac cycle is shown in Figure 15 and consists of a P wave, a QRS 

complex and a T wave. The QRS complex corresponds to the time occurrence of the heartbeat. The time 

interval between two consecutive R waves is called R-R interval. Traditionally, the ECG is used to 

diagnose cardiovascular diseases and cardiac abnormalities [56]. Recently, the ECG has also been used 

in the field of emotion recognition and stress detection [5]. The ECG signal is in fact a reactive signal to 

physiological responses due to emotion and other external factors. The advantage of using the ECG 

signal for detecting basic emotions is that a person can be monitored using non-invasive wearable 

cardiac sensors. In particular, in the proposed case study, the ECG signal is captured by the Body-side 

and sent to the Cloud-side in which the R-R intervals and heart rate (HR) are extracted. Two QRS 

detector algorithms [18] have been developed and deployed in the BodyCloud system. The first 

algorithm uses a fixed threshold to extract the QRS complex (heartbeat); while the second one uses an 

adaptive mechanism which automatically estimates the optimal threshold to extract the QRS complex 

from the ECG signal. 
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Figure 13.  ECG Signal 

4.1. Service programming 

The specific components for the ECGaaS service are shown in Figure 14: Group, Modality, 

DataAnalysis (workflow/nodes) and View. 

- ECGMonitoring represents the group of monitored users; 

- DataFeed, SingleAnalysis, and GroupAnalysis: the former allows to transmit ECG data onto the 

Cloud, whereas the second and third respectively perform single and group analysis of the ECG 

data, specifically the extraction of the R-R signals; 

- EcgToRR represents a workflow able to extract the R-R signal from the ECG data; 

- Tachogram is the graphical format through which the R-R signal will be rendered at the Viewer-

side. 

We detail each of such components below. 

 

 

Figure 14.  Body-side implemented components for the ECGaaS. 
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The Workflow (see Figure 15) reads ECG data associated to a specific user (through the 

UserDataReaderNode node) and calculates the R-R signal from the ECG signal by means of the RR 

node (see Figure 16). 

 
<workflow> 
  <node> 
    <type>UserDataReader</type> 
  </node> 
  <node> 
    <type>RR</type> 
  </node> 
</workflow> 

Figure 15.  Workflow 

 
Figure 16.  ECG signal and the corresponding extracted R-R signal. 

The defined DataFeed modality (Figure 17) is used by the Body-side to periodically transmit the 

collected ECG data to the Cloud-side. In particular, the data inputSpecification defines the data 

format of the ECG sample that is gathered from the ECG Shimmer sensor board. The init-action 
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deletes any data stored previously, as the user is recording a new ECG signal. The action specifies that 

ECG data needs to be send every 60 seconds. 

 
<modality> 
  <inputSpecification> 
    <data> 
      <name>ECGShimmerSample </name> 
      <type>INTEGER</type> 
      <source>ECGShimmerSensor</source> 
    </data> 
  </inputSpecification> 
  <init-action> 
    <uri>/group/ecg-monitoring/data</uri> 
      <method>DELETE</method> 
  </init-action> 
  <action> 
    <uri>/group/ecg-monitoring/data</uri> 
      <method>PUT</method> 
      <repeat>true</repeat> 
      <trigger after="60"/> 
  </action> 
</modality> 

Figure 17.  The DataFeed modality 

 

<modality> 
  <init-action> 
    <uri>/group/ecg-monitoring/contributors</uri> 
    <method>GET</method> 
  </init-action> 
  <action> 
    <uri>/engine/workflow/ecg</uri> 
    <method>POST</method> 
    <parameter> 
      <name>sourceUser</name> 
      <reference xpath="//users/user"/> 
    </parameter> 
    <parameter> 
      <name>sourceGroup</name> 
      <value>ecg-monitoring</value> 
    </parameter> 
    <repeat>false</repeat> 
  </action> 
  <outputSpecification> 
    <data> 
      <name>rr</name> 
      <type>DOUBLE</type> 
    </data> 
    <view>/view/tachogram.xml</view> 
  </outputSpecification> 
</modality> 

Figure 18.  The SingleAnalysis modality 
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The SingleAnalysis modality (Figure 18) calculates the R-R signal of a given target user (e.g., a patient). 

SingleAnalysis can be executed on the Viewer-side either by a monitoring user (e.g., a doctor or a 

therapist), or by the target user (at the Body-side) to monitor their own ECG. In particular, the 

SingleAnalysis client queries the server for selected target user, by means of a reference tag and an 

XPath expression. The analysis of target’s data is then executed at the server and the resulting report is 

rendered at the client according to the tachogram specification. 

 

The GroupAnalysis modality (Figure 19) is analogue to the SingleAnalysis, but it is designed to monitor 

all users within a group. The difference between GroupAnalysis and SingleAnalysis is the specification 

of the type parameter of the reference XPath as MAP which instructs the client to execute a different 

action for each value of the XPath expression (each user in this case). 

 
 
 

<modality> 
  <init-action> 
    <uri>/group/ecg-monitoring/contributors</uri> 
    <method>GET</method> 
  </init-action> 
  <action> 
    <uri>/engine/workflow/ecg</uri> 
    <method>POST</method> 
    <parameter> 
      <name>sourceUser</name> 
      <reference xpath="//users/user"/ type=”MAP”> 
    </parameter> 
    <parameter> 
      <name>sourceGroup</name> 
      <value>ecg-monitoring</value> 
    </parameter>  
    <repeat>false</repeat> 
  </action> 
  <outputSpecification> 
    <data> 
      <name>rr</name> 
      <type>DOUBLE</type> 
    </data> 
    <view>/view/tachogram.xml</view> 
  </outputSpecification> 
</modality> 

Figure 19.  The GroupAnalysis modality 

 
 
 
The view in Figure 20 encodes the tachogram, which is defined as a line chart with the R-R signal in the 

y-axis and a counter in the x-axis. 
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<report> 
  <lineChart> 
    <title>Tachogram</title> 
    <showLegend>false</showLegend> 
    <showMarker>false</showMarker> 
    <line> 
      <lineLabel>First Line</lineLabel> 
      <lineColor>blue</lineColor> 
      <lineWidth>1</lineWidth> 
      <showLine>true</showLine> 
      <points> 
        <xMarker> 
          <counter/> 
        </xMarker> 
        <yMarker> 
          <index>0</index> 
        </yMarker> 
      </points> 
    </line> 
  </lineChart> 
</report> 

Figure 20.  The Tachogram View 

 

   
(a) (b) (c) 

Figure 21.  Android-based Body-side GUI: (a) source user selection list; (b) modality choice; (c) tachogram view. 
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4.2. Graphical User Interface 

The ECGaaS client is composed of an Android-based Body-side GUI and a Viewer-side GUI which is 

platform-independent as it is based on HTML (see Section 3.4). Figure 21(a) shows a screenshot related 

to the activation of the modalities: the DataFeed modality is currently being executed. Figure 21(b) shows 

the screenshot for the target selection among the user of the group: the ECG of the selected target user is 

going to be analyzed. Figure 21(c) shows the tachogram of a user. 

 

 
Figure 22.  Scalability evaluation: DataFeed service time vs. number of clients. 

 
4.3. Performance evaluation 

A performance evaluation has been carried out by simulating a set of clients that send sensor data 

streams simultaneously. The ECGShimmerSensor generates approximately 6000 ECG data values a 

minute, so every simulated client performs 10 requests, with 60 seconds interval between each other, each 

one sending a dataset with 6000 samples. In order to simulate a relatively high number of clients using a 

reduced set of physical machines, a python multithreading test application has been developed. 

Five tests have been run, starting from 10 simulated clients and progressively increasing the number 

until 50 with a step of 10, using 10 different Windows-based machines (3 desktops, 5 notebooks, 3 

netbooks). Each machine has been scheduled to execute a single batch script at a specified time to run all 

tests. The script simply calls the python application with different parameters (client to simulate, threads 

to use, requests to perform, time between requests), which calculates minimum, maximum and mean time 

spent for a single request (DataFeed modality), along with the standard deviation. As one can notice in 

Figure 22, the results show that the service time (time between the issued request and the reply reception) 

increases linearly between 10 and 40 clients, whereas it shows a non linear increment at 50 clients. 

However, the last case is very likely affected by a bottleneck case as 50 clients simultaneously request the 

DataFeed from the same set of 10 machines connected to the same network. 
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5.  Related Work 

Data stream management systems (DSMS) are among some of the most studied research subjects 

recently. These systems are designed to provide quick response time when dealing with large volumes of 

data, e.g. sensor observations. These systems employ window-based data processing combined with 

synopsis to process large volumes of data [10, 26, 43]. Using a synopsis helps a DSMS in reducing the 

response time to queries. Global Sensor Network (GSN) [2], TelegraphCQ [15], Aurora [1] and Stream 

[7] are among some of the known works in this domain. There are also Internet-based streaming systems, 

such as Stream-based Overlay Network (SBON) [48] and Peer-to-peer Information Exchange and 

Retrieval (PIER) [32] that process and deliver data over the Internet. They rely on P2P model for data 

representation, query dissemination, operations and metadata management. There exist research projects 

to provide access, query, streaming, and management of wireless sensor network data. The Sensor Web 

project [20] provides a dynamic infrastructure that allows users to access sensor networks and stream data 

out. Sensor Information Networking Architecture (SINA) [53] is a middleware for querying, monitoring, 

and tasking of sensor networks. Tiny Application Sensor Kit (TASK) [14] is built on top of TinyDB to 

provide high level metadata management, query configuration, monitoring and data visualization. These 

systems are appealing since they address the challenges related to large scale sensor resource and data 

sharing. 

In the recent years, there have been an increasing number of initiatives to develop distributed 

platforms based on BSNs for e-Health applications. Many national and international research projects in 

academia, industry and government focus on the development and deployment of health care platforms in 

which wearable sensors are attached to patients for enabling round-the-clock monitoring of vital 

parameters. Examples of such projects include CodeBlue [41], DexterNet [38], SPINE [27, 12], SPINE2 

[51], A-SPINE [3]. These systems provide abstraction from low-level TinyOS programming, but do not 

address the issues of integrating a Cloud infrastructure to provide extended scalability, seamless data 

streaming and analysis. Apart from the industry engaged in developing e-Health solution, there are also 

initial important investments in this field from telecommunication operators that foresee e-Health at home 

as a strategic business. 

Only recently researchers have investigated scopes to integrate WSN with a large-scale distributed 

computing infrastructure. Examples include combining Cloud computing and wireless sensor network 

[37], Sensor grid [17] and the SensorCloud infrastructure [59]. These works describe architectural 
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models, case study and identify some related development issues. However, there is still a gap to develop 

a Cloud-based infrastructure that is targeted to BSN applications. Cloud computing technologies have 

also been evaluated and considered to support scientists, such as executing scientific workflow in the 

Cloud [19], data analysis in the Cloud [50], and high performance computing in using Amazon Web 

services [55]. To date, only a few research efforts have been devoted to define Cloud-enabled 

infrastructures seamlessly integrating BSNs and BSN data streams for supporting on-line and off-line 

monitoring of assisted livings. 

Kahol [35] proposes a Cloud-enabled system based on an integrative gaming paradigm and designed 

to integrate multiple activities that involve physical exercises and cognitive skills by means of a game-

based storyline. The game story performs as a motivational enabler for users to carry out multiple 

physical and mental activities (cycling, running, and problem solving). Such activities drive an avatar 

through different steps of the game. During the game phases, users have sensors on their body that can 

measure movements by means of accelerometers, gyroscopes, magnetometers, and gather physiological 

data, such as heart rate, oxygen saturation, etc. Such data, which are drivers for the game, are archived 

and, then, analyzed on a Cloud computing platform. The proposed Cloud-enabled system is configurable 

and allows researchers to easily create new games that can be driven the by different activity types. The 

system functionalities aim at involving and motivating users in the long term. Moreover, clinicians can 

exploit the system to gather clinically relevant data in a seamless way. Using the Cloud-based system, 

data are archived in an on-line datastore that is easily accessible by a website. This enables clinicians to 

remotely access the stored data and to easily integrate such data into electronic medical records. 

Moreover, Cloud-based tools for reporting and data analysis tools available allow for effective analysis of 

data and enable integration of the physiological information into biosignatures and clinical repositories. 

This is an important feature of the system proposed in [35] and has several implications. The final 

objective is that the system would provide clinicians with continuous information on their patients. 

However, the system proposed by Kahol [35] is special-purpose and its architecture is not reusable and 

extensible as basis for the development of different Cloud-enabled BSN applications. 

A more general approach is proposed by Pandey et al. [46] that report the development of an 

autonomic Cloud environment for hosting an ECG data analysis service. In particular, they propose an 

autonomic Cloud environment that collects people’s health data and stores them to a Cloud-based 

information repository and facilitates analysis on the data using software services hosted in the Cloud. To 

evaluate the software design, a prototype system is developed, which is used as an experimental testbed 
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on a specific use case, namely, the collection of electrocardiogram (ECG) data obtained at real-time from 

volunteers to perform basic ECG beat analysis. The ECG software is hosted as a web-service such that 

any client-side implementation can simply call the underlying functions (analyze, upload data, etc.) 

without having to go through the complexities of the underlying application. The PaaS layer controls the 

execution of the software using three major components: (i) Container scaling manager, (ii) Workflow 

Engine, and (iii) Aneka Cloud middleware. 

Although the proposed approach is more general than the previous one as it proposes a layered 

software architecture that could be also extended to accommodate for different BSN-oriented application 

services, it is still not flexible enough for rapid prototyping of community BSN applications. Moreover, it 

is based on Aneka that is a proprietary cloud middleware. 

While such systems are special-purpose or focus on specific aspects of assisted living monitoring 

(physical activities, ECG, etc), our BodyCloud approach is different in that it provides real-time and off-

line BSN data stream processing and analysis to support many BSN applications, using a general-purpose 

SaaS approach based on a widely available PaaS infrastructure, the Google App Engine. 

 

6.  Conclusions 

The recent introduction of BSNs has enabled the remote monitoring of assisted livings in a broad 

range of application domains, such as health care, emergency management, fitness monitoring, human 

behavior surveillance. They can be adopted to monitor a large pool of people, thus generating large 

amounts of contextual data. Such a Big Data scenario requires a scalable approach for data collection, 

storage, processing and analysis. Cloud computing can provide a flexible storage and processing 

infrastructure to perform both online and offline analysis of data streams generated by BSNs. 

In this paper, we have proposed BodyCloud, a Cloud-enabled SaaS architecture for the management 

of body sensor data streams and the complete life cycle of data analysis workflows (data collection, 

storing, analysis, and presentation). BodyCloud provides a platform to build and deploy applications 

based on community body sensor networks. System properties include rapid prototyping, scalability and 

flexibility of resources, ability to manage sensor heterogeneity and the dynamic deployment of user and 

community applications. In particular, the BodyCloud approach offers a very flexible and intuitive 

programming model centered on a few web-based programming abstractions (group, modality, 

workflow/node, view) that allow to define and deploy community BSN applications. Finally, the 
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definition, implementation, deployment, and testing of ECGaaS atop BodyCloud have demonstrated the 

aforementioned properties, confirming the effectiveness and usability of the system. 

Ongoing work is currently devoted to implement a distributed rehabilitation platform based on 

BodyCloud and named Cloud Rehab Tutor. Specifically, such novel platform aims at supporting the 

rehabilitation of patients at home through BSNs able to automatically monitor the specific parameters of 

the body articulations (e.g. elbow, knee, ankle, wrist, shoulder) to be rehabilitated. Monitored data at the 

Body-side can be sent onto the Cloud-side in real-time, archived, and analyzed off-line by doctors and 

even by the patients themselves, and presented through specific statistics views. Moreover, doctors can 

upload real/virtual exercises that patients need to perform and define/modify exercise scheduling 

according to the rehabilitation evolution. 

Future work will include: 

- The definition of an intelligent and extensible component distributed between the Body-side and 

the Cloud-side able to support context-aware sensing and adaptation: contextual sensing is the 

ability to detect contextual information and use it to augment the user’s sensory system, whereas 

contextual adaptation is the ability to execute or modify a service automatically based on the 

current context. 

- The definition of a high-level global security framework for BodyCloud which allows for data 

privacy at the different sites (Body, Cloud, Analyst and Viewer). 

- The development of other case studies which can demonstrate the range of applications which can 

be enabled by BodyCloud (e.g. mass fear detection system, emergency support system, etc). 
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