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Precipitation forecast data from the ERA-Interim reanalysis (33 years)

are evaluated using the daily England and Wales Precipitation (EWP)

observations obtained from a rain gauge network. Observed and reanalysis

daily precipitation data are both described well by Weibull distributions

with indistinguishable shapes but different scale parameters, such that the

reanalysis underestimates the observations by an average factor of 22%. The

correlation between the observed and ERA-Interim time series of regional,

daily precipitation is 0.91. ERA-Interim also captures the statistics of extreme

precipitation including a slightly lower likelihood of the heaviest precipitation

events ( >15 mm day−1 for the regional average) than indicated by the Weibull

fit. ERA-Interim is also closer to EWP for the high precipitation events. Since

these carry weight in longer accumulations, a smaller underestimation of 19%

is found for monthly mean precipitation. The partition between convective

and stratiform precipitation in the ERA-Interim forecast is also examined. In

summer both components contribute equally to the total precipitation amount,

while in winter the stratiform precipitation is approximately double convective.

These results are expected to be relevant to other regions with low orography

on the coast of a continent at the downstream end of mid-latitude stormtracks.
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1. Introduction

Observations of precipitation are sparse compared with

the scales that are often characteristic of the field

(for example scattered showers, isolated convection or

mid-latitude fronts). Rain gauge networks are the only

direct means of monitoring precipitation and these vary

enormously between countries. Even where gauges are

densely distributed, with an average spacing of a few

kilometers, there is an issue of representativity relative to

the volume averages observed by remote sensing. Indirect

measurements from satellites have a better spatial coverage,

giving the possibility to obtain precipitation estimates over

areas not covered by rain gauges. However, the indirect

nature of the observations (mostly cloud-top reflectance

and thermal radiance) counteract this advantage, resulting

in large variability in skill for the precipitation estimates

obtained (Ebert et al. 2007; Yilmaz et al. 2005; Dinku et al.

2007).

Although observations of precipitation are not assim-

ilated directly in the initialisation of numerical weather

prediction (NWP) models, the atmospheric state including

pressure, temperature, winds and humidity is well rep-

resented by global analyses (see for example Dee et al.

(2011) for the performance of ERA-Interim or Kistler et al.

(2001) for the NCEP-NCAR reanalysis). To the extent

that the NWP models used in assimilation are a faithful

representation of the atmosphere, forecast fields can be used

to estimate quantities such as precipitation. Problems with

estimates of the global hydrological cycle (Trenberth and

Guillemot 1998; Kobold and Sugelj 2005) from reanalysis

have been investigated by many authors. Recently effort

has been put into the improvement of the precipitation

products derived from reanalysis systems, which has led

to significant progress (Balsamo et al. 2010; Sapiano et al.

2008). Most evaluation studies compare reanalysis data with

observations that are representative for continental scale

areas (e.g. Europe (Zolina et al. 2004) and Africa (Poccard

et al. 2000)) or globally (Bosilovich et al. 2011; Simmons

et al. 2010). These studies have made broad statements,

such as the identification of tropical oceanic regions with

the poorest precipitation estimates (Bosilovich et al. 2008).

On the regional scale, Kobold and Sugelj (2005)

compared operational ECMWF precipitation forecasts with

local gauge data in Slovenia during nine extreme events in

1994 and 1997 and found a general underestimation of 60%,

linking this to the mountainous character of the landscape.

Romanou et al. (2010) investigated satellite observations

(HOAPS-3) over the Mediterranean and Black seas between

1989 and 2001 and found that ECMWF reanalyses

overestimated the mean precipitation estimates. Szczypta

et al. (2011) compared the ERA-Interim precipitation

product with precipitation observations (GPCP and GPCC)

over France and found an average 30% underestimation by

the ECMWF reanalysis between 1991-2008 for monthly

precipitation. Their results show that there is a large

variability in the model skill for different regions, but they

did not evaluate the representation of precipitation across

the range of intensities from dry days to extremely heavy

(regionally aggregated) precipitation.

Dee et al. (2011) investigated the precipitation product

of ERA-Interim over the UK by selecting four 1◦ × 1◦

boxes located over the British Isles and compared it with

(gauge based) GPCC data of the same resolution. They

found that for this small sample, the monthly precipitation

in the reanalysis strongly correlates with the GPCC data, but

that it has a general tendency to underpredict the maximum

precipitation. However, their comparison was limited to 4

points and only a qualitative comparison is presented.

This paper aims to investigate the statistical distribution

of intensity for regionally-aggregated, daily precipitation

and to evaluate the ability of the ERA-Interim system

to estimate precipitation across the range from dry days

to extreme events. The 33-year re-analysis record is long

enough to evaluate the intensity of precipitation events

(averaged over the region) including the extreme tails of

the distribution (e.g., 120 days above 99th percentile). The

region chosen is England and Wales which has a continuous

This article is protected by copyright. All rights reserved.					
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80 year daily record from a dense gauge network. A

homogeneous record in time has been created for the region

by considering changes in observation methods and sites

(Wigley et al. 1984a; Gregory et al. 1991; Alexander

and Jones 2000; Croxton et al. 2006). The statistics of

England-Wales Precipitation (EWP) have been investigated

by several authors (Osborn et al. 2000; Mills 2005) in more

detail than most regions of the world (see Section 2). The

dataset motivates the choice of region. England and Wales

are at the downstream end of North Atlantic storm-track and

are generally low lying (mostly less than 500m above sea

level). Therefore precipitation is dominated by the passage

of large-scale weather systems and the results are likely

to be relevant for other similar regions at the end of mid-

latitude stormtracks.

In section 2, the data and methodology are defined,

followed by a short discussion of the diurnal cycle.

Comparison of ERA-Interim with observed daily and

monthly accumulations is presented in sections 3 and

4 respectively. In section 5, the partition between the

convective and large scale precipitation in the ERA-

Interim forecast model is examined. Concluding remarks

are presented in section 6.

2. Data and methodology

The England and Wales Precipitation (EWP) dataset

(Alexander and Jones 2000) contains daily accumulations,

spatially averaged over England and Wales. This time

series is maintained and updated by the Met Office

Hadley Centre and is available from 1931 to the present

day (www.metoffice.gov.uk). The England and Wales

estimates are based on the weighted contribution of 5

climatological different sub-regions (Wigley et al. 1984b;

Wigley and Jones 1987), each of which has at least 7

evenly distributed stations (all regional time series have 7-

15 stations incorporated, depending on the availability of

data (Alexander and Jones 2000)).

Daily accumulation at each of the stations is scaled by the

ratio of the regional monthly normal to the stations’ monthly

normal, before combining to form the sub-region estimate.

This ensures that it is not weighted towards sites with locally

high precipitation (e.g. local orographic effects). In this way,

the effects of changing the gauge network has less impact

on the sub-region estimates, making them more robust. The

sub-region totals are then combined to produce an England

and Wales Precipitation average using regression analysis

(Wigley et al. 1984b).

Wigley et al. (1984a,b) and Gregory et al. (1991)

investigated how well this area-average precipitation

measure is able to represent the climatological variability

in the England and Wales region, which is important for

the comparison with the model. They found that using an

average of 35 stations over the region (7 per sub-region)

is able to capture at least 86% of the daily variability of

the true area-average signal and more than 90% for the

monthly accumulations. Also Wigley et al. (1984b) showed

that, to increase the accuracy of the precipitation estimated

derived from the 35 stations by 1 mm, one would have to

use approximate 270 stations. Later studies have compared

the EWP observations with higher density datasets in

the England and Wales region (Croxton et al. 2006;

Simpson and Jones 2012), showing marginal improvement

of the areal precipitation representation. Simpson and Jones

(2012) compared the EWP observations with a newly

developed 5-km gridded daily precipitation set by the Met

Office Hadley Centre. They found that for 98% of all the

daily observations both datasets agreed within 1 mm and

90% within 0.5 mm. This gives confidence that the EWP

dataset is a robust estimate of precipitation for the region

(e.g. (Mills 2005)). For the purpose of this paper, daily data

were selected from 1979 onward, which is the period over

which the ERA-Interim forecast products are available.

The EWP observations are compared with the ERA-

Interim precipitation forecast from the European Centre for

Medium-Range Weather Forecasts (ECMWF). The forecast

model incorporated in the ERA-Interim reanalysis is based

on the ECMWF IFS (Cy31r2) forecast model (for more

information see Dee et al. (2011) and references therein),

This article is protected by copyright. All rights reserved.					
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Figure 1. England and Wales (all grey areas) and the box used to find area-
averaged precipitation from the ECMWF reanalysis forecast. The light
grey shading is the part of England and Wales captured in the area-average
of forecasts, while the dark grey areas are not included.

with a spectral horizontal resolution of T255 (∼ 80km)

and 60 vertical levels. Precipitation data are retrieved on

the model’s linear Gaussian grid from January 1979 to

December 2011, giving 33 years of data.

The ERA-Interim forecast precipitation is the sum

of two components which are computed separately

in the model. Large-scale precipitation (from now on

referred to as stratiform) originates from the prognostic

parametrization of cloud (Tiedtke 1993; Tompkins et al.

2007), while convective precipitation originates solely

from the parametrization of convection (Tiedtke 1989;

Bechtold et al. 2004). However, the two parametrisations

are linked, by detrainment of convective cloud which is

one source of condensate of the prognostic cloud scheme.

Further information can be found at the ECMWF website

(www.ecmwf.int/research/ifsdocs/CY31r1/index.html).

The total precipitation in the reanalysis is averaged over

the box depicted in figure 1, for comparison with the EWP

observations. This corresponds to 49 grid boxes that are

included in the domain given by [50.6◦N-54.5◦N × 4.5◦W-

0.7◦E]. The box area (151,439 km2) includes most of the

England and Wales region and was designed to have a

similar area to England and Wales (151,129 km2). Given

the resolution of the analysis (including the land-sea mask)

and the fact that the observational estimate itself is obtained

by combining only 5 sub-regions, it was thought to be less

robust to define an irregular set of grid-points. All the model

grid points in the domain were combined with equal weight.

Changing the domain, either by including or excluding 7

grid boxes to represent the England and Wales area more

closely, was found to have a minimal effect on the results.

The relations found in all the following sections did not

change, although it should be mentioned that some values

(e.g. R2 in figure 6) did change by several percent.

The EWP daily record represents accumulations from

0900 UTC to the same time the next day (when observers

report the measurements). The ERA-Interim forecasts are

initialised only twice a day at 0000 UTC and 1200 UTC

and the precipitation is accumulated from the beginning of

each forecast. Two different methods were used to obtain

a daily accumulation of forecast precipitation, as shown

in Figure 2. In the first method, the 12 hour forecasts are

combined from each initialisation time (represented by the

black horizontal lines B+C in Fig. 2). By combining two 12

hour forecasts each day, a daily estimate of the precipitation

accumulation from 1200 UTC to 1200 UTC is obtained

(bounded by black dashed lines in figure 2).

In the second method, the 6 and 12 hour forecasts

are combined. In addition to the accumulations 6 hours

into each forecast (lines P, Q and R in figure 2), the

accumulations between 0600–1200 UTC and 1800–0000

UTC are calculated using A-P and B-Q respectively.

Combining 4 consecutive accumulations ((A-P)+Q+(B-

Q)+R) results in a daily precipitation accumulation running

from 0600 UTC (bounded by grey dashed lines in figure 2).

All the analysis in this paper has been performed for both

accumulation periods and the statistical results were found

to be nearly identical. It was decided to show only the results

for the 0600 UTC starting point as it has a more natural

date labelling (most of the precipitation actually falls on the

indicated date).

A threshold of 0.1 mm day−1 is used to define dry days

in the daily time series for both the EWP and ECMWF

data. Due to the inclusion of multiple stations, this threshold

This article is protected by copyright. All rights reserved.					
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Figure 2. A schematic showing the time line for the retrieved ERA-I
forecasts and EWP observations. The light grey and black horizontal lines
depict the 6-hour (P, Q and R) and 12-hour (A, B and C) ERA-Interim
forecasts respectively. Combining two 12 hour forecasts (lines B and C)
will give a daily accumulation (from 1200 UTC) in contrast with the EWP
observations accumulated from 0900 UTC each day. Calculating A-P+B+R
will give the daily accumulation from 0600 UTC (time window bounded
by the grey dashed lines). The dark grey lines represent the longer lead
time forecasts used to investigate the spin-up effect (section 3.4), which
are combined in a similar fashion to obtain daily accumulations.

is lower than that typically used for individual stations

(e.g., 0.3 mm day−1 in Maraun et al. (2008)). Changing

the threshold from 0.1 to 0.3 mm day−1 barely altered the

results.

2.1. Diurnal cycle

By combining all the ECMWF forecasts between 1979

and 2011, the average precipitation accumulated over 6

hour intervals was calculated as a function of time of day.

Figure 3 presents the 6 hour accumulations as a percentage

of daily accumulation.

To minimise the impact of low precipitation days, totals

were calculated between 1979 and 2011 for each 6 hour

interval and then divided by the total observed precipitation.

If there were no dependence on time of day, all 4 intervals

would contribute 25%. The composite diurnal cycle is

very weak (peak-to-peak amplitude of 1%). In contrast,

Dai et al. (2007) investigated the summer diurnal cycle

of precipitation using satellite observations over the mid-

latitudes and found a maximum during the afternoon-

evening with a mean-to-peak amplitude of approximately

20-30% of the daily mean over Western-Europe, while only

a weak diurnal cycle (<10%) was found during boreal

winter.

The weak diurnal cycle for the England and Wales

region is perhaps explained by the strong influence

Atlantic weather systems all year round, compared with

continental regions. Individual seasons (not shown here)

show diurnal cycles of similar magnitude, even in summer

when convection is more active. When making the partition

between convective and stratiform precipitation in the

forecast, a very small diurnal cycle is also found for both

components (figure 3). The convective precipitation shows a

weak maximum during the afternoon and a minimum during

the early morning. The stratiform precipitation is slightly

stronger in the morning.

Figure 3. The fraction of daily precipitation (1979-2011) in the ERA-
Interim precipitation forecast for each of the four 6 hour intervals in
the model. Also the diurnal cycle for the convective and stratiform
precipitation is shown. On average the precipitation is split as 55%
stratiform and 45% convective.

3. Daily Accumulations

3.1. Observed rain days

The contingency Table I shows the skill of ERA-Interim in

simulating dry days versus rain days. Out of 293 observed

rain days (ORD) per year (1979-2011 average), 284 were

captured in the ERA-Interim estimates and 9 were “missed

forecasts”. There were also 29 “false alarm” forecast rain

days for each year on average. The precipitation amounts for

the “false alarm” ECMWF forecasts were all small events

(< 0.5 mm day−1) and therefore sensitive to the threshold

defining “dry days”. However, the “false alarms” contribute

little to the total precipitation. No significant differences

were found for data partitioned by season, indicating that

the precipitation forecast shows similar skill throughout the

year.

This article is protected by copyright. All rights reserved.					
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Annual data EWP

rain dry

ERA-I rain 284 29
dry 9 43

Table I. Contingency table for rain days (> 0.1 mm) and dry days in
the ERA-Interim reanalysis forecast and EWP daily precipitation (1979-
2011). The results are rescaled such that they represent the average
number of days per year.

EWP ERA-I ERA-I (ORD)
Annual 943 82.1% 81.2%
DJF 258 82.0% 80.5%
MAM 197 87.9% 85.5%
JJA 210 84.1% 82.3%
SON 276 79.4% 78.1%
# rain days 293 313 284

Table II. Precipitation amount (mm) for the observations (EWP) and
the fraction (%) represented by the ERA-Interim reanalysis forecast
precipitation falling on all days and solely during the EWP observed
rain days (ORD) . The last row shows the average number of days with
rain per year in observations, ERA-Interim and their intersection.

Table II shows that the ECMWF model underestimates

the total annual precipitation significantly. Although there

is a marked seasonal cycle in precipitation, the fractional

underestimation is similar for different seasons, although

worst in autumn. As seen already in Table I, ERA-

Interim overestimates the number of rain days. However,

the effect of the extra number of rain days on the seasonal

accumulation is marginal, as shown by the right column

when only data from the Observed Rain Days (ORD) are

included in the accumulations.

In order to obtain a consistent comparison, all the

following statistics in this paper are calculated using the

ECMWF precipitation products only during Observed Rain

Days (ORD - as defined by the EWP dataset). This ensures

that the extra rain days in the ECMWF forecast (i.e.,

labelled ‘false alarms’) do not contribute to the precipitation

accumulations shown. The analysis was also performed

using all rain days in the ECMWF data and, although

numerical values were slightly different, the conclusions

from the results would be unchanged.

3.2. Distribution of daily precipitation intensity

Analysing the discrete probability distribution of the

two daily datasets in more detail shows that both

have qualitatively similar, though quantitatively different

structure. Both EWP and ECMWF were fitted with a

Weibull distribution, as it was found in previous studies

that daily precipitation observations are well fitted using

this distribution (Burgueno et al. 2005). To investigate how

well the observations and ECMWF forecast are represented

by the Weibull distribution, cumulative probability plots are

drawn in figure 4. Here the relative position of probability

levels on the vertical axis is based on the Weibull function

which assures that any Weibull distributed dataset would be

represented by a straight line.

The probability plots clearly show that model and

observations are both in good agreement with the Weibull

distribution, although there are deviations in both tails of the

distribution. The largest deviations are found for the ‘very

light’ precipitation events (< 0.3 mm day−1), for which

the fitted Weibull distributions (dot-dash lines) overestimate

the event frequency of both EWP and ECMWF forecast

precipitation. The discretisation of the EWP data for light

events shows the limited resolution of the observations in

the lower end of the precipitation spectrum. For the higher

end of the distribution there is a slight overestimation of

the event frequency by the best Weibull fit, which results in

a broader tail in the Weibull distribution than for the data

when considering values larger than 15-20 mmday−1.

Calculating the corresponding scale and shape parame-

ters of the Weibull distributions shown in figure 4 quantifies

the similarity of the two datasets. It is found that both have

indistinguishable shapes (parameter values of 0.89± 0.02

and 0.91± 0.02 for EWP and ECMWF respectively), but

the scale parameter is smaller (78%) for the ECMWF

forecast (parameter values of 3.03± 0.07 and 2.36± 0.06

for EWP and ECMWF respectively). This implies that the

ECMWF forecast underestimates the EWP precipitation

across the entire precipitation range.

Differences between the two datasets are investigated

further using a quantile-quantile plot (qq-plot) (Fig. 5a).

This compares the precipitation rates that belong to any

probability quantile in the two distributions. If two datasets

are selected from the same distribution (same shape, but

This article is protected by copyright. All rights reserved.					
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Figure 4. Weibull cumulative probability plots for a) observed EWP
and b) ECMWF area averaged precipitation. The plots show the
cumulative probability for measuring a certain precipitation amount and
are constructed such that the Weibull distribution is represented by a
straight line. The best estimates of the shape parameter for the Weibull
fit (dashed line) indicates the similarity of the two datasets.

not necessarily the same absolute values), this would be

represented by a straight line on a qq-plot. The slope

of the qq-plot is 0.782± 0.005 when using all the data,

which indicates that the ECMWF model underestimates

the EWP observations on average by 22% (consistent

with the Weibull scale parameters). These results are

of similar magnitude to those found in a study over

France by Szczypta et al. (2011), who identified a mean

underestimation of 30% when comparing 18 years of ERA-

Interim precipitation products (1991-2008) with rain gauge

observations.

The long ERA-Interim and EWP datasets enables

quantification of the extreme tails of the distributions.

Figure 5a shows that some small, but statistically significant

differences are present in the tails. For the quantiles

above 99%, the ECMWF model shows heavier precipitation

relative to the linear fit (dot-dash line). A least square linear

fit through the top 10% events in the qq-distribution shown

in figure 5a, gives a slope of 0.827± 0.005, meaning that

the model estimate is slightly closer to the observed EWP

in the heaviest precipitation events. This slightly non-linear

behavior results in a smaller underestimation in monthly

accumulations (discussed later). The difference below the

10% quantile is due to the occurrence of completely dry

days in the ECMWF reanalysis, even though only the

statistics for observed rain days (EWP> 0.1 mm) are

shown. These are the “missed rain days” occurring at an

average of 9 per year (Table I).
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Figure 5. a) A quantile-quantile plot for daily EWP and ECMWF
precipitation and the best linear fit to the data. The small insert figure
expands the lower end of the qq-plot. The vertical dashed lines indicate the
99% and 10% quantiles of the data. b) Scatter plot showing observations
(EWP) versus model forecast (ECMWF) for all days after applying the
scaling factor. The thick solid line represents the best linear fit (least square
method) and the thin solid lines represent the 90th/10th percentile range of
the ECMWF forecast data falling within each bin of EWP (bin width 1
mm day−1). The percentiles are only shown for EWP bins with greater
than 10 events.
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The quantile-quantile comparison re-orders the 2 datasets

differently so that the statistics are unaffected by the

degree of temporal correlation. A scatter plot (figure 5b)

constructed from all available time-points in the 33-year

comparison period, after applying the scaling factor to

the ECMWF data, shows that all points are scattered

around the 1:1 line. This indicates that the underestimation

(0.782± 0.005) by the ECMWF forecast model applies

throughout most of the precipitation range. The figure also

shows the 10th and 90th percentile range of the ECMWF

forecast data, calculated within bins for observed EWP

values. The percentiles also scale linearly with daily EWP

accumulations. The ECMWF re-analysis estimates and

observations are strongly correlated (R2 ≈ 0.82) such that

82% of the variance in the comparison is explained by the

linear fit.

In summary, ERA-Interim daily precipitation (across

England and Wales) is highly correlated with observed

EWP and shares almost the same statistical distribution,

aside from an underestimation. The underestimation is well

described by a single scale factor (0.78%) although detailed

examination reveals that the underestimation is less marked

for the heaviest 10% of events.

3.3. Seasonality of ECMWF and EWP

To investigate the seasonality of the comparison, similar

scatter plots for the four different seasons (without the

optimal seasonal scaling applied) are shown in figure 6.

There are only small differences in slope between the

seasons, so all seasons show a consistent underestimation

by the ECMWF model. Based on the R2 values (see figure

6) slightly more scatter is observed in summer compared to

the other seasons. Possible explanations for this difference

might be related to the nature of the precipitation in the

different seasons, as will be discussed later.

3.4. Spin-up effect of the reanalysis forecast

A drawback of using short forecast lead times is the possible

introduction of spin-up errors (Betts et al. 2003), which

are mainly due to inconsistencies between the assimilated

observations and the model used in the reanalysis at the

start of each forecast. For the results already shown, only the

first 12 hours of the forecast are used, whereas other studies

(Kobold and Sugelj 2005; Szczypta et al. 2011) have used a

longer lead time for their analyses. Betts et al. (2009) states

that the spin-up of precipitation in ERA-Interim during the

first 24 hours of forecasts in mid-latitude continental regions

is approximately 5%. It is unclear to what extent the results

of Betts et al. (2009) are applicable to the more maritime

UK region, which receives much of its precipitation from

Atlantic weather systems.

Therefore, to investigate the effect of forecast lead

time on the comparison, the foregoing analysis has been

performed for a single year (2007), but based on forecasts

with 12-24 hour lead times (see dark grey lines in schematic

of figure 2). To quantify the difference between the two

forecast lead times, a scatter plot similar to that in figure 5

is constructed for 2007 based on both lead time experiments

and shown in figure 7 (no scaling applied). Investigating the

least squares linear fit shows that the slope of the forecast

with a longer lead time versus observations (0.81 ± 0.03) is

closer to unity than for the short lead time experiment (0.78

± 0.03). The overall improvement for this single year was

in the order of 3%, with some individual outlier days having

an increase as large as 70%.

The general bias found here is similar to that found by

Betts et al. (2009) and falls within the spread of the best

estimate of the short lead time experiment. This indicates

that, although some individual events might be strongly

affected by spin-up, the results found previously appear to

be robust over different lead times and that no significant

improvements are expected for even longer lead times.

4. Monthly Accumulations

A comparison of the total monthly precipitation data from

the ECMWF forecast with EWP is shown in Fig. 8a, after

re-scaling the ECMWF forecasts by diving by the factor

(0.782) derived from the qq-plot of daily accumulations.
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Figure 6. Same as figure 5b, but for the four seasons (without scaling the forecast). For clarity the diamonds shown in figure 5b are omitted. The dashed
line shows the 1:1 slope. The slope of the linear fit (a) is shown at the top of each panel, together with the correlation squared (R2).

This correction derived from daily accumulations is too

large. Calculating the 10/90th percentiles of the monthly

totals shows that the re-scaling also overestimates the most

extreme monthly values in both tails of the precipitation

distribution. A different scaling factor of 0.812± 0.006 is

obtained from a least squares linear fit to the scatterplot

of monthly precipitation accumulations in the two datasets

(green curves), instead of the daily values. Using this

single monthly re-scaling factor, the ECMWF monthly

accumulations fit the seasonal cycle of observed EWP very

well with differences in monthly average precipitation rates

smaller than 0.05 mm day−1 on average. The maximum

precipitation occurs on average in the months October to

December and minimum May to July.

The difference between the scaling factors obtained

from daily versus monthly precipitation accumulations is

associated with the curvature in the qq-plot (figure 5).

ECMWF precipitation is closer to observed EWP for the

heaviest daily accumulations, and these high precipitation

totals have more weight than light precipitation events in the

monthly accumulations. Since only the ORD are included

in the comparison, the extra number of rain days in the

reanalysis is not responsible for the overestimation found

using the daily scaling factor.

5. Convective and Stratiform precipitation

The ECMWF forecast model data also gives the opportunity

to discuss the separate contributions of the convective

and stratiform precipitation components, although it is
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Figure 7. A scatter plot of EWP versus ERA-Interim area averaged daily
precipitation amounts in 2007 for two different sets of lead times. The grey
dots are obtained using the same method as used in Fig. 5b, and the black
dots are obtained using forecasts with lead times that are 12 hours longer.
The solid lines represent best linear fit to the data.

recognised that this partition is model dependent. Hand

et al. (2004) used detailed observations to estimate this

partition for extreme flood events in the UK during

the twentieth century. They found that most extreme

events occurred in summer, which were dominated by

the convective events, while in autumn and winter the

stratiform precipitation was most important. Unfortunately

such observations (including the type of precipitation)

are not available on a daily basis, thereby limiting the

possibilities to extend their study to the entire period

investigated in this paper. The Hand et al. (2004) study

does suggest that there is a seasonal dependency for the two

types of precipitation, which is therefore also expected to be

present in the ERA-Interim precipitation model.

Figure 8b shows that the stratiform precipitation has a

strong seasonal cycle with a minimum in May to July, while

the convective part shows a minimum in January to March.

As a result the ratio between stratiform and convective

precipitation is approximately 2:1 in winter, while it is less

than 1:1 in summer.

There is also a large seasonal cycle in the spread of

the convective precipitation, with the largest spread found

in summer. Together with figure 6, this suggests that the

comparison between EWP and ECMWF is slightly worse

in seasons with more convective activity, which could relate

Figure 8. Monthly-mean precipitation rates (0=Dec) for EWP observa-
tions and ECMWF reanalysis forecast using data between 1979-2011. a)
Comparison between the observations and the rescaled reanalysis forecast.
Red represents the best linear fit scaling for daily data (0.782 from
figure 5a) and green the scaling based on matching the total monthly
precipitation amount (0.812 from table II). The dashed lines represent the
10/90th percentiles of the accumulations for each calendar month. b) The
partition between convective and stratiform (large scale) precipitation in
the ECMWF model after applying the daily scaling. Again the shaded area
shows the 10/90th percentile range of the data.

to a sampling issue in the observations or that the model’s

convection parameterisation performs less well than the

stratiform precipitation parameterisation.

The underestimation factor for the ERA-Interim forecasts

was derived from the total daily precipitation accumula-

tions, without separating the convective and stratiform com-

ponents. To investigate whether the scaling should be differ-

ent for the convective and stratiform components, the under-

estimation in the reanalysis was re-calculated for each ORD

with more than 2 mm day−1. This threshold was applied

to remove large fluctuations in the ratio ECMWF/EWP for
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Figure 9. The underestimation of observations by the ERA-Interim
precipitation forecasts, binning the forecast data by the fraction of
stratiform precipitation across the region. Vertical lines indicated ± one
standard deviation.

small precipitation amounts. The daily accumulations were

binned by the stratiform fraction and the scaling factor

calculated by a linear fit to a scatter plot of ECMWF versus

EWP for all days falling within each bin (Fig. 9). When

excluding the first bin, which contains all events with 0-

5% stratiform precipitation, there is no significant variation

of forecast-to-observation ratio with stratiform precipitation

fraction. Consequently, the universal scaling factor derived

for the total precipitation amount is equally applicable to

the separate convection and stratiform components in the

reanalysis. The exception is the first bin where the underes-

timate is much worse. This bin corresponds to convection-

dominated conditions and includes 5 times the number of

events of all other bins, of which many are low precipitation

events around the 2 mm threshold. It is concluded that the

ECMWF model underestimates precipitation in situations

with convective showers (light precipitation).

6. Conclusions

This study has evaluated 33 years of precipitation forecast

data from the ERA-Interim reanalysis using the England

and Wales precipitation (EWP) daily time series. The

EWP dataset is one of the longest daily records available

constructed from a dense raingauge network and the

regional estimate has been constructed in such a way as

to be insensitive to changes in the observation sites and

their representivity Alexander and Jones (2000). EWP has

been evaluated thoroughly in the literature (see for example

Croxton et al. (2006) who compared EWP with data from

independent stations).

The datasets are sufficiently long to characterise the

statistical distribution of regional-average precipitation,

even in the extreme tails. For example, 120 data points

exceed the 99th percentile in the 33-year comparison period.

Daily precipitation in the ERA-Interim reanalysis and the

EWP observations both closely fit a Weibull distribution,

although deviations from the fit are greatest in the tails.

The Weibull fits to each dataset overestimate the event

frequency in both the light and heavy precipitation tails

(in both EWP and the ERA-Interim forecasts). Comparing

the distributions shows that they have an indistinguishable

shape, but that the ECMWF forecast underestimates the

daily observations by an average factor of 22%. Fitting the

monthly accumulations indicates a smaller underestimation

of 19% because the ECMWF estimate for heavy daily

precipitation accumulations (across the region) is closer to

EWP, and these heavier events carry more weight in the

monthly accumulation. The slightly non-linear behaviour

of forecast underestimation factor with daily precipitation

total, is identified in the curvature of a quantile-quantile

plot using 33 years of data (figure 5a). Five year sub-

samples of the data were found to be too short to identify

the different behaviour in the high precipitation extremes,

including deviation from the Weibull fit and deviation from

a single scaling factor for forecasts across the range of

intensity.

Spin-up in the ERA-Interim model has only a minor

impact on the underestimation of precipitation, since

increasing the forecast lead time by 12 hours leads to only

a small (3%) increase in model precipitation estimates.

Previous studies have suggested that mountainous areas are

an important source of model precipitation underestimation

throughout the mid-latitudes (Kobold and Sugelj 2005;

Belo-Pereira et al. 2011), mainly due to the coarse

resolution of global models. Simpson and Jones (2012) have
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shown that the stations used in the EWP time series were

biased toward drier parts of the region, particularly in areas

that are more mountainous. As a result any orographic bias

in the model is most likely also present in the observations.

The temporal correlation between daily ERA-Interim

reanalysis precipitation and EWP observations is roughly

constant throughout the year (R2 ≈ 0.83), apart from

summer (JJA) when it is slightly lower (R2 ≈ 0.78).

The relative importance of the convective and stratiform

precipitation fields present in the reanalysis forecast was

also investigated. When considering the monthly averages

in the reanalysis for both components, it was shown that

the stratiform precipitation has a strong seasonal cycle with

a minimum in summer, while the convective component

shows a slight summer maximum. As a result, the ratio of

stratiform to convective precipitation is approximately 2:1

in DJF, while it is less than 1:1 in JJA.

The forecast underestimation of total precipitation is

mostly independent of the convection:stratiform ratio in

the reanalysis, except for a greater underestimation in

convection dominated conditions (95-100% convective

fraction), which occurred mainly during summer (JJA) and

were associated with light precipitation averaged across

the region (isolated convection or convective showers).

This may result from problems with the convective

parameterisation in the ERA-Interim reanalysis system.

In summary, the statistical distribution of observed

daily precipitation is well represented by the ERA-Interim

reanalysis model, after correcting by a simple scaling factor.

The forecast estimates are slightly closer to the observed

regional precipitation for the heaviest events. This indicates

that the ERA-Interim reanalysis is a useful tool for studies

of seasonal variability in precipitation, extreme rain events

and the mechanisms behind them. Hawcroft et al. (2012)

has shown that over 70% of precipitation in northwest

Europe is associated with the passage of extratropical

cyclones from the North Atlantic stormtrack. Here it

has been shown that stratiform precipitation dominates

convective precipitation from October to March and is

approximately equal to convective precipitation through the

summer months, consistent with the importance of cyclones

for driving ascent and precipitation over the UK. Therefore,

it is expected that the results shown here are relevant to

other low lying regions on the maritime edge of continents,

downstream of mid-latitude stormtracks.
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