
Fragment-Driven Natural Language Interaction with Databases
Christopher Baik

cjbaik@umich.edu

University of Michigan

Ann Arbor, MI

Retrieving data from a relational database is a challenge for non-

technical users. While SQL is a formidable swiss army knife for

database tasks, even its core functionality, such as the ability to

join tables, remains opaque for many users. This challenge is exac-

erbated by the fact that many production databases have complex

schemas. Consequently, several lines of research [3, 8, 9, 11] have fo-

cused on helping less-technical users access databases via a natural

language interface to database (NLIDB).

Several NLIDBs [3, 8, 10] follow a common interaction model:

N1. The user issues a free-form natural language query (NLQ)

describing their request.

N2. The system generates candidate SQL queries from the NLQ.

N3. The user selects one of the SQL queries (or an intermediate

representation of the SQL [3]), or returns to N1 if none of

the SQL queries match the request.

N4. The system executes the SQL query and returns an answer.

One pitfall of this interaction model is in N3, where the user is
expected to select the correct SQL query from a list of candidates.

Given that one of our goals in developing an NLIDB is to assist

non-technical users without knowledge of SQL, it is contradictory

to expect the user to understand standalone SQL queries without

any additional annotation during the interaction. In addition, sev-

eral previous systems lack transparency in the translation process,

whether by producing SQL queries with little indication as to how

they were produced [8, 10, 11] or requiring users to understand

complex intermediate representations [3].

We propose an alternative fragment-driven interaction model,
where the system provides an explanation as to how the natural

language produced the resulting SQL:

I1. The user issues a free-form NLQ describing their request.

I2. The system decomposes and rephrases the NLQ into natural

language fragments (NLF) which each map to a portion of a

generated SQL query.

I3. The user views the system interpretation and modifies their

NLQ by removing NLFs or adding suggested ones, which

also modifies the resulting SQL.

I4. The system executes the final SQL query and returns an

answer.

This interaction model enables the user to interact with the

system purely in natural language and to make incremental modifi-
cations to their resulting database query without having to learn

any SQL. In addition, for users unfamiliar with SQL, transparently

displaying the mappings from NLF to SQL can provide confidence
in the resulting query.

This article is published under a Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-

duction in anymedium aswell as allowing derivative works, provided that you attribute

the original work to the author(s) and CIDR 2020. 10th Annual Conference on Innovative
Data Systems Research (CIDR ’20). January 12-15, 2020, Amsterdam, Netherlands.

Supporting this interaction model poses several research chal-

lenges. First, the NLFs we obtain should have high coverage over
all (or a large subset of) possible NLQ to SQL tasks. Second, the

mappings from these NLFs unambiguous, high-quality mappings to
SQL should be as unambiguous as possible—i.e. one NLF should not
refer to two different SQL fragments. Third, the system should be

able to easily adapt to new domains and databases.
To solve these challenges, we propose a system named FragSQL,

which leverages natural language fragment templates to model NLQ

to SQL tasks, a fragment template mining algorithm to extract nat-

ural language fragments from existing NLQ to SQL datasets, and

provides explanations and suggested query modifications to the user

through the interface. In addition, FragSQL can be adapted to new

domains and databases by providing a few domain-specific NLQ to

SQL examples for each database.

FragSQL demands less user expertise than an approach [3]

which requires the user to investigate natural language parse trees.

Unlike previous natural language explanation approaches [1, 4–7],

FragSQL does not require users or administrators with schema

knowledge to manually create a translation table or knowledge base.

It is also an improvement over [2], which generates explanations

that flesh out the user’s original NLQ with values from the database,

but is unable to correct potentially flawed SQL interpretations.

REFERENCES
[1] H. Amano and Y. Kambayashi. Translation of sql queries containing nested

predicated into pseudonatural language. In DASFAA, pages 116–125. World

Scientific, 1991.

[2] D. Deutch, N. Frost, and A. Gilad. Provenance for natural language queries.

Proceedings of the VLDB Endowment, 10(5):577–588, 2017.
[3] F. Li and H. Jagadish. Constructing an interactive natural language interface for

relational databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.
[4] J. Ljungberg. Paraphrasing sql to natural language. In Intelligent Text and Image

Handling-Volume 2, pages 790–808. Le Centre de Hautes Etudes Internationales
d’Informatique Documentaire, 1991.

[5] B. G. Lowden and A. N. De Roeck. The remit system for paraphrasing relational

query expressions into natural language. In VLDB, pages 365–371, 1986.
[6] W. Luk and S. Kloster. Elfs: English language from sql. ACM Transactions on

Database Systems (TODS), 11(4):447–472, 1986.
[7] E. M. Mueckstein and G. D. Moerdler. Semantic interpretation of a database

query language. Data & Knowledge Engineering, 1(2):123–138, 1985.
[8] A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural language

interfaces to databases. In Proceedings of the 8th international conference on
Intelligent user interfaces, pages 149–157. ACM, 2003.

[9] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R. Mittal, and F. Özcan.

Athena: an ontology-driven system for natural language querying over relational

data stores. Proceedings of the VLDB Endowment, 9(12):1209–1220, 2016.
[10] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. Sqlizer: query synthesis from

natural language. Proceedings of the ACM on Programming Languages, 1(OOP-
SLA):63, 2017.

[11] T. Yu, M. Yasunaga, K. Yang, R. Zhang, D. Wang, Z. Li, and D. Radev. Syntaxsql-

net: Syntax tree networks for complex and cross-domain text-to-sql task. In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 1653–1663, 2018.


	References

