Umbra: A Disk-Based System with In-Memory Performance

Thomas Neumann, Michael Freitag
Technische Universitat Minchen
{neumann,freitagm}@in.tum.de

ABSTRACT

The increases in main-memory sizes over the last decade have made
pure in-memory database systems feasible, and in-memory systems
offer unprecedented performance. However, DRAM is still rela-
tively expensive, and the growth of main-memory sizes has slowed
down. In contrast, the prices for SSDs have fallen substantially in
the last years, and their read bandwidth has increased to gigabytes
per second. This makes it attractive to combine a large in-memory
buffer with fast SSDs as storage devices, combining the excellent
performance for the in-memory working set with the scalability of
a disk-based system.

In this paper we present the Umbra system, an evolution of the
pure in-memory HyPer system towards a disk-based, or rather
SSD-based, system. We show that by introducing a novel low-
overhead buffer manager with variable-size pages we can achieve
comparable performance to an in-memory database system for
the cached working set, while handling accesses to uncached data
gracefully. We discuss the changes and techniques that were nec-
essary to handle the out-of-memory case gracefully and with low
overhead, offering insights into the design of a memory optimized
disk-based system.

1. INTRODUCTION

Hardware trends have greatly affected the development and evolu-
tion of database management systems over time. Historically, most
of the data was stored on (rotating) disks, and only small fractions
of the data could be kept in RAM in a buffer pool. As main memory
sizes grew significantly, up to terabytes of RAM, this perspective
changed as large fractions of the data or even all data could now be
kept in memory. In comparison to disk-based systems, this offered
a huge performance advantage and led to the development of pure
in-memory database systems [4, 5], including our own system Hy-
Per [9]. These systems make use of RAM-only storage and offer
outstanding performance, but tend to fail or degrade heavily if the
data does not fit into memory.

Moreover, we currently observe two hardware trends that cast
strong doubt on the viability of pure in-memory systems. First,
RAM sizes are not increasing significantly any more. Ten years

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well as allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR 20).
January 12-15, 2020, Amsterdam, Netherlands.

ago, one could conceivably buy a commodity server with 1 TB of
memory for a reasonable price. Today, affordable main memory
sizes might have increased to 2 TB, but going beyond that dispro-
portionately increases the costs. As costs usually have to be kept
under control though, this has caused the growth of main memory
sizes in servers to subside in the recent years.

On the other hand, SSDs have achieved astonishing improve-
ments over the past years. A modern 2 TB M.2 SSD can read with
about 3.5 GB/s, while costing only $500. In comparison, 2 TB of
server DRAM costs about $20000, i.e. a factor of 40 more. By
placing multiple SSDs into one machine we can get excellent read
bandwidths at a fraction of the cost of a pure DRAM solution.
Because of this, Lomet argues that pure in-memory DBMSs are
uneconomical [15]. They offer the best possible performance, of
course, but they do not scale beyond a certain size and are far
too expensive for most use cases. Combining large main memory
buffers with fast SSDs, in contrast, is an attractive alternative as the
cost is much lower and performance can be nearly as good.

We wholeheartedly agree with this notion, and present our novel
Umbra system which simultaneously features the best of both
worlds: Genuine in-memory performance on the cached working
set, and transparent scaling beyond main memory where required.
Umbra is the spiritual successor of our pure in-memory system
HyPer, and completely eliminates the restrictions of HyPer on data
sizes. As we will show in this paper, we achieve this without sacri-
ficing any performance in the process. Umbra is a fully functional
general-purpose DBMS that is actively developed further by our
group. All techniques presented in this paper have been imple-
mented and evaluated within this working system. While Umbra
and HyPer share several design choices like a compiling query
execution engine, Umbra deviates in many important aspects due
to the necessities of external memory usage. In the following, we
present key components of the system and highlight the changes
that were necessary to support arbitrary data sizes without losing
performance for the common case that the entire working set fits
into main memory.

A key ingredient for achieving this is a novel buffer manager that
combines low-overhead buffering with variable-size pages. Com-
pared to a traditional disk-based system, in-memory systems have
the major advantage that they can do away with buffering, which
both eliminates overhead and greatly simplifies the code. For disk-
based systems, common wisdom dictates to use a buffer manager
with fixed-size pages. However, while this simplifies the buffer
manager itself, it makes using the buffer manager exceedingly diffi-
cult. For example, large strings or lookup tables for dictionary com-
pression often cannot easily be stored in a single fixed-size page,
and both complex and expensive mechanisms are thus required all
over the database system in order to handle large objects. We ar-

Buffer Frames

Pages

swecnss VUDL VDD (o feivinifeivin [i i oo i

Size Class 1 128 KiB
74 y T TTTTTTTTTTTTTTTTTTToToToTeTTTmTToTY T v
Size Class 2 256 KiB : | 256 KiB
Size Class 3 R

inactive buffer frame ! - I

[0 active buffer frame I:l

inactive page (no physical memory mapping)

reserved virtual memory

active page (mapped to physical memory)

Figure 1: Illustration of the buffer manager, assuming a buffer pool size of 512 KiB and a minimum page size of 64 KiB. The buffer
manager supports exponentially growing page sizes which are organized into size classes. For each size class, a virtual memory region
the size of the entire buffer pool is reserved, and buffer frames correspond to fixed addresses within this memory region.

gue that it is much better to use a buffer manager with variable-size
pages, which allows for storing large objects natively and consec-
utively if needed. Such a design leads to a more complex buffer
manager, but it greatly simplifies the rest of the system. If we can
rely upon the fact that a dictionary is stored consecutively in mem-
ory, decompression is just as simple and fast as in an in-memory
system. In contrast, a system with fixed-size pages either needs to
re-assemble (and thus copy) the dictionary in memory, or has to use
a complex and expensive lookup logic.

Of course, there are substantial technical reasons why previous
systems have preferred fixed-size pages, such as fragmentation is-
sues. However, we show in this work how these problems can be
eliminated by exploiting the dynamic mapping between virtual ad-
dresses and physical memory provided by the operating system. In
summary, we make the following contributions. First, we present
a novel buffer manager that supports variable-size pages and in-
troduces only minimal overhead (Section 2). Second, we highlight
further key adjustments that are necessary to transition to a disk-
based system (Section 3). In particular, we provide insights into
string handling, statistics maintenance, and the execution model in
Umbra. Finally, we present experiments in Section 4, review related
work in Section 5, and draw conclusions in Section 6.

2. BUFFER MANAGER

Previous research has shown that traditional buffer managers are
one of the major bottlenecks when deploying database management
systems on modern hardware platforms [7]. For this reason, we
recently published the LeanStore storage manager that overcomes
these inefficiencies [14]. LeanStore is a highly scalable buffer man-
ager that offers nearly the same performance as a pure in-memory
system when the working set fits into main memory. However, it
still relies on fixed-size pages and thus, as outlined above, requires
expensive mechanisms to handle large objects. In Umbra, we go
one step further and build upon the fundamental ideas proposed by
LeanStore, while additionally supporting variable-size pages.
Database pages in Umbra are conceptually organized in size
classes, where a size class contains all pages of a given size. Size
class 0 contains the smallest pages, which should be a multiple of
the system page size. In Umbra, we choose 64 KiB as the smallest
page size. Subsequent size classes contain pages of exponentially
growing size, i.e. pages in size class i+ 1 are twice as large as those

in size class i (cf. Figure 1). Pages can theoretically be as large as
the entire buffer pool, although in practice even the largest pages
are much smaller than this theoretical limit.

Our buffer manager maintains a single buffer pool with a con-
figurable size, into which pages from any size class can be loaded.
By default, we allow the buffer pool to occupy half of the avail-
able physical memory, leaving the other half as scratch memory for
query execution. Crucially, Umbra does not require that the amount
of buffer pool memory is configured individually per page size
class as it is necessary in previous systems that support variable-
size pages [18]. For this reason, the external interface of the pro-
posed buffer manager does not differ significantly from a tradi-
tional buffer manager. That is, the buffer manager exposes func-
tions which cause a specific page to be pinned in memory, loading
it from disk if required, and functions that cause a page to be un-
pinned, allowing it to be subsequently evicted from memory.

2.1 Buffer Pool Memory Management

The major challenge in implementing a buffer manager that sup-
ports multiple page sizes within a single buffer pool is external frag-
mentation in this buffer pool. Fortunately, we can avoid this prob-
lem by exploiting the flexible mapping between virtual addresses
and physical memory provided by the operating system. The oper-
ating system kernel maintains a page table to transparently translate
the virtual addresses that are used by user-space processes to physi-
cal addresses within the actual RAM. This not only allows contigu-
ous blocks of virtual memory to be physically fragmented, but also
enables virtual memory to be allocated independently of physical
memory. That is, an application can reserve a block of virtual mem-
ory for which the kernel does not immediately create a mapping to
physical memory within the page table.

These particular properties of virtual memory management are
exploited within our buffer manager to completely avoid any exter-
nal fragmentation within the buffer pool. In particular, the buffer
manager uses the mmap system call to allocate a separate block of
virtual memory for each page size class, where each one of these
memory regions is large enough to theoretically accommodate the
entire buffer pool. We configure the mmap call to create a private
anonymous mapping which causes it to simply reserve a contiguous
range of virtual addresses which do not yet consume any physical
memory (cf. Figure 1). Subsequently, each of these virtual memory
regions is partitioned into page-sized chunks, and one buffer frame

containing a pointer to the respective virtual address is created for
each chunk. These pointers identify the virtual addresses at which
page data can be stored in memory and remain static for the entire
lifetime of the buffer manager. Since page sizes are fixed within a
given size class and a separate virtual address range is reserved for
each size class, no fragmentation of the virfual address space asso-
ciated with a size class occurs. Of course, the physical memory that
is used to store the page data associated with an active buffer frame
may still be fragmented.

When a buffer frame becomes active, the buffer manager uses the
pread system call to read data from disk into memory. This data
is stored at the virtual memory address associated with the buffer
frame, at which point the operating system creates an actual map-
ping from these virtual addresses to physical memory (cf. Figure 1).
If a previously active buffer frame becomes inactive due to eviction
from the buffer pool, we first write any changes to the page data
back to disk using the pwrite system call, and subsequently allow
the kernel to immediately reuse the associated physical memory.
On Linux, this can be achieved by passing the MADV_DONTNEED
flag to the the madvise system call. This step is critical to ensure
that the physical memory consumption of the buffer pool does not
exceed the configured buffer pool size, as several times more vir-
tual memory is allocated internally (cf. Figure 1). As the memory
mappings used in the buffer manager are not backed by any actual
files (see above), the madvise call incurs virtually no overhead.

We currently assume an underlying block device storage abstrac-
tion, which allows us to rely on the pread and pwrite system
calls to move data between background storage and main memory.
This both simplifies the implementation and improves the flexibil-
ity of our buffer manager since it imposes no constraints on the
actual hardware that is used for background storage. Nevertheless,
direct communication with this hardware without an intermediate
block device abstraction, e.g. through open-channel SSDs, would
provide various interesting optimization opportunities which we
plan to explore in the future [3].

During operation, the buffer manager keeps track of the total size
of all pages that are currently held in memory. It ensures that their
total size never exceeds the maximum size of the buffer pool by
evicting pages to disk as required. Umbra employs essentially the
same replacement strategy as LeanStore [14], where we specula-
tively unpin pages but do not immediately evict them from main
memory. These cooling pages are then placed in a FIFO queue, and
eventually evicted if they reach the end of the queue.

Overall, this approach allows the Umbra system to fully utilize
the benefits of variable-size pages, with minimal runtime over-
head and implementation complexity. However, variable-size pages
alone do not resolve all the shortcomings of a traditional buffer
manager in a modern database system [14]. In the following, we
give a brief overview of the additional optimizations found in
LeanStore that we adapt for variable-size pages.

2.2 Pointer Swizzling

Since pages are serialized to disk, they need to be referenced
through logical page identifiers (PIDs) in the general case. How-
ever, centralized approaches which rely on a global hash table to
map PIDs to memory addresses in the buffer manager can quickly
become a major performance bottleneck in modern many-core sys-
tems [7]. In Umbra, we instead rely on pointer swizzling as a low-
overhead decentralized technique for address translation [14].

In this approach, references to both memory-resident and disk-
resident pages are implemented through swips, which encode all
information that is required to locate and access pages. A swip is
a single 64-bit integer which contains either a virtual memory ad-

b——————— 63 bit ——— 1 bitH

swizzled (pointer [0)
I 57 bit + 6 bit —+1 bitH
unswizzled (PID | size class | 1)

Figure 2: Illustration of a swizzled (top) and unswizzled (bot-
tom) swip. A swizzled swip stores a pointer to a memory-
resident page, the lowest bit of which will be zero due to the
mandatory 8-byte alignment of pointers. In an unswizzled swip
this bit is fixed to one, while the remaining bits store the page
identifier and the size class of a page residing on disk.

dress, in case the referenced page resides in memory, or a 64-bit
PID if it currently resides on disk. A swip is said to be swizzled
if it references a memory-resident page, and unswizzled otherwise.
We use pointer tagging to distinguish between these two options,
and thus only a single additional conditional statement is required
to access a memory-resident page. In addition to the tagging bit,
an unswizzled swip stores both the size class of the corresponding
page (6 bits), and its actual page number (57 bits). This way, the
buffer manager requires no additional information besides a swip
to load the corresponding page into memory (cf. Figure 2).

Due to the decentralized nature of pointer swizzling, some op-
erations such as page eviction become more complicated. For ex-
ample, the same page could be referenced by several swips, all of
which would need to be updated when the page is evicted to disk.
However, we cannot easily locate all swips that reference a given
page, which makes it hard to maintain consistency [14]. To counter
this, all buffer-managed data structures in Umbra are required to or-
ganize their constituent pages in a (possibly degenerate) tree. This
ensures by design that each page is referenced by exactly one own-
ing swip, and no further swips besides that owning swip need to be
updated when a page is loaded or evicted. In case of B*-trees, for
instance, this entails that leaf pages may not contain references to
their siblings, as this would require that leaf pages are referenced
by more than one swip. We will outline below how efficient scans
can still be implemented in light of these restrictions.

2.3 Versioned Latches

Frequent latch acquisitions for thread synchronization within the
buffer manager quickly become another point of contention on
modern hardware platforms [14]. For this reason LeanStore uses
optimistic latching to synchronize concurrent accesses to the same
page, allowing buffer-managed data structures to drastically reduce
the number of actual latch acquisitions. Note that thread synchro-
nization is independent of transaction concurrency control which
has to be implemented on top of these data structures.

We adopt the optimistic latching scheme proposed by LeanStore
within Umbra, which is implemented as follows. Each active buffer
frame contains a versioned latch which can either be acquired in
exclusive mode, shared mode, or optimistic mode. The main com-
ponent of a versioned latch is a single 64-bit integer, of which 5
bits are used to store state information, while the remaining 59 bits
are used to store a version counter. The state bits encode if and in
which mode a latch is currently locked, and the version counter is
used to validate optimistic accesses to a buffer frame (cf. Figure 3).
Versioned latches are accessed and modified through atomic oper-
ations to ensure proper synchronization.

A latch is unlocked if its state bits are set to the integer value
zero. An unlocked latch can be acquired in exclusive mode by
atomically setting its state bits to the integer value 1. At most one
thread at a time is allowed to hold a latch in exclusive mode, which
then acts similar to a global mutex. For example, any modifica-

59 bit t Sbit —
(version | state)

Figure 3: Structure of the versioned latch stored in a buffer
frame for synchronization of page accesses. The version
counter is increased after each modification of a page, allow-
ing optimistic accesses to be validated. The state bits encode
whether and in which mode the latch is locked.

tion of a page, such as inserting data, requires that the correspond-
ing latch is first acquired in exclusive mode in order to avoid data
races. A thread releases an exclusive latch by resetting the state bits
to zero. Additionally, the version counter is incremented in case the
page data was modified in any way.

Alternatively, multiple threads can acquire a latch simultane-
ously in shared mode, provided that it is not currently locked in
exclusive mode by another thread. A shared latch has its state bits
set to an integer value greater than 1, where a value of n+ 1 indi-
cates that n threads currently hold the latch in shared mode. In the
rare case that the state bits are not sufficient to count the number of
threads, an additional 64-bit integer is used as an overflow counter.
No modifications of a page are allowed while holding a shared
latch, but read operations are guaranteed to succeed. A shared latch
effectively pins the associated page in the buffer manager, prevent-
ing it from being unloaded. If other threads still hold a shared latch,
it is released by simply decrementing the thread count encoded in
the state bits. The last thread that releases a shared latch fully un-
locks it by resetting the state bits to zero.

Finally, a latch that is unlocked or locked in shared mode can
be acquired by any number of threads in optimistic mode. This is
achieved by simply remembering the value of the version counter
at the time of latch acquisition, i.e. no modification of the latch it-
self is required and thus no contention is induced. Like in shared
mode, only read accesses to a page are allowed while holding an
optimistic latch. However, these read accesses are allowed to fail,
since another thread could acquire an exclusive latch and modify
the page concurrently. Therefore, all optimistic accesses have to be
validated when an optimistic latch is released. If the version counter
changed since the acquisition of the latch, a concurrent modifica-
tion of the page occurred and the read operations are restarted. Note
that it is even legal for a page to be unloaded while the page con-
tent is being read optimistically. This is possible since the virtual
memory region reserved for a buffer frame always remains valid
(see above), and read accesses to a memory region that was marked
with the MADV_DONTNEED flag simply result in zero bytes. No
additional physical memory is allocated in this case, as all such
accesses are mapped to the same zero page. Optimistic latching
eliminates contention on the latches themselves if there are many
concurrent read accesses [14].

While LeanStore only supports optimistic latching for readers,
we additionally support shared latching [14]. This is required as
operators in Umbra are generally oblivious of the paged nature of
relations. If we only supported optimistic latching for readers, every
operator in a pipeline would have to include additional validation
logic in case a page was evicted while being processed. Further-
more, this avoids frequent validation failures in read-heavy OLAP
queries in case other queries write to the same relation.

2.4 Buffer-Managed Relations

Building on the basic facilities provided by the buffer manager, re-
lations in Umbra are organized in B*-trees, using synthetic 8-byte
tuple identifiers as keys. The identifier for a given tuple is gen-
erated at the time the tuple is inserted into the B*-tree. We en-

sure that tuple identifiers increase strictly monotonically, which al-
lows us to avoid splitting nodes during tuple insertions. Instead, we
completely fill existing inner and leaf nodes before allocating new
nodes. Using synthetic keys in the primary B*-trees additionally
offers the major advantage that arbitrary insert patterns are han-
dled equally well by Umbra. Inner nodes always use the smallest
available page size (64 KiB), leading to a fanout of 8 192. Since we
never split leaf nodes, they are only allocated when a tuple does not
fit into an existing page during an insert operation. In this case, the
smallest page size that can fit the entire tuple is chosen. Usually,
this single tuple fits easily on a 64 KiB page and as a result the ma-
jority of leaf pages in Umbra will also be 64 KiB large. In practice,
we found that this provides a good balance between efficient point
accesses and efficient range accesses, e.g. for scans.

Tuples within a leaf page are currently organized in a PAX lay-
out [1]. That is, the fixed-size attributes are stored in a columnar
layout at the start of the page, and the variable-size attributes are
stored densely at the end of the page. Pages are compactified dur-
ing inserts if required. However, such a page layout is not optimal
for data that resides on disk, as all attributes of a relation have to
be loaded even if only few are actually accessed. Thus, we also
plan to integrate alternative storage layouts in the future, such as
DataBlocks for cold parts of the data [11].

Concurrent access to the B*-trees is synchronized through op-
timistic latch coupling which makes heavy use of the versioned
latches associated with each buffer frame [14]. Writers acquire
latches in exclusive mode only to split inner pages or insert tuples
into leaf pages, while readers only acquire latches in shared mode
in order to read tuples from a leaf page or to load a child page
from disk. During non-modifying traversal, latches are acquired
in optimistic mode, and validated where required. Due to the re-
striction that each page has exactly one owning swip, there are no
links between adjacent leaf nodes like in a traditional B*-tree. In
order to avoid frequent full traversals of the tree, we maintain an
optimistic latch on the parent of the current leaf node during table
scans. As long as this optimistic latch remains valid, i.e. no con-
current modifications of the parent node occur, this allows us to
cheaply navigate to the next leaf node.

2.5 Recovery

The Umbra system uses ARIES for recovery [16]. Overall, ARIES
seamlessly supports the varying page sizes employed by Umbra.
However, some care has to be taken in order to ensure recoverabil-
ity when reusing disk space. In particular, we cannot store multiple
smaller pages in disk space that was previously occupied by a single
large page. Consider, for example, a 128 KiB database file which is
currently entirely occupied by a single 128 KiB page. We now load
this page into memory, delete it, and create two new 64 KiB pages
that reuse the disk space in the database file. If the system crashes,
it is possible that we only manage to write the corresponding log
records to disk, but not the actual new page data. During recovery,
ARIES would then at some point attempt to read the log sequence
number of the second 64 KiB page from the database file, although
it has never been written to disk. Thus, it would actually read some
data of the deleted 128 KiB page and incorrectly interpret it as a
log sequence number. In order to avoid such problems, Umbra only
reuses disk space for pages of the same size.

3. FURTHER CONSIDERATIONS

While its buffer manager is certainly the key ingredient that en-
ables in-memory performance in Umbra, further components had

— 4 byte + 4 byte + 8 byte !
short string (_ length | string data)

long string(length | prefix | offset or pointer)

Figure 4: Structure of the 16-byte string headers in Umbra.

to be adjusted or redesigned in comparison to HyPer. The most sig-
nificant adjustments in Umbra were made to string handling and
statistics collection, as well as compilation and execution.

3.1 String Handling

Umbra stores string attributes in two separate parts, a 16-byte
header containing metadata, and a variable-size body containing
the actual string data. The header is stored like any other fixed-size
attribute in the columnar layout at the start of a page, while the
variable-size actual string data is stored at the end of a page. Since
our buffer manager supports multiple page sizes, we do not have to
split long strings across several pages.

Depending on the string length, the string header representation
in Umbra will differ slightly (cf. Figure 4). The first four bytes of
the header always contain the length of the string, i.e. string length
is limited to 232 — 1 in Umbra. Short strings that contain 12 or
fewer characters are stored directly within the remaining 12 bytes
of the string header, thus avoiding an expensive pointer indirection.
Longer strings are stored out-of-line, and the header will contain
either a pointer to their storage location, or an offset from a known
location. Generally, strings that are stored in database pages are
addressed by offsets from the page start, and other strings are ad-
dressed by pointer. In case of long strings, the remaining four bytes
of the header are used to store the first four characters of the string,
allowing Umbra to short-circuit some comparisons.

As opposed to a pure in-memory system, a disk-based system
like Umbra cannot guarantee that pages are retained in memory
during the entire query execution time. Therefore, strings that are
stored out-of-line require some special care, as the offsets or point-
ers stored in their header may become invalid if the correspond-
ing page is evicted. For this purpose, Umbra introduces three stor-
age classes for out-of-line strings, namely persistent, transient, and
temporary storage. The storage class is encoded within two bits of
the offset or pointer value stored in the string header.

References to a string with persistent storage, e.g. query con-
stants, remain valid during the entire uptime of the database. Ref-
erences to a string with transient storage duration are valid while
the current unit of work is being processed, but will eventually be-
come invalid. Unlike persistent strings, transient strings need to be
copied if they are materialized during query execution. Any string
that originates from a relation, for example, has transient storage
in Umbra, as the corresponding page could be evicted from mem-
ory. Finally, strings that are actually created during query execu-
tion, e.g. by the UPPER function, have temporary storage duration.
While temporary strings can be kept alive as long as required, they
have to be garbage collected once their lifetime ends.

3.2 Statistics

Umbra tracks a number of statistics for query optimization pur-
poses. First of all, a random sample of each relation is maintained.
Since Umbra is designed as a disk-based system, straightforward
random sampling from the base relations is not feasible. In contrast
to a pure in-memory system, computing the sample on-demand
is prohibitively expensive in a disk-based system. Even in an in-
memory system, computing a random sample remains an expensive
operation. HyPer alleviates this problem by only periodically up-
dating the sample, but then samples become outdated very quickly

Pipelines Steps

result cleanup pipeline 2

thread-local cleanup

scan global hash table

Pipeline 2

thread-local setup
cleanup pipeline 1, setup pipeline 2

T thread-local cleanup

s_nationkey,count(*)

(merge thread-local hash tables

allocate global hash table

Pipeline 1

(thread-local aggregation

thread-local setup

w\—?@ru’@rvww’zﬁr\y

supplier setup pipeline 1

Figure 5: Pipelines and the corresponding steps for a simple
group-by query in Umbra. Parallel steps are marked by a black
border, and arrows indicate state transitions between the steps.

in write-heavy OLTP workloads. In Umbra, we instead implement
a scalable online reservoir sampling algorithm that we recently de-
veloped [2]. In doing so, we can ensure that the query optimizer
always has access to an up-to-date sample with minimal overhead.

Besides a random sample, we additionally maintain updateable
HyperLogLog sketches on each individual column. As we have
shown previously [6], our implementation of updateable Hyper-
LogLog sketches can provide almost perfect cardinality estimates
on individual columns with moderate overhead. Furthermore, this
enables the query optimizer to utilize highly accurate multi-column
estimates through a combination of sketch-based and sampling-
based estimation [6].

3.3 Compilation & Execution

In general, Umbra employs the same query execution strategy as
HyPer: Logical query plans are translated into efficient parallel ma-
chine code, which is then executed to obtain the query result [17].
While they naturally exhibit various similarities, Umbra develops
the HyPer approach further in several key ways.

First of all, Umbra employs a much more fine-grained represen-
tation of physical execution plans than HyPer. In HyPer, a physical
execution plan is essentially a monolithic code fragment which is
compiled as a whole and computes the query result [17]. In con-
trast, physical execution plans in Umbra are represented as modular
state machines. Consider, for example, the following query on the
well-known TPCH schema:

select count ()
from supplier
group by s_nationkey

On a high-level, the execution plan of this query consists of two
pipelines, where the first pipeline scans the supplier table and
performs the group by operation, and the second pipeline scans
the groups and prints the query output (cf. Figure 5). In Umbra,
these pipelines are further disassembled into steps, which can either
be single-threaded or multi-threaded. In particular, Umbra would
generate the steps shown in Figure 5 for the above query.

In generated code, each step corresponds to a separate function
which can be called by the runtime system of Umbra. For the pur-
pose of query execution, these individual steps are viewed as states
with well-defined transitions between steps, which are orchestrated
by the query executor of Umbra (cf. Figure 5). In case of multi-
threaded steps, a morsel-driven approach is employed to distribute

the available work to worker threads, and the step function pro-
cesses a single morsel on each invocation [12].

The modular execution plan model employed by Umbra offers
several crucial benefits. First, we can suspend query execution af-
ter each invocation of a step function, e.g. if the system IO load ex-
ceeds some threshold. Furthermore, our query executor can detect
at runtime whether a parallel step would only consist of a single
morsel. In this case, the required work does not have to be dis-
patched to another thread, avoiding a potentially expensive context
switch. Finally, we can easily support multiple parallel steps within
a pipeline, as illustrated in Figure 5.

Another important difference is that query code is not generated
directly in the LLVM intermediate representation (IR) language.
Instead, we implement a custom lightweight IR in Umbra, which
allows us to generate code efficiently without relying on LLVM.
Since LLVM is designed as a versatile general-purpose code gener-
ation framework, it can incur a noticeable overhead due to function-
ality that is not required by Umbra anyway. By implementing a cus-
tom IR, we can avoid this potentially expensive roundtrip through
LLVM during code generation.

Unlike HyPer, Umbra does not immediately compile this IR to
optimized machine code. Instead, we employ an adaptive compila-
tion strategy which strives to optimize the tradeoff between com-
pilation and execution time for each individual step [10]. Initially,
the IR associated with a step is always translated into an efficient
bytecode format and interpreted by a virtual machine backend. For
parallel steps, the adaptive execution engine then tracks progress in-
formation to decide whether compilation could be beneficial [10].
If applicable, the Umbra IR is translated into LLVM IR and com-
pilation is delegated to the LLVM just-in-time compiler. Conceptu-
ally, our IR language is designed to closely resemble a subset of the
LLVM IR, such that translation from our format into LLVM format
can be achieved cheaply and in linear time.

4. EXPERIMENTS

Our experimental evaluation consists of two parts. First, we com-
pare Umbra to its spiritual predecessor HyPer (v0.6-165) and the
well-known column store MonetDB (v11.33.3), in order to demon-
strate its competitive performance [8, 9]. Second, we highlight
key characteristics of Umbra in additional microbenchmarks. All
benchmarks are performed on an Intel Core i7-7820X CPU with
8 physical and 16 logical cores running at 3.6 GHz. The system
contains 64 GiB of main memory, and all database files are placed
on a Samsung 960 EVO SSD with 500 GiB of storage space.

4.1 Systems Comparison

As the basis for our comparative experiments, we choose the join
order benchmark JOB [13] and the TPCH benchmark at scale fac-
tor 10. Each query is repeated five times, and we report the fastest
repetition (i.e. we measure performance with warm caches in this
experiment). The relative performance of Umbra in comparison to
HyPer and MonetDB is shown in Figure 6.

We observe that Umbra performs excellently in comparison to
HyPer. In particular, Umbra achieves a geometric mean speedup of
3.0x on JOB and of 1.8x on TPCH. To some extent, this notably
large gap can be attributed to the much more efficient adaptive com-
pilation strategy employed by Umbra. Whereas HyPer always com-
piles query plans to optimized machine code, the adaptive strategy
avoids expensive compilation for cheap queries. On such queries,
HyPer actually spends far more time on query compilation than on
query execution, by up to 29x.

JOB TPCH

0

0 1

< 30 . - 5

H :] 2

g : -12.9 . Ei

< 10 _8.4 =

& 6.1~] . .

5 1 4.3- -4.6 |] 3.8 -4.5

o4 - -3.0 - I e

g 3 190- 2.7- 1 2.4- 2.8 e

@ : -1.7 -1.7 5t b9 | e

] -1.3 3 1.3- 11 -l4 s

5 14 3 I . i

= : l
3

T T T T
over over over over
HyPer MonetDB HyPer MonetDB

Figure 6: Relative speedup of Umbra over HyPer and Mon-
etDB on JOB and TPCH. The boxplots show the 25th and 75th
percentiles (left), and the 5th, 50th, and 95th percentiles (right).

More importantly, if we look at raw query execution time alone,
Umbra achieves comparable performance to the pure in-memory
system HyPer. On average, execution times fluctuate by 30 % on
JOB and 10 % on TPCH. While larger relative differences between
0.2x and 2.3x on JOB and 0.5x and 1.6x on TPCH do occur, we
determined that these outliers, especially on JOB, mostly arise due
to different logical plans chosen by HyPer and Umbra. In fact, we
found that on some queries Umbra happens to pick a worse logical
plan than HyPer despite having much better cardinality estimates,
because the query optimizer in HyPer was in luck and made two
mistakes that canceled out.

The geometric mean speedup of Umbra over MonetDB is 4.6 x
on JOB and 2.3x on TPCH. On many queries, in particular the
more complex JOB queries, MonetDB spends a large fraction of the
overall query runtime on query optimization and code generation.
Furthermore, unlike HyPer, MonetDB also occasionally picks ex-
tremely bad query plans which lead to slow query execution times.
Even with good plans, however, query execution in MonetDB is
generally less efficient than in HyPer and Umbra.

4.2 Microbenchmarks

In the following, we will investigate further which impact some
key components of Umbra have on its performance. We begin by
demonstrating that Umbra incurs only minimal overhead due to its
buffer manager. For this, we modify the storage layer in two dif-
ferent ways. First, we disable page eviction in the buffer manager
which eliminates the necessity to materialize strings originating
from database pages into memory. Second, we implement an alter-
native storage layer which simply stores relations in flat memory-
mapped files without any buffer manager. This additionally elimi-
nates the overhead of the buffer manager itself, and the indirections
incurred by the B*-tree representation of relations.

We then run JOB and TPCH on these modified storage layers and
investigate the changes in query execution time. Optimization and
compilation time are disregarded in this case, as Umbra uses the
exact same logical and physical plans with all three storage layers.
We observe that performance fluctuates only slightly in both direc-
tions, by less than 2 % on average if only string materializations
are avoided, and by less than 6 % on average if the entire buffer
manager is bypassed. In both cases, the most extreme changes in
performance still amount to just 30 %. From these results, we con-
clude that the buffer manager incurs negligible costs in Umbra.

We utilize the modified storage layer for another microbench-
mark illustrating the I/O performance of the buffer manager. For
this, we generate a relation containing 250 million random 8-byte
floating point values. Subsequently, we compute the sum of these

values with cold database and OS caches. When bypassing the
buffer manager, Umbra relies on the operating system to load the
contents of the flat memory-mapped file containing the relation data
into memory. In this case, Umbra achieves a read throughput of
1.15 GiB/s which we determined to be close to the maximum avail-
able random access bandwidth on our SSD. Read accesses to the
SSD happen essentially at random due to the highly parallelized
nature of query execution in Umbra which imposes no inter-thread
constraints on the order in which pages are processed. When actu-
ally utilizing the buffer manager, Umbra achieves virtually the same
read throughput of 1.13 GiB/s. These results show that the buffer
manager in Umbra can make full use of the available I/O band-
width. We further verified this finding by running JOB and TPCH
with artificially reduced buffer pool sizes, in which case Umbra be-
comes similarly I/O-bound.

In summary, we observe that the primary bottleneck in Umbra is
caused by limited storage throughput, whereas the buffer manager
itself is easily capable of handling highly parallel and I/O-heavy
workloads. As suggested in Section 1, we can increase the available
I/0 bandwidth by simply placing multiple SSDs into a single sys-
tem, allowing Umbra to rival the performance of a pure in-memory
system even on workloads that do not fit into main memory alone.

S. RELATED WORK

As a re-design of our HyPer system, Umbra builds heavily on the
insights gained during the development of HyPer [9]. We concur
with the argument set forth by Lomet that pure in-memory systems
are uneconomical [15], and present Umbra as an evolution of Hy-
Per towards a high-performance disk-based system. As such, the
system requires an efficient and scalable buffer manager, which re-
quires careful adaptations to the architecture of a traditional buffer
manager. The buffer manager in Umbra shares many properties
with LeanStore [14], and we refer the reader to [14] for a detailed
review of the relevant literature. We furthermore argue that it is
desirable to support variable-size pages in the buffer manager to
reduce the complexity of handling large data objects. To the best
of our knowledge, the only other buffer manager with variable-size
pages was developed for the ADABAS system [18]. However, in
comparison to Umbra, this buffer manager is much less flexible as
it only supports two different page sizes that are maintained in sep-
arate pools. A major downside of their approach is that we have to
specity in advance how much memory is allocated for each pool.

6. CONCLUSION

In this paper we presented the newly developed Umbra system that
constitutes an evolution of the purely in-memory system HyPer
towards an SSD-based system. We demonstrated that Umbra can
achieve in-memory performance if the entire working set fits into
RAM, while at the same time fully utilizing the available I/O band-
width if data has to be spilled to disk. We introduced a novel, low-
overhead buffer manager with variable-size pages that renders this
kind of performance possible. Furthermore, we investigated key
adaptations to other components of an in-memory database system
that are required for the transition to an SSD-based system. Our
findings can serve as a guideline for the design of a novel breed of
high-performance data caching systems.

7. REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, pages
169-180, 2001.

[2] A. Birler. Scalable reservoir sampling on many-core CPUs.

In SIGMOD, pages 1817-1819, 2019.

M. Bjgrling, J. Gonzalez, and P. Bonnet. Lightnvm: The

linux open-channel SSD subsystem. In FAST, pages

359-374. USENIX Association, 2017.

C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL

server’s memory-optimized OLTP engine. In SIGMOD,

pages 1243-1254, 2013.

[5] F. Farber, N. May, W. Lehner, P. Grof3e, I. Miiller, H. Rauhe,
and J. Dees. The SAP HANA database — an architecture
overview. IEEE Data Eng. Bull., 35(1):28-33, 2012.

[6] M. Freitag and T. Neumann. Every row counts: Combining

sketches and sampling for accurate group-by result

estimates. In CIDR, 2019.

S. Harizopoulos, D. J. Abadi, S. Madden, and

M. Stonebraker. OLTP through the looking glass, and what

we found there. In SIGMOD, pages 981-992, 2008.

S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,

and M. L. Kersten. MonetDB: Two decades of research in

column-oriented database architectures. I[EEE Data Eng.

Bull., 35(1):40-45, 2012.

[9] A.Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots. In ICDE, pages 195-206, 2011.

[10] A.Kohn, V. Leis, and T. Neumann. Adaptive execution of
compiled queries. In ICDE, pages 197-208, 2018.

[11] H. Lang, T. Miihlbauer, F. Funke, P. A. Boncz, T. Neumann,
and A. Kemper. Data blocks: Hybrid OLTP and OLAP on
compressed storage using both vectorization and
compilation. In SIGMOD, pages 311-326, 2016.

[12] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: A NUMA-aware query evaluation
framework for the many-core age. In SIGMOD, pages
743-754, 2014.

[13] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper,
and T. Neumann. How good are query optimizers, really?
PVLDB, 9(3):204-215, 2015.

[14] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann.
LeanStore: In-memory data management beyond main
memory. In ICDE, pages 185-196, 2018.

[15] D. B. Lomet. Cost/performance in modern data stores: How
data caching systems succeed. In DaMoN, pages 9:1-9:10,
2018.

[16] C. Mohan, D. Haderle, B. G. Lindsay, H. Pirahesh, and P. M.
Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using
write-ahead logging. ACM TODS, 17(1):94-162, 1992.

[17] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539-550, 2011.

[18] H. Schoning. The ADABAS buffer pool manager. In VLDB,
pages 675-679, 1998.

3

—

[4

—

[7

—

[8

—_—

