Verified Resource Guarantees using COSTA and KeY

Elvira Albert

Complutense University of Madrid
elvira@sip.ucm.es

Reiner Hihnle

Chalmers University of Technology
reiner@chalmers.se

Abstract

Resource guarantees allow being certain that programs will run
within the indicated amount of resources, which may refer to mem-
ory consumption, number of instructions executed, etc. This infor-
mation can be very useful, especially in real-time and safety-critical
applications. Nowadays, a number of automatic tools exist, often
based on type systems or static analysis, which produce such re-
source guarantees. In spite of being based on theoretically sound
techniques, the implemented tools may contain bugs which render
the resource guarantees thus obtained not completely trustworthy.
Performing full-blown verification of such tools is a daunting task,
since they are large and complex. In this work we investigate an al-
ternative approach whereby, instead of the fools, we formally ver-
ify the results of the tools. We have implemented this idea using
COSTA, a state-of-the-art static analysis system, for producing re-
source guarantees and KeY, a state-of-the-art verification tool, for
formally verifying the correctness of such resource guarantees. Our
preliminary results show that the proposed tool cooperation can be
used for automatically producing verified resource guarantees.

Categories and Subject Descriptors F3.2 [Logics and Meaning
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms
and Problem Complexity]; D3.0 [Programming Languages]

General Terms Languages, Theory, Verification, Reliability

Keywords Static Analysis, Resource Guarantees, Java

1. Introduction

There is a growing awareness, both in industry and academia, of the
crucial role of formally proving the correctness of systems. Verify-
ing the correctness of modern static analyzers is rather challenging,
among other things, because of the sophisticated algorithms used in
them, their evolution over time, and, possibly, proprietary consid-
erations. A simpler alternative is to construct a validating tool [7]]
which, after every run of the analyzer, formally confirms that the re-
sults are correct and, optionally, generates correctness proofs. Such
proofs could then be translated to resource certificates S, 16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’11, January 24-25, 2011, Austin, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0485-6/11/01. .. $10.00

Richard Bubel

Chalmers University of Technology
bubel@chalmers.se

German Puebla

Technical University of Madrid
german@fi.upm.es

Samir Genaim

Complutense University of Madrid
samir.genaim@fdi.ucm.es

Guillermo Roman-Diez

Technical University of Madrid
groman@fi.upm.es

In this work, we are interested in resource guarantees obtained
by static analysis. An essential aspect of programs is that resources
be used effectively. This is especially true in the current program-
ming trends, which provide us with mechanisms for code reuse by
means of components and services: not only functionality, but also
resource consumption (or cost) must be taken into consideration.

COSTA is a state-of-the-art COSt and Termination Analyzer for
Java bytecode (and hence Java). It receives as input the bytecode
of a Java program, the signature of the method whose cost is to
be inferred, a choice of one among several available cost models
(termination [1], number of bytecode instructions [3|], memory
consumption, or calls to certain method) and automatically infers
an upper bound (UB for short) on the cost as a function of the
method’s input arguments. The most challenging step is to infer
UBs for the loops in the program [2]. Intuitively, this requires
(1) bounding the number of iterations of each loop and (2) finding
the worst-case cost among all iterations. Ranking functions [8] give
us safe approximations for requirement (1). To infer the maximal
cost in requirement (2), we need to track how the values of variables
change in the loop iterations and the inter-relations between (the
values of) variables. As we will see, this information is obtained in
COSTA by means of loop invariants and size relations. The analysis
algorithms used in COSTA for inferring the main components of the
UB generation were proven correct at a theoretical level. However,
there is no guarantee that correctness is preserved in the actual
implementation which is rather involved.

KeY [4] is a state-of-the-art source code verification tool for the
Java programming language. Its coverage of Java is comparable to
that of COSTA (nearly full sequential Java, plus a simplified concur-
rency model). KeY implements a logic-based setting of symbolic
execution that allows deep integration with aggressive first-order
simplification. While the degree of automation of KeY is very high
on loop- and recursion-free programs, the user must in general sup-
ply suitable invariants to deal with loops and recursion. In general,
invariants that are sufficient to prove complex functional proper-
ties cannot be inferred automatically. However, simpler invariants
that are sufficient to establish UBs can be automatically derived in
many cases and this is exactly COSTA’s forte. Our work is based on
the insight that the static analysis tool COSTA and the formal veri-
fication tool KeY have complementary strengths: COSTA is able to
derive UBs of Java programs including the invariants needed to ob-
tain them. This information is enough for KeY to prove the validity
of the bounds and provide a certificate. The main contribution of
this work is to show that, using KeY, it is possible to formally and
automatically verify the correctness of the UBs obtained by COSTA.

2. Inference of Upper Bounds in COSTA

In this section, we briefly describe the techniques used in COSTA for
automatically inferring UBs, and we identify the proof obligations
that need to be verified using KeY.

2.1 Main Components of an Upper Bound

Consider the following (JML annotated) program that implements
the insert sort algorithm.

ivoid insert_sort (int A[]) {

2 int i, j, v;

3 //@ ghost int ig=t; int jo=j; int ap=a;

4+ i=A.length—2;

s //@ assert (i=ip—2 A j=jo A a=ag)

¢ //@ ghost int i1=i; int j1=7; int a1=a;

7 //@ loop_invariant i<iy

8 //@ decreases i>07i:0

9 while (i>=0){

10 //@ ghost int ia=1; int jo=j; int az=aq;
1 j=i+1;

2 v=A[i];

13 //@ assert j=io+1Aiz >0

14 //@ ghost int i3=1; int j3=j; int ag=a;
15 //@ loop_invariant j<as

16 //@ decreases a —j>0?a—j:0

17 while (j<A.length && A[j]<v) {

18 Al —11=A[l;

19 j++}
0 Afj-1]=v;
21 i—— }}

COSTA receives a non-annotated version of the above program and,
for the cost model that counts the number of executed bytecode in-
structions, produces the (asymptotic) UB insert_sort(a)=a?, where
a refers to A.length. The underlying analysis used in COSTA infers
UBs for each iterative and recursive constructs (loops) and then
composes the results in order to obtain an UB for the method of
interest. Intuitively, in order to infer an UB for a single loop, it first
infers an UB A on the cost of a single execution of its body, an UB
I on the number of iterations that it can make, and then A * I is an
UB for the loop. In order to infer A and I COSTA relies on several
program analysis components that provide essential information:

Ranking functions. For each loop, COSTA infers a linear function
from the loop variables to N which is decreasing at each iteration.
For example, for the loop at line 17, it infers function f(a,j) =
nat(a — j) where nat(¢) = max(0, £). This function can be safely
used to bound the number of iterations. In the example, if a3 and j3
are the initial values of @ and j, then it is guaranteed that f(as, j3)
is an UB on the number of iterations of the loop.

Loop invariants. For each loop in the program, COSTA infers an
invariant that involves the loop’s variables and their initial values
(i.e., their values before entering the loop). Let us denote by %; the
initial value of ¢ when entering the loop at line 9. COSTA infers the
invariant ¢ < 41, which states that 7 is always smaller than or equal
to its initial value when the program reaches the loop condition.
This information, together with the size relations below, is needed
to compute the worst-case cost of executing one loop iteration.

Size relations. Given a fragment of code or a scope (details be-
low), COSTA infers relations between the values of the program
variables at a certain program point of interest within the scope and
their initial values when entering the scope. For example, at pro-
gram point 13, it infers that j = 42 + 1, where 42 is the value of ¢
when entering the scope that contains line 13 (i.e., the scope here is
the loop body). In this case the relation is a simple consequence of
the instruction at line 11. In general, however, it may not be trivial
to infer such relations nor to prove that they are correct.

Upper Bounds. Once the above information has been inferred, it
is straightforward to compute an UB for the method. Let us show
this process on the running example:

Inner loop. The process starts from the innermost loops. Thus, we
start with the loop at line 17. Assuming that executing the con-
dition costs (at most) c; instructions, and that the cost of each
iteration (i.e., the loop body) is c2 instructions, then it is clear that
nat(as — js) * (c1 + c2) 4+ ¢1 is an UB on the cost of this loop
(because ¢y and c2 are constant).

Outer loop. Next, we move to the outer loop at line 9. Let us
assume that the cost of the comparison is c3 instructions, the
code at lines 11-12 are c4 instructions, and the code at lines 20—
21 are cs instructions. Then, the cost of each iteration of this
loop is ¢3 + ca + nat(as — j3) * (c1 + c2) + 1 + c5, where
the highlighted subexpression corresponds to the cost of the in-
ner loop computed above. Note that in this case, each iteration
might have a different cost, since az — j3 is not the same for all
iterations. Simply multiplying the number of iterations nat(i1) by
such a cost is unsound. The solution is to find an expression U
in terms of the initial values of a1,41, 71 which does not change
during the loop such that U > a3 — j3 in all iterations. Then,
nat(i1) * [c3 + ca + nat(U) * (c1 + ¢2) + ¢1 + ¢5] + c3 is an UB
for the loop. In order to find such a U, COSTA uses the loop in-
variant (line 7) and the size relations (line 13) as follows: it solves
the parametric integer programming (PIP) problem of maximiz-
ing the objective function asz — j3 w.r.t. the loop invariant and the
size relations where i1, a1, j1 are the parameters. This produces an
expression in terms of i1, a1, j1 Which is greater than or equal to
a3 — j3 in all iterations of the loop. In our example, itis U = a1 —1.

Method. We finally can compute the cost of the insert_sort method.
Assume that the cost of line 4 is cg, then the cost of the method is
ce+nat(i1) * [cs + ca + nat(ar — 1) x (c1 + c2) + ¢1 + ¢5] + cs.
We need to express this UB in terms of the input parameter a. For
this, COSTA maximizes (using PIP) ¢; and a1 — 1 w.r.t. the size re-
lation at line 5 and, respectively, obtains a —2 and a — 1. Therefore,
ce+nat(a—2)x[cs+ca+nat(a — 1) * (c1 + c2) + c1+cs]+es
is the UB for insert_sort.

2.2 COSTA Claims as JML Annotations

To justify that the UBs obtained by COSTA are correct, we need
to provide formal correctness proofs for all the claims above. This
includes the ranking functions, invariants, size relations, the cost
model that provides all ¢;, and the underlying PIP solver.
Correctness of the cost model is trivial as it is a simple mapping
from each instruction to a number. Correctness of the underlying
PIP solver is also straightforward if we use the maximization pro-
cedure defined in [2]], which is based only on the Gaussian elimina-
tion algorithm. Therefore, we concentrate on verifying the correct-
ness of the ranking functions, size relations and invariants. They are
inferred by large software components whose correctness has not
been verified. We now briefly describe the translation of the differ-
ent pieces of information generated by COSTA to JML annotations
on the Java program, which will allow their verification in KeY.

Ranking functions. For a given loop, when COSTA infers a rank-
ing function of the form nat(¢), we translate it to the JML annota-
tion “//@ decreasing £ > 0 ? £: 07, since nat(¢) can be defined as
an if-then-else. COSTA might provide also ranking functions of the
form log(nat(¢) + 1), which are handled similarly.

Invariants. COSTA infers an invariant ¢ for each loop. This in-
variant involves the loop variables ¥ and auxiliary variables w such
that each w; represents the initial value of v;. The JML annotation

for this invariant consists of one line defining all w as ghost vari-
ables (“//®@ ghost int w1 = v1;...; int wy, = v,”) and one line for
declaring the loop invariant (“//@ loop_invariant ¢”).

Size relations. Size relations are linear constraints between the
values of a set of variables of interest between two program points.
As we have seen, this allows composing the cost of the different
program fragments. For each loop (or method call), COSTA infers
the relation ¢ between the values before the loop entry (or the
call) and the entry of its parent scope. Suppose that the loop (or
the call) is at line L;, its parent scope starts at line L,, and that ¥
are the variables of interest at L; and w represent their values at
L,. Then we add the JML annotation “//@ ghost int wy = v1;. ..
; int wy, = vy’ immediately after line L, to capture the values of
v at line Ly, and the JML annotation *“//@ assert ¢ immediately
before line L; to state that the relation ¢ must hold at the program
point. Additional size relations inferred by COSTA are input-output
size relations. These are linear constraints that relate the return
value of a given method to its input values. For example, suppose
that we replace “i ——" in line 21 of the insert_sort program by “i
=decrement(i)” where decrement is defined by “int decrement(int

x) {return x—1;}”. Then COSTA infers the relation “p =\result=
x—1" which is used to bound the number of iterations of that loop.
In order to verify this relation in KeY we add the JML annotation
“//@ ensures " to the contract of decrement.

3. Verification of Upper Bounds using KeY

We now describe the verification techniques used in KeY to prove
program correctness, focusing on those relevant to UB verification.

3.1 Verification by Symbolic Execution

The program logic used by KeY is JavaCard Dynamic Logic
(JavaDL) [4], a first-order dynamic logic with arithmetic. Pro-
grams are first-class citizens similar to Hoare logics but, in dynamic
logic, correctness assertions can appear arbitrarily nested. JavaDL
extends sorted first-order logic by a program modality (-)- (read
“diamond”). Let p denote a sequence of executable Java statements
and ¢ an arbitrary JavaDL formula, then (p)¢ is a JavaDL formula
which states that program p terminates and in its final state ¢ holds.
A typical formula in JavaDL looks like

P
—T N
i =30 Aj= 350 — (i=j-i;j=j-i;i=i+];) (i = jO A j = 40)
where i, j are program variables represented as non-rigid constants.
Non-rigid constants and functions are state-dependent: their value
can be changed by programs. The rigid constants ¢0, j0 are state-
independent: their value cannot be changed. The formula above
says that if program p is executed in a state where i and j have
values 40, jO, then p terminates and in its final state the values
of the variables are swapped. To reason about JavaDL formulas,
KeY employs a sequent calculus whose rules perform symbolic
execution of the programs in the modalities. Here is a typical rule:

b = ({p}rest)p, A T,—b= ({q}rest)¢p, A

I' = (if (b) {p} else {q} rest)¢, A
As values are symbolic, it is in general necessary to split the proof
whenever an implicit or explicit case distinction is executed. It
is also necessary to represent the symbolic values of variables
throughout execution. This becomes apparent when statements
with side effects are executed, notably assignments. The assign-
ment rule in JavaDL looks as follows:
I' = {x :=val}(rest)p, A
I' = (x = val; rest)¢, A

ifSplit

assign

The expression in curly braces in the premise is called update and
is used in KeY to represent symbolic state changes. An elementary
update loc := wal is a pair of a location (program variable, field,
array) and a value. The meaning of updates is the same as that of an
assignment, but they can be composed in different ways to repre-
sent complex state changes. Updates u1, u2 can be composed into
parallel updates u1||uz. In case of clashes (updates w1, uz assign
different values to the same location) a last-wins semantics resolves
the conflict. This reflects left-to-right sequential execution. Apart
from that, parallel updates are applied simultaneously, i.e., they do
not depend on each other. Update application to a formula/term e
is denoted by {u }e and forms itself a formula/term. Application of
updates is similar to explicit substitutions, but is aware of aliasing.

Loops and recursive method calls give rise to infinitely long
symbolic executions. Invariants are used in order to deal with un-
bounded program structures (an example is given below). Exhaus-
tive application of symbolic execution and invariant rules results in
formulas of the form {u} ()¢ where the program in the modality has
been fully executed. At this stage, symbolic updates are applied to
the postcondition ¢ resulting in a first-order formula that represents
the weakest precondition of the executed program wrt ¢.

3.2 Proof-Obligation for Verifying Upper Bounds

To verify UBs in KeY the annotated source code files provided by
COSTA are loaded. For methods where COSTA did not generate a
contract, KeY provides the following default contract:

/#@ public behavior
Q@ requires true;
@ ensures true;
@ signals_only Exception;
@ signals (Exception) true; ©x/

This contract requires to prove termination for any input and en-
sures that all possible execution paths are analyzed. Abrupt ter-
mination by uncaught exceptions is allowed (signals clauses). To
prove that a method m satisfies its contract, a JavaDL formula is
constructed which is valid iff m satisfies its contract. Slightly sim-
plified, for insert_sort this formula (using the default contract) is:

Vo; Va0;{a := a0 || self := o}(—(a = null) A =(self = null) —
(try { self.insert_sort(a)@NestedLoops; }
catch(Exception e){ exc=e; })(exc = null V
instancegxception (€XC))

The above formula states that for any possibly value o of self
and any value a0 of the argument a which satisfy the implicit
JML preconditions (self and a are not null), the method invocation
self.insert_sort(a) terminates (required by the use of the diamond
modality) and in its final state no exception has been thrown or any
thrown exception must be of type Exception.

3.3 Verification of Proof-Obligations

The proof obligation formula must be proven valid by executing the
method insert_sort symbolically starting with the execution of the
variable declarations. Ghost variable declarations and assignments
to ghost variables (//@ set var=val;) are symbolically executed
just like Java assignments.

Verifying Size Relations. If a JML assertion assert ¢; is encoun-
tered during symbolic execution, the proof is split: the first branch
must prove that the assertion formula ¢ holds in the current sym-
bolic state; the second branch continues symbolic execution. In
the insert_sort example, a proof split occurs exactly before enter-
ing each loop. This verifies the size relations among variables as
derived by COSTA and encoded in terms of JML assertion state-
ments (see Sect. [2.2). Input-output size relations encoded in terms
of method contracts are proven correct as outlined in Sect.[3.2]

Verifying Invariants and Ranking Functions. Verification of
the loop invariants and ranking functions obtained from COSTA
is achieved with a tailored loop invariant rule that has a variant
term to ensure termination:

(i) T'= InvAdec>0,A
(i) T,{Ua}(bA Inv Adec=d0) =
{Ua}(body)(Inv A dec < dO A dec > 0), A
(#i2) T, {Ua}(=b A Inv) = {Ua}(rest)p, A
I' = (while (b) { body } rest)¢, A

Inv and dec are obtained, respectively, from the loop_invariant
and decreasing JML annotations generated by COSTA. Premise (i)
ensures that invariant Inv is valid just before entering the loop and
that the variant dec is non-negative. Premise (ii) ensures that Inv
is preserved by the loop body and that the variant term decreases
strictly monotonic while remaining non-negative. Premise (iii) con-
tinues symbolical execution upon loop exit. The integer-typed vari-
ant term ensures loop termination as it has a lower bound (0) and
is decreased by each loop iteration. Using COSTA’s derived ranking
function as variant term obviously verifies that the ranking function
is correct. The update U/ 4 assigns to all locations whose values are
potentially changed by the loop a fixed, but unknown value. This
allows using the values of locations that are unchanged in the loop
during symbolic execution of the body.

looplnv

Generated Proofs. A single proof for each method is sufficient to
verify the correctness of the derived loop invariants, ranking func-
tions and size relations. The reason is that the contracts capturing
the input-output size relations are not more restrictive w.r.t. the pre-
condition than the default contracts are. Hence, with the verification
of the input-output size relation contracts, we analyze all feasible
execution paths and prove correctness of all loop invariants, ranking
functions and JML assertion annotations. We stress that the proofs
run fully automatic. Much of the time is needed to derive specific
instances of arithmetic properties. As future work, we plan to do
proof profiling and to reduce the search time by hashing frequently
occuring normalisation steps.

4. Implementation and Experiments

The implementation of our approach has required the following
non-trivial extensions to COSTA and KeY (note that COSTA works
on Java bytecode, and KeY on Java source): (1) output the proof
obligations using the original variable names (at the bytecode level,
operand stack variables are often used); (2) place the obligations in
the Java source at the precise program points where they must be
verified (entry points of loops); (3) finding a suitable JML format
for representing proof obligations on UBs has required a consid-
erable number of iterations (defining ghost variables, introducing
assert constructs, etc.); (4) implement the JML assert construct in
KeY which was not supported hitherto. To express assertions which
have to hold before a method call but after parameter binding sup-
port for a second assertion construct invocAssert has been added.
Eclipse plugins for both the extended COSTA and KeY sys-
tems are available from http://pepm2011.hats-project.eu.
Source code for the tools (under GPL) is planned in the near future.
Table [I] shows some preliminary experiments using a set of
representative programs, available from the above website, which
include sorting algorithms, namely bubble sort (bubsort), insert sort
(inssort), and selection sort (selsort); a method to generate a Pascal
Triangle (pastri); simple (s/m) and nested loops (nlf). Columns
Tsizes Tinv, Trf, Tana and Tjn; show, respectively, the times
taken by COSTA to obtain the size relations, loop invariants, ranking
functions, the whole analysis (which includes the previous times)
and generate the JML annotations. Column Ty, shows the time
taken by KeY in order to verify the JML annotations generated

COSTA KeY
’ Bench } Teize [Timo [Ty [Tama [Tt 1% Nodes [Branches| T, H Total ‘
slm 22 20 26 | 112 4 3641 36 6700 6816
nlf 30 16 24 | 106 6 5665 37 2800 2912
bubsort 38 24 | 144 | 296 14 14890 230 57800 || 58110
inssort 30 12 | 46 142 6 9875 167 29300 || 29448
selsort 40 20 | 112| 232 8 12564 209 40700 || 40940
pastri 66 38 | 138 | 394 14 29723 337 110100 || 110508

Table 1. Statistics about the Analysis and Verification Process

by COSTA. As time measurements for Java are imprecise we state
in addition the number of nodes and branches of the generated
proof to provide some insight on the proof complexity. Column
Total shows the time taken by the whole process. All times are
measured in ms and were obtained using an Intel Core2 Duo P8700
at 2.53GHz with 4Gb of RAM running a Linux 2.6.32 (Ubuntu
Desktop). A notable result of our experiments is that KeY was able
to spot a bug in COSTA, as it failed to prove correct one invariant
which was incorrect. In addition, KeY could provide a concrete
counterexample that helped understand, locate and fix the bug,
which was related to a recently added feature of COSTA.

5. Conclusions and Future Work

We have demonstrated that automatic verification of the upper
bounds inferred by COSTA using KeY is feasible. Instead of veri-
fying the correctness of the underlying static analysis, we take the
alternative approach of verifying the correctness of their results.
Interestingly, this approach, though weaker in principle than ver-
ification of the analyzer, has advantages in the context of mobile
code. Following proof-carrying-code [6]] principles, code originat-
ing from an untrusted producer can be bundled together with the
proof generated by KeY for its declared resource consumption. This
way, the code consumer can check locally and automatically using
KeY whether the claimed resource guarantees are verified. As fu-
ture work, we plan to extend our approach to support programs that
manipulate data structures other than arrays.

Acknowledgments

This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging
Technologies under the IST-231620 HATS project, by TIN-2008-
05624 DOVES, by UCM-BSCH-GR58/08-910502 (GPD-UCM)
and S2009TIC-1465 PROMETIDOS project.

References

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanar-
dini. Termination Analysis of Java Bytecode. In FMOODS’08, volume
5051 of LNCS, pages 2—18. Springer, 2008.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper

Bounds in Static Cost Analysis. Journal of Automated Reasoning, 2010.
To appear.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Java Bytecode. In ESOP’07, volume 4421 of LNCS, pages
157-172. Springer, 2007.

[4] B. Beckert, R. Hihnle, and P. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 of LNCS.
Springer, 2006.

[5] K. Crary and S. Weirich. Resource Bound Certification. In POPL’05,
pages 184-198. ACM Press, 2000.

[6] G. Necula. Proof-Carrying Code. In POPL 1997. ACM Press, 1997.

[7] A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. In
TACAS 98, volume 1384 of LNCS, pages 151-166. Springer, 1998.

[8] A.Podelski and A. Rybalchenko. A Complete Method for the Synthesis
of Linear Ranking Functions. In VM CAI’04, LNCS. Springer, 2004.

http://pepm2011.hats-project.eu

	Introduction
	Inference of Upper Bounds in costa
	Main Components of an Upper Bound
	COSTA Claims as JML Annotations

	Verification of Upper Bounds using KeY
	Verification by Symbolic Execution
	Proof-Obligation for Verifying Upper Bounds
	Verification of Proof-Obligations

	Implementation and Experiments
	Conclusions and Future Work

