
ftc — Floating Precision Texture Compression

Philipp Klaus Krause

Albert-Ludwigs-Universität Freiburg
Email: krauseph@informatik.uni-freiburg.de

Abstract
This paper presents new fixed-rate texture compres-
sion systems for RGB and RGBA images, which
use variable precision differential encoding for the
color codewords, resulting in reduced compression
artifacts, in particular for smooth color variations.
Experiments using hundreds of textures show that
they achieve higher quality than the commonly used
S3TC at the same compression ratio or (for RGBA
images) similar quality to S3TC at twice the com-
pression ratio. In hardware implementations a large
part of decompression hardware can be shared with
existing common systems, minimizing the amount
of additional hardware needed.

1 Introduction
In computer graphics achieving high visual quality
typically requires high-resolution textures. How-
ever the desire for increasing texture resolution con-
flicts with the limited amount of graphics memory
and bandwidth available.

Memory bandwidth is the most important aspect
of graphics system performance today [1]. Most of
it is consumed by texture accesses; the common tri-
linear texture filtering accesses 8 texels during each
texture read. Increasing memory bandwidth is ex-
pensive. Increasing memory clock frequency re-
quires more expensive and power-consuming mem-
ory chips. Increasing the number of data lines often
results in more memory chips increasing cost and
power consumption, too. Especially for embedded
systems this may not be an option.

Texture compression can help to achieve higher
graphics quality with given memory and band-
width or reduce memory and bandwidth consump-
tion without degrading quality too much.

Texture compression systems must allow fast
random access to texels. A fixed compression ratio
eases address computations. Since computer graph-
ics systems are typically highly pipelined it is de-
sirable to keep the number of indirections during

texture lookup low. A texture compression system
should preserve the locality of reference to work
well with texture caches. Most texture compres-
sion systems achieve this by splitting the texture
into blocks of equal size, which are compressed in-
dependent of each other. The decompression algo-
rithm should be simple, fast, and easy to implement
in hardware. Generic image compression systems
like JPEG or PNG do not fulfill these requirements.

In many texture compression systems the com-
pressed texture contains color codewords, from
which the colors of individual texels are derived.
Often the quality of compressed textures is limited
by the precision of the color codewords if those
codewords are near to each other, but limited by
other aspects of the compression system when the
color codewords contain colors that are far from
each other in color space.

The approach presented herein, ftc, improves im-
age quality by using variable precision in the color
codewords, sacrificing precision when the code-
words are far apart to increase precision when the
coded colors are near: One color codeword is stored
directly, while the other one is stored as a signed
difference to the first. When the color codewords
are near to each other more bits are used for the first
one, while the difference is stored with less bits and
sign-extended before being added to the first code-
word to retrieve the second.

The new texture compression systems have been
designed to share most of the decompression hard-
ware with S3TC implementations. Since S3TC is
the standard texture compression system today it
will have to be supported for the foreseeable future.
Thus the additional hardware needed to support the
new texture compression systems in graphics hard-
ware is minimal.

Compared to the de-facto standard S3TC ftc pro-
vides superior image quality at the same compres-
sion ratio or comparable quality at twice the com-
pression ratio.

VMV 2009 M. Magnor, B. Rosenhahn, H. Theisel (Editors)



2 Related research
The earliest approaches were adaptions of generic
lossy compression systems to texture compression:
Indexed color and vector quantization, presented in
section 2.1. Since they suffered from low compres-
sion quality and an indirection during memory ac-
cess later texture compression systems that com-
press blocks of texels independently were devel-
oped; these systems are presented in section 2.2.
High dynamic range (HDR) texture compression
developed nearly a decade after the introduction of
high dynamic range digital imaging by Debevec
[10], [9]; these systems can be found in section
2.3. Though presented in an extra section these are
block-based, too.

Lossless texture compression systems [17],
which do not have a fixed compression ratio have
not found widespread use since they they require
relatively complex hardware to implement.

2.1 Indexed color and vector quantization
Probably the earliest image compression system
was indexed color. Research into color quantiza-
tion algorithms for RGB images was pioneered by
Heckbert [16]. A per-texture color palette is cho-
sen and texels are approximated by using the near-
est color from the palette.

Indexed color can be considered a special case of
vector quantization, first proposed for texture com-
pression by Beers et al. in [5]. For textures that
contain many repeating patterns vector quantization
is superior to texture compression systems discov-
ered later; see Wei [35] for modern research into
this topic.

2.2 Block-based compression systems
Block-based compression systems achieve locality
of reference by compressing blocks of texels inde-
pendently from each other.

An early block-based image compression sys-
tem is Block truncation coding (BTC), proposed by
Delp and Mitchell [11] for grayscale images. It has
been used for color images by encoding each color-
channel separately. Color Cell compression (CCC),
a generalization of BTC for color images, was pro-
posed by Campbell at al. [8]. It was the first ap-
proach to be considered for hardware implementa-
tion as a texture compression system by Knittel et
al. [18].

The most common texture compression system

today is S3TC [6]. For each block of 4 × 4 pixels
two color codewords are chosen; colors of the com-
pressed texture lie at discrete points on the line con-
necting the color codewords. A variation of S3TC
using a smaller block size has been presented by
Akenine-Möller and Ström [2].

Another approach that has found some use is
ETC, discovered by Ström et al. [29], an improve-
ment of their earlier proposal [31]. Each 4 × 4
texel block is divided into two subblocks, with a
color codewords stored for each subblock. Colors in
the compressed subblock lie at discrete points on a
line in the (1, 1, 1) direction through the subblock’s
color codeword, allowing for more luminance than
chrominance variation. A further improved, but
more complex variant has been proposed by Ström
et al. [30].

Pereberin’s [26] proposal compresses individual
blocks in a JPEG-like way.

There have been some efforts to optimize texture
compression systems for normal maps used in bump
mapping, which contain two components. The most
widespread approach is ATI’s 3Dc [3], where all
compressed normals lie in an axis-aligned rectan-
gle. Munkberg et al. [21] improved this by modi-
fying the compression system to allow rotations of
this rectangle and by introducing a new mode. It
was further improved by Munkberg et al. [23].

Fenney [13] proposed a texture compression sys-
tem, that stores two color codewords and modula-
tion data for each 4× 4 block of texels. During de-
compression the color codewords of 4 neighbouring
blocks are mixed using bilinear interpolation. The
results are then used similar to color codewords in
S3TC.

2.3 HDR texture compression
Recently there has been research into compression
of high dynamic range (HDR) textures. Munkberg
et al. [22] proposed a complex high-quality texture
compression system for HDR textures. In the same
year Roimela et al. [27] proposed a simpler system,
easier to implement in hardware but yielding lower
image quality. Roimela et al. [28] tried to combine
the advantages of both systems. The approach pro-
posed by Wang et al. [33] stores HDR and LDR
parts separately in S3TC(DXT5) textures. More re-
cent approaches based on S3TC were proposed by
Banterle et al. [4] and Sun et al. [32]. In DirectX 11
Microsoft will introduce new texture compression
systems, including a HDR one [15].



3 Error measures
Error measures quantify the difference between im-
ages, and thus give the compression error as dif-
ference between the compressed and uncompressed
texture.

The classical error measures are the mean ab-
solute error (MAE) and the mean squared error
(MSE) [14] along with the root mean squared er-
ror (RMSE). Let x and y be images with N pixels
xi and yi.

MAE(x, y) =
1

N

N−1X
i=0

|xi − yi|.

MSE(x, y) =
1

N

N−1X
i=0

(xi − yi)2.

RMSE(x, y) =
p

MSE(x, y).

Structural similarity (SSIM) corresponds well to
perceived visual quality [34]. Luminance l, con-
trast c and structure s are defined as functions of
the mean values µx, µy , standard deviations σx, σy
and correlation coefficient σxy:

l(x,y)=
1µxµy+C1
µ2
x+µ2

y+C1
,c(x,y)=

2σxσy+C2
σ2
x+σ2

y+C2
,s(x,y)=

σxy+C3
σxσy+C3

,

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ .

The exponents α, β, γ > 0 are used to adjust the
impact of each measurement on SSIM, the Ci im-
prove numerical stability.

Image dissimilarity (DSSIM) keeps the advan-
tages of SSIM, but is more similar to distance mea-
sures (nonegative, reflexive, symmetric) [20]:

D(x, y) =
1

SSIM(x,y)
− 1.

DSSIM, like SSIM is defined for single-channel
(e. g. grayscale) images only. The minimum over
all channels has been used when calculating SSIM
for multichannel images (e. g. [24]); here the maxi-
mum of the individual channel’s DSSIM values is
used as DSSIM for multichannel images. While
[20] sets the Ci to 0 this causes numerical insta-
bility, so the values from the SSIM reference imple-
mentation have been used in [19].

4 ftc

Most existing texture compression systems use a
small number of color codewords for each block,
generate more colors from these and then choose
one of the generated colors on a per-texel basis. Of-
ten the image quality is limited by the process that
generates more colors (and their limited number)
when the color codewords are far away from each
other in color space, while it is limited by the preci-
sion of the color codewords, when these are near to
each other in color space. The approaches to texture
compression in this section increase precision in the
color codewords when they are near to each other in
color space by sacrificing some precision when they
are far from each other.

Floating precision texture compression refers to
texture compression systems that use variable pre-
cision in color codewords, depending on how near
these color codewords are to each other in color
space: Instead of storing the color codewords in-
dependently with fixed precision only one is stored
directly, and the other is stored as a difference from
the first one. When the color codewords are near to
each other more bits are used for the first one, while
the difference is stored with less bits.

Section 4.1 presents ftc1, the ftc texture compres-
sion system for RGB images. The design goal of
ftc was to preserve the strengths of DXT1 while
improving image quality for textures where DXT1
does not perform so well. Section 4.2 proves that
ftc will never perform much worse than DXT1 for
a given texture. For real-world images and textures
the situation is even better: The textures where ftc
performs worse than DXT1 or ETC are few and the
difference is never noticeable, while there are tex-
tures where ftc performs a lot better than DXT1 and
ETC. These experimental results can be found in
section 4.4. Section 4.3 presents a ftc1 compression
algorithm.

Section 4.5 applies ftc to RGBA images, with the
first two approaches being similar to the way S3TC
compressed RGBA textures. The third presents a
more novel approach, which uses ftc’s strengths to
achieve a 8:1 compression ratio (common texture
compression systems for RGBA images achieve
4:1) while still providing competitive image quality.
Corresponding experimental results can be found in
section 4.6.



0

R G B e

29 30 31

32 63

Texel indices

9 10 2019

Fig. 1: ftc1 data layout

4.1 Compression of RGB images
The ftc texture compression system for RGB im-
ages, ftc1, has been designed to replace DXT1. It
offers better image quality than DXT1 at the same
compression ratio. In hardware implementations a
large part of the decompression hardware can be
shared with DXT1 decompression hardware. Com-
pression algorithms can be implemented to provide
sufficient speed for texture compression at runtime.

As in DXT1 two color codewords are stored, four
colors are obtained by interpolation between these
colors, for each texel one of the four colors is cho-
sen. The main difference is in the way the color
codewords are stored, with ftc1 offering higher pre-
cision when the color codewords are near to each
other in color space.

The ftc1 data layout can be seen in Figure 1:
There is a 2-bit exponent e and for each of the three
colors 10 bits are stored. The first (5+e) bits are the
component of the primary color p. The other (5−e)
bits are a difference value d that gives the compo-
nent of the secondary color relative to the primary
color.

To obtain the secondary color the difference
value d is sign-extended to (5+e) bits and added to
p (the wraparound in two’s complement arithmetic
avoids losing a bit of precision to the sign). Thus
depending on the distance of the color codewords
the effective precision can be anywhere from 5 to 8
bits. Both values are then expanded to the number
of bits used per color channel by the implementa-
tion (typically 8).

Let (rp, gp, bp) be the first color codeword ob-
tained, (rs, gs, bs) the second color codeword ob-
tained. Since their role is symmetric one bit of in-
formation can be encoded by their order. This is
used to choose the interpolation mode. Iff rs <
rp ∨ (rs = rp ∧ gs < gp) ∨ (rs = rp ∧ gs =
gp ∧ bs ≤ bp), then the alternative interpolation
mode is used. Algorithm 1 shows the pseudocode
of the method.

As can be seen in Figure 1 for each color channel
primary color and difference value are stored next to
each other. This results in fixed boundaries between

Input : A compressed block, 64 bit long,
consisting of base color codeword
(rb, gb, bb), color distance
(rd, gd, bd), 2-bit exponent e, 2-bit
texel indices i0...15

Output: A 4× 4 block of RGB texels t0...15
(rp, rs) := DecodeColor(rb, rd, e);
(gp, gs) := DecodeColor(gb, gd, e);
(bp, bs) := DecodeColor(bb, bd, e);
c0 := (rp, gp, bp);
c1 := (rs, gs, bs);
// Color interpolation:
if rs < rp ∨ (rs = rp ∧ gs < gp) ∨ (rs =
rp ∧ gs = gp ∧ bs ≤ bp) then

c2 := (c0 + c1)/2;
c3 := (0, 0, 0);

else
c2 := (2c0 + c1)/3;
c3 := (c0 + 2c1)/3;

for j = 0 . . . 15 do
tj := cij ;

Algorithm 1: ftc1 decompression algorithm

Input : A (5 + e)-bit base color b, a
(5− e)-bit distance d and the 2-bit
exponent e

Output: Two 8-bit colors p and s
// Expand b to 8 bits to get p:
p := (b << (3− e))|(b >> (2 + e ∗ 2));
// Calculate t by adding d to b:
t := (b+ sign extend(d))&(0xff >>
(3− e));
// Expand t to 8 bits to get s:
s := (t << (3− e))|(t >> (2 + e ∗ 2));

Algorithm 2: DecodeColor

the bits allocated to each color channel, easing hard-
ware implementation and parallelization.

In hardware implementations a stage that does
sign extension and addition is needed. The other
parts (interpolation, selection of texel color) can be
shared with a DXT1 implementation.

Figure 2 illustrates that this approach achieves
the design goal of improving compression quality
for textures with small local chrominance varia-
tions: In contrast to other compression systems ftc1
causes no visible compression artifacts in the im-
age gradient (while the example image features an
image gradient created to show the differences in
compression quality, image gradients are common
e. g. in watercolor paintings or sunsets).



Fig. 2: Image gradient: Original, DXT1 (color bands,
RMSE ≈ 1.55), ftc1 (nearly no visible artifacts,
RMSE ≈ 0.94), ETC (color bands with jagged edges,
RMSE ≈ 3.63)

4.2 Error bounds
Since S3TC is the most used texture compression
system it is important for new texture compression
systems to achieve high quality at textures where
S3TC does.

The following result shows that ftc1’s worst-case
error is bounded by S3TC’s error:

For a given RGB texture image with 8 bits
per channel let DMAE be the MAE of the ftc1-
compressed texture minus the MAE of the DXT1-
compressed texture. Let DRMSE be the analogue for
RMSE.

DMAE, DRMSE ≤
255

2(25 − 1)
≈ 4.11.

Proof: Since MAE and RMSE are metrics, by the
triangle inequality DMAE and DRMSE are bounded
by the maximum difference (in the respective met-
ric) of a DXT1-compressed texture to the nearest
ftc1-compressed texture. Let δ0, . . . , δ3 be the dif-
ferences in the 4 colors used in a block. The mid-
dle colors are obtained by interpolation from the
color codewords, thus δ1, δ2 ≤ max{δ0, δ3} holds.
Since ftc1 is able to exactly represent the red and
blue parts of color codewords used in DXT1 it is
sufficient to look at the green channel to calculate
these differences. There is only one case where
ftc1 cannot represent DXT1’s green values exactly:
When DXT1 used a precision of 6 bits, while ftc1
uses 5 bits. Thus the maximum δ0, δ3 is half of the
distance between ftc1’s green values:

δ0, δ3 ≤
255(25 − 1)−1

2
⇒DMAE≤ 1

N

PN−1
i=0 maxj{δj}≤maxj{δj}≤ 255

2(25−1)
,

DRMSE≤
q

1
N

PN−1
i=0 maxj{δ2j }≤

q
maxj{δ2j }≤

255
2(25−1)

.

4.3 Compression algorithm
While the basic structure of this ftc1 compression
Algorithm 3 is derived from the squish clusterfit al-

Input : A 4× 4 block of uncompressed texels
Output: FTC1-compressed block
Determine the principal component;
Order the texel colors by their projection onto
the principal component;
for all clusterings of texel colors into three or
four clusters preserving order do

Compute optimal endpoints;
EncodeEndpoints() at standard precision;
Keep solution if it results in the minimal
error encountered so far;
if Previous EncodeEndpoints() suggested
to try at reduced precision then

EncodeEndpoints() at reduced
precision;
Keep solution if it results in the
minimal error encountered so far;

Use the kept solution to encode the block;
Algorithm 3: ftc1 compression algorithm

gorithm [7] for DXT1 there are some important dif-
ferences.

As in squish the colors are first ordered by their
projection on the principal component, which can
be found by a principal component analysis [25].
Then for all clusterings of colors into three or four
clusters that preserve the ordering optimal line end-
points for placing clusters at the endpoints and
along the line at the middle or one and two thirds
are calculated and encoded. The clustering that re-
sults in the smallest (R)MSE along with the corre-
sponding endpoints is chosen.

Some R8G8B8 values that cannot be exactly rep-
resented using the maximum number of possible
bits can be represented better with less bits. There-
fore if the exponent was > 0, encoding with a
smaller exponent will be tried, too.

Since the compression algorithm operates on in-
dividual, independent blocks of 4×4 texels it can be
easily parallelized (e. g. for execution on the graph-
ics processing unit).

4.4 RGB image experiments
To compare ftc1 to existing texture compression
systems images falling into three categories have
been chosen and compressed with multiple texture
compression systems, measuring the resulting im-
age quality.
• Images typically used for this purpose in im-

age compression, e. g. lena and lorikeet.
• Images from the strategy game glest, repre-



Input : Two RGB colors and a choice
between standard and reduced
precision

Output: Encoded colors and a suggestion
whether to try again at reduced
precision

for e = 3 . . . 0 do
TryEncode(e);
if TryEncode() succeeded then

if precision = reduced ∨ e = 0 then
if e > 0 then

Suggest to try at reduced
precision, too.

Return encoding given by
TryEncode() above;

else
precision := standard;

Algorithm 4: EncodeEndpoints()
MAE RMSE DSSIM

Image ftc1 DXT1 ETC ftc1 DXT1 ETC ftc1 DXT1 ETC
lena 8.22 8.63 9.87 6.93 7.09 8.04 0.074 0.083 0.121
lorikeet 10.06 10.36 11.98 8.44 8.54 9.90 0.131 0.143 0.162
glest avg 9.41 9.75 10.28 7.27 7.46 8.00 0.061 0.066 0.074
scourge avg 8.19 8.48 8.90 6.78 6.90 7.49 0.043 0.049 0.101
total avg 8.33 8.64 9.09 6.85 6.98 7.58 0.045 0.052 0.098

Tab. 1: Some experimental results for RGB images

senting textures that are used in applications
that show a relatively large scene.

• Images from the role-playing game scourge,
representing textures that are used in a closeup
perspective.

Resulting in a total of 333 images.
ftc1 has been compared to two other texture com-

pression systems, DXT1 and ETC. DXT1 has been
chosen since it is still the most used compression
system for RGB images, ETC as an example of a
newer compression system.

For DXT1 squish has been used for compression,
for ftc the algorithm from section 4.3 above. For
ETC the program etcpack, available from Ericsson
[12] has been used. For all three texture compres-
sion systems parameters have been set to minimize
the (R)MSE.

Comparing ftc1 to DXT1 using RMSE or MAE
for most images ftc1 is better than DXT1; there
are few exceptions (82 out of 333 for MAE) and
for these exceptions the difference between DXT1
and ftc1 is small (max. 0.75 MAE, typ. 0.1 MAE
diff.). About as common as these exceptions are
cases where ftc1 performs a lot better (up to 1.68

0.134
0.143

0.162

lena
0.074

0.083
0.121

0.005

0.064

lorikeet

0.023

scourge/textures/snakesta

0.041
0.039

glest/winter_forest/surface2/surface2c
0.041

glest average
0.061

0.066
0.074

scourge average
0.043

0.049
0.101

total average
0.045

0.052
0.098

0 0.05 0.10 0.15

ftc1

DXT1

ETC

averages

single images

ftc1

DXT1

ETC

0 0.05 0.10 0.15

Fig. 3: DSSIM error for RGB images

MAE, typ. 1.0 MAE diff.) than DXT1. The dif-
ferences between ftc1 and ETC comparing RMSE
and MAE are bigger, but the general tendency is the
same.

Using DSSIM ftc1 yields better quality than
DXT1 and ETC for nearly all images. Comparing
ftc1 to DXT1 we see that only very rarely is ftc1’s
error bigger than DXT1’s (9 out of 333 images). For
seven of these images the difference in DSSIM is
only 0.001, for the other two it’s 0.002. On the other
hand for images where ftc1 is better than DXT1 the
difference goes as high as 0.036. Comparing ftc1
to ETC gives similar results: For 74 out of 333 im-
ages ETC yields better quality than ftc1. In the most
extreme case the difference is 0.040. On the other
hand for the images where ftc1 gives better quality
than ETC the difference goes as high as 0.965.

Table 1 shows some experimental results. In the
first two lines it can be seen that for the lena and
lorikeet images ftc1 performs better than DXT1 and
ETC. The next two lines show average values for
the images from glest and scourge, while the last
line gives an average over all 333 images. Figure 3
visualizes DSSIM results.

4.5 Compression of RGBA images
For transparency effects many images have an alpha
channel in addition to their RGB channels. Three
ftc variants for such images are discussed here.

A common use of the alpha channel is billboard-
ing, where a complex object (e. g. trees, bushes) is



0

R G B A

298 16 2423157 30 31

32 63

Texel indices

e

Fig. 4: ftc2 data layout

modelled using a small number of textured poly-
gons. Each texel is either part of the object and
opaque or not part of the object and fully transpar-
ent. Thus a single bit of precision in the alpha chan-
nel is sufficient. S3TC offers support for this in the
DXT1 format through the transparent black texels
in the alternative color interpolation mode.

ftc1 can support this in a similar way to DXT1:
In the alternative color interpolation mode make the
color c3 (in Algorithm 1) transparent. In transparent
texels a color used by nearby opaque texels is used:
c3 = (c0 + c1)/2. For premultiplied alpha a format
that uses black for transparent texels instead could
be designed.

For textures with a real alpha channel this ap-
proach is not suitable. One approach is to create
a RGBA format from ftc1 in a similar way to how
DXT5 has been created from DXT1: The ftc5 for-
mat consists of two 64-bit values per 4 × 4 texel
block, the first value containing the RGB chan-
nels and to be decompressed like ftc1, the second
value contains the alpha channel and is to be decom-
pressed like the alpha channel in DXT5. The advan-
tages of ftc1, Superior image quality and the reuse
of S3TC texture decompression hardware hold.

In ftc2 the precision of color codewords is re-
duced to (4 + e) bits per RGB channel (ftc1: (5 +
e)). The six bits no longer used for RGB channels
are used for the alpha channel resulting in a pre-
cision of (3 + e) bits in the alpha channel. The
resulting data layout can be seen in Figure 4, the
decompression in Algorithm 5. For premultiplied
alpha a format that sets the RGB channels of c3 to
black could be designed.

4.6 RGBA image experiments
For the RGBA variant of ftc1 and for ftc5 the ftc1
results from RGB images still hold. ftc2 has been
compared to DXT5 and DXT3.

For the comparison 38 RGBA textures from glest
and 11 diffuse maps from the Doom 3 demo have
been used. The experimental results can be seen
in table 2: both DXT5 and DXT3 yield better im-
age quality than ftc2. However the difference is not

Input : A compressed block, 64 bit long,
consisting of base color codeword
(rb, gb, bb, ab), color distance
(rd, gd, bd, ad), 2-bit exponent e,
2-bit texel indices i0...15

Output: A 4× 4 block of RGBA texels t0...15
(rp, rs) := DecodeColor2(rb, rd, e);
(gp, gs) := DecodeColor2(gb, gd, e);
(bp, bs) := DecodeColor2(bb, bd, e);
(ap, as) := DecodeAlpha(ab, ad, e);
c0 := (rp, gp, bp, ap);
c1 := (rs, gs, bs, as);
// Color interpolation:
if rs < rp ∨ rs = rp ∧ (gs < gp ∨ gs =
gp ∧ (bs < bp ∨ bs = bp ∧ as ≤ ap)) then

// Alternative color
interpolation mode

c2 := (c0 + c1)/2;
c3 := (c0 + c1)/2;
c3,3 := 0.0;

else
c2 := (2c0 + c1)/3;
c3 := (c0 + 2c1)/3;

for j = 0 . . . 15 do
tj := cij ;

Algorithm 5: ftc2 decompression algorithm

large and when measured by DSSIM, the error mea-
sure better matched to human perception, it is rather
small. Considering that ftc2 has twice the compres-
sion ratio of DXT5/DXT3 these results are excel-
lent, since for a given image size ftc2 will yield su-
perior quality due to the higher resolution possible
(Figure 6).

4.7 Limitations
ftc approximates all colors in the original image by
colors on a line in color space. Thus quality will be

Input : A (4 + e)-bit base color b, a
(4− e)-bit distance d and the 2-bit
exponent e

Output: Two 8-bit colors p and s
// Expand b to 8 bits to get p:
p := (b << (4− e))|(b >> (0 + e ∗ 2));
// Calculate t by adding d to b:
t := (b+ sign extend(d))&(0xff >>
(4− e));
// Expand t to 8 bits to get s:
s := (t << (4− e))|(t >> (0 + e ∗ 2));

Algorithm 6: DecodeColor2



Input : A (3 + e)-bit base alpha b, a
(3− e)-bit distance d and the 2-bit
exponent e

Output: Two 8-bit colors p and s
// Expand b to 8 bits to get p:
p := (b << (5− e))|((b << 2) >>
(e ∗ 2))|(b >> (1 + e ∗ 3));
// Calculate t by adding d to b:
t := (b+ sign extend(d))&(0xff >>
(5− e));
// Expand t to 8 bits to get s:
s := (t << (5− e))|((t << 2) >>
(2 + e ∗ 2))|(t >> (1 + e ∗ 3));

Algorithm 7: DecodeAlpha

MAE RMSE DSSIM
Image ftc1 DXT1 ETC ftc1 DXT1 ETC ftc1 DXT1 ETC
worker 9.86 8.57 8.70 9.89 8.35 8.38 0.037 0.032 0.032
sflgratetrans2 4.76 4.67 4.67 4.11 4.03 4.03 0.039 0.042 0.042
glest avg 12.41 10.14 10.14 11.33 9.05 9.19 0.060 0.043 0.044
doom3 avg 7.53 4.94 4.94 8.66 4.94 4.89 0.038 0.024 0.024
total avg 11.31 8.98 8.98 10.73 8.13 8.25 0.055 0.039 0.039

Tab. 2: Experimental results for RGBA images

0.037

0.039

0.042

glest/techunits/texture worker

0.042

doom3/base floor/sflgratetrans2

glest average
0.060

0.043
0.044

Doom 3 average
0.038

0.024
0.024

total average
0.055

0.039
0.039

0 0.05 0.10 0.15

ftc2

DXT5

DXT3

averages

single images

ftc2

DXT5

DXT3

0.032
0.032

0 0.05 0.10 0.15

Fig. 5: DSSIM error for RGBA images

Fig. 6: Part of a RGBA texture from a computer game,
rescaled to identical image size of 4 KB, transparent parts
shown in grey: Uncompressed, DXT3, DXT5, ftc2.

Fig. 7: Problematic block: Original, DXT1 (RMSE ≈
104.16), ftc1 (RMSE ≈ 104.21), ETC (RMSE ≈
146.05)

low for 4 × 4-texel blocks with colors that cannot
be well approximated by such a line. The most ob-
vious example of such a situation is three different
colors in a block, illustrated by Figure 7. However
such blocks are highly problematic for other texture
compression systems, too.

DXT3 and DXT5 can handle images with an al-
pha channel uncorrelated to the RGB channels bet-
ter than ftc2 (at the cost of a lower compression ra-
tio). Fortunately the alpha channel is often corre-
lated to the RGB channels in real-world textures,
e. g. transparent parts fading to black in images us-
ing premultiplied alpha.

5 Conclusion and Future Work
Texture compression schemes for both RGB and
RGBA images have been presented. Compared to
S3TC, the most common texture compression sys-
tem today, they offer better quality at the same com-
pression ratio or a higher compression ratio at com-
parable quality. Unlike other proposals the increase
in decoding hardware complexity for implementing
ftc is negligible.

The idea of floating precision texture compres-
sion can be applied to any texture compression sys-
tem that uses color codewords. This work focused
on creating systems similar to S3TC. It is likely
that PVRTC [13], which needs more memory ac-
cesses than S3TC, but can yield better quality at
the same compression ratio could be improved fur-
ther using ftc. The new block-based texture com-
pression systems to be introduced by Microsoft in
DirectX 11 have modes that sacrifice precision in
the color codewords to allow multiple lines in color
space [15]. ftc could improve quality by lessening
the impact of precision reduction. Other possibili-
ties include creating a normal map compression sys-
tem based on ftc or applying it to the various S3TC-
based HDR texture compression systems.

Acknowledgements
Parts of this work were supported by the DFG-funded
Graduierenkolleg Eingebettete Mikrosysteme. Thanks to PD Dr.
Ilia Polian for discussions.



References
[1] Timo Aila, Ville Miettinen, and Petri Nordlund. Delay

streams for graphics hardware. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 792–800, 2003.

[2] Tomas Akenine-Möller and Jacob Ström. Graphics for the
masses: a hardware rasterization architecture for mobile
phones. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,
pages 801–808, 2003.

[3] ATI Technologies. ATI Radeon X800 3Dc White
Paper, 2004. http://www.ati.com/products/
radeonx800/3DcWhitePaper.pdf.

[4] Francesco Banterle, Kurt Debattista, Patrick Ledda, and
Alan Chalmers. A GPU-friendly method for high dynamic
range texture compression using inverse tone mapping. In
Graphics Interface, ACM International Conference Proceed-
ing Series, pages 41–48, 2008.

[5] Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha.
Rendering from compressed textures. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 373–378, 1996.

[6] Pat Brown. EXT texture compression s3tc, 2007.
http://opengl.org/registry/specs/EXT/
texture_compression_s3tc.txt.

[7] Simon Brown. DXT Compression Techniques. 2006.
http://www.sjbrown.co.uk/?article=dxt.

[8] Graham Campbell, Thomas A. DeFanti, Jeff Frederiksen,
Stephen A. Joyce, and Lawrence A. Leske. Two bit/pixel
full color encoding. In SIGGRAPH ’86: Proceedings of the
13th annual conference on Computer graphics and interac-
tive techniques, pages 215–223, 1986.

[9] Paul Debevec. Rendering synthetic objects into real scenes:
bridging traditional and image-based graphics with global il-
lumination and high dynamic range photography. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 189–
198, 1998.

[10] Paul E. Debevec and Jitendra Malik. Recovering high dy-
namic range radiance maps from photographs. In SIG-
GRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 369–
378, 1997.

[11] E. Delp and Robert Mitchell. Image compression using
block truncation coding. IEEE Transactions on Communi-
cations, 27(9):1335–1342, 1979.

[12] Ericsson. Ericsson Texture Compression, 2007. http:
//www.ericsson.com/mobilityworld/sub/
open/technologies/texture_compression/
tools/etcpack.

[13] Simon Fenney. Texture compression using low-frequency
signal modulation. In HWWS ’03: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 84–91, 2003.

[14] Carl Friedrich Gauss. Theoria combinationis observationum
erroribus minimis obnoxiae. Commentationes Societatis Re-
giae Scientiarum Gottingensis recentiores, 5:33–90, 1823.

[15] Kevin Gee. Introduction to the Direct3D 11 Graph-
ics Pipeline, 2008. www.nvidia.com/content/
nvision2008/tech_presentations/Game_
Developer_Track/NVISION08-Direct3D_11_
Overview.pdf.

[16] Paul Heckbert. Color image quantization for frame buffer
display. SIGGRAPH Comput. Graph., 16(3):297–307, 1982.

[17] T. Inada and M. D. McCool. Compressed lossless texture
representation and caching. In GH ’06: Proceedings of the
21st ACM SIGGRAPH/Eurographics symposium on Graph-
ics hardware, pages 111–120, 2006.

[18] G. Knittel, A. Schilling, A. Kugler, and W. Straßer. Hard-
ware for Superior Texture Performance. In Computers &
Graphics 20, pages 475–481, 1996.

[19] Philipp Klaus Krause. C++ implementation of DSSIM.
http://colecovision.eu/graphics/DSSIM/.

[20] A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull. Struc-
tural similarity-based object tracking in video sequences. In
9th International Conference on Information Fusion, pages
1–6, 2006.

[21] Jacob Munkberg, Tomas Akenine-Möller, and Jacob Ström.
High quality normal map compression. In GH ’06: Proceed-
ings of the 21st ACM SIGGRAPH/Eurographics symposium
on Graphics hardware, pages 95–102, 2006.

[22] Jacob Munkberg, Petrik Clarberg, Jon Hasselgren, and
Tomas Akenine-Möller. High dynamic range texture com-
pression for graphics hardware. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, pages 698–706, 2006.

[23] Jacob Munkberg, Ola Olsson, Jacob Ström, and Tomas
Akenine-Möller. Tight frame normal map compres-
sion. In GH ’07: Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hard-
ware, pages 37–40, 2007.

[24] Damian Nowroth, Ilia Polian, and Bernd Becker. A study of
cognitive resilience in a JPEG compressor. In IEEE Inter-
national Conference on Dependable Systems and Networks
With FTCS and DCC, pages 32–41, 2008.

[25] Karl Pearson. On lines and planes of closest fit to systems of
points in space. The London, Edinburgh and Dublin Philo-
sophical Magazine and Journal, 6:559–572, 1901.

[26] Anton V. Pereberin. Hierarchical approach for texture com-
pression. In Proceedings of GraphiCon ’99, pages 195–199,
1999.

[27] Kimmo Roimela, Tomi Aarnio, and Joonas Itäranta. High
dynamic range texture compression. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, pages 707–712, 2006.

[28] Kimmo Roimela, Tomi Aarnio, and Joonas Itäranta. Efficient
high dynamic range texture compression. In SI3D ’08: Pro-
ceedings of the 2008 symposium on Interactive 3D graphics
and games, pages 207–214, 2008.

[29] Jacob Ström and Tomas Akenine-Möller. iPACKMAN:
high-quality, low-complexity texture compression for mo-
bile phones. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 63–70, 2005.

[30] Jacob Ström and Martin Pettersson. ETC2: texture compres-
sion using invalid combinations. In GH ’07: Proceedings
of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 49–54, 2007.

[31] Jacob Ström and Tomas Akenine-Möller. Pack-
man: Texture compression for mobile phones, 2004.
http://www.cs.lth.se/home/Tomas_Akenine_
Moller/pubs/packman_sketch.pdf.

[32] Wen Sun, Yan Lu, Feng Wu, and Shipeng Li. DHTC: an
effective DXTC-based HDR texture compression scheme.
In GH ’08: Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hard-
ware, pages 85–94, 2008.

[33] Lvdi Wang, Xi Wang, Peter-Pike Sloan, Li-Yi Wei, Xin
Tong, and Baining Guo. Rendering from compressed high
dynamic range textures on programmable graphics hard-
ware. In I3D ’07: Proceedings of the 2007 symposium on
Interactive 3D graphics and games, pages 17–24, 2007.

[34] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. Image Processing, IEEE Transactions
on, 13(4):600–612, 2004.

[35] Li-Yi Wei. Tile-based texture mapping on graphics hard-
ware. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 55–63, 2004.

http://www.ati.com/products/radeonx800/3DcWhitePaper.pdf
http://www.ati.com/products/radeonx800/3DcWhitePaper.pdf
http://opengl.org/registry/specs/EXT/texture_compression_s3tc.txt
http://opengl.org/registry/specs/EXT/texture_compression_s3tc.txt
http://www.sjbrown.co.uk/?article=dxt
http://www.ericsson.com/mobilityworld/sub/open/technologies/texture_compression/tools/etcpack
http://www.ericsson.com/mobilityworld/sub/open/technologies/texture_compression/tools/etcpack
http://www.ericsson.com/mobilityworld/sub/open/technologies/texture_compression/tools/etcpack
http://www.ericsson.com/mobilityworld/sub/open/technologies/texture_compression/tools/etcpack
www.nvidia.com/content/nvision2008/tech_presentations/Game_Developer_Track/NVISION08-Direct3D_11_Overview.pdf
www.nvidia.com/content/nvision2008/tech_presentations/Game_Developer_Track/NVISION08-Direct3D_11_Overview.pdf
www.nvidia.com/content/nvision2008/tech_presentations/Game_Developer_Track/NVISION08-Direct3D_11_Overview.pdf
www.nvidia.com/content/nvision2008/tech_presentations/Game_Developer_Track/NVISION08-Direct3D_11_Overview.pdf
http://colecovision.eu/graphics/DSSIM/
http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/packman_sketch.pdf
http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/packman_sketch.pdf

	Introduction
	Related research
	Indexed color and vector quantization
	Block-based compression systems
	HDR texture compression

	Error measures
	ftc
	Compression of RGB images
	Error bounds
	Compression algorithm
	RGB image experiments
	Compression of RGBA images
	RGBA image experiments
	Limitations

	Conclusion and Future Work

