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Abstract 

Non-Volatile Memory (NVM) is an emerging 

memory technology that combines the best 

properties of today’s hard disks and today’s main 

memory by combining non-volatility, high 

density, high speed, and byte addressability. This 

provides an opportunity to redesign systems and 

their software stacks to improve performance and 

to reduce the system and software complexity. 

Present-day database systems are designed and 

optimized for traditional disks and deep memory 

hierarchies. This makes them very complex 

because they have to handle varying levels of 

storage latencies, from CPU caches to hard disks. 

Our intention is to build a prototype storage 

engine optimized for NVM to take advantage of 

the collapsed memory hierarchy, and to develop 

this storage engine in an incremental way. In this 

paper, we discuss the optimizations for the data 

access module. We modified the B-tree access 

module of an open source storage engine, which 

reduced the lock contention by 99.6%, i.e., by a 

factor of 273. 

1. Introduction 

At its heart, a typical RDBMS has five main components 

– Client communication Manager, Process manager, 

Relational query processor, Transactional storage 

manager and Shared components and Utilities [HSH07]. 

Transactional storage manager typically encompasses 

four deeply intertwined components – Lock manager, log 

manager, buffer pool and access methods [HSH07]. Our 

intention is to develop novel technologies to build a 

transaction storage manager, for the NVM environment in 

a phased manner. We will call transactional storage 

manager as transactional storage engine in the remainder 

of this document. 

 

Non Volatile Memory (NVM) is an emerging memory 

technology that combines best properties of today’s hard 

disks and main memory and offers non-volatility, high 

speed and byte addressability.  

 

We have a significant opportunity to redesign 

transactional storage engine modules for NVM and 

improve performance substantially. We aim to develop 

such an optimized storage system by redesigning these 

modules one by one in a phased manner. In this paper, we 

focus on optimizing the Access methods.  

 

B-tree lookup and latching are the two significant 

contributors for Access method performance. Latching 

was not seen as a major overhead earlier because IO 

overheads masked it in traditional disk based database 

systems. Once IO overheads are eliminated, latching 

becomes a significant overhead. As shown in figure 1, 
Latching accounts for about 14% of the instructions, and 

is primarily important in the create record and B-tree 

lookup portions of the transaction [HAMS08]. Hence 

minimizing latch contention can significantly improve the 

concurrency and system performance. 
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Figure 1 

 

Foster B-trees [GKK12] are a new variant of B-trees that 

combine advantages of prior B-tree variants optimized for 

multi-core processors and modern memory hierarchies 

with flash storage and nonvolatile memory. Foster B-trees 

reduces the number of latches and the latch duration. 

 

In our work, we demonstrate the applicability of Foster B-

trees to a popular database management system. We have 

chosen the open source DBMS MariaDB and the 

associated storage engine XtraDB, which are forks of 

MySQL DBMS and InnoDB storage engine. We 

integrated Foster B-trees with XtraDB. We optimized 

XtraDB B-tree access methods and latching to leverage 

the Foster B-tree design principles.  

 

To optimize the performance, we replace the multi-pass 

insert algorithm in XtraDB with a single-pass algorithm. 

We eliminate the “pessimistic insert” method and 

minimize data redistribution during tree splits. We also 

implement U-latch to support optimistic adoption of the 

foster child. 

 

The performance evaluation shows a significant reduction 

in latch contentions and a good improvement in response 

time.  

 

When the entire database is available in memory, the 

behavior exhibited by the storage engine can be compared 

with the one running on a system built with NVM. This 

makes the results observed in this experiment applicable 

for NVM. 

1.1 Structure of this document 

The remainder of this paper is organized as follows. In 

section 2, we describe the B-tree implementation in 

XtraDB and Foster B-tree data structures. In section 3, we 

discuss how Foster B-tree was integrated with XtraDB 

and highlight the unique contributions we made. In 

section 4, we describe how the performance improvement 

was evaluated and conclude the work in section 5. 

2. B-tree Data Structures 

2.1 B-tree implementation in XtraDB 

This description is based on our analysis of the XtraDB 

code. To the best of our knowledge, this has not been 

documented in any publicly available paper. 

 

XtraDB storage engine uses modified B
link

 trees [YB87] 

to store the data. In XtraDB storage engine, the nodes of 

the B
link

 tree are often referred as pages, and we follow the 

same notation in this document. User records are stored 

only at the leaf pages. Intermediate pages and the root 

page store several special records known as “node 

pointers”. Each node pointer points to a child of the page. 

The “node pointers” are built from the value of the 

indexing “key” of the given index/table and the 
identification number of its child page. The identification 

number associated with a page is referred as “page 

number”. At any given level, the pages are connected to 

the neighboring pages using “next” and “previous” 

pointers. The leaf pages are always considered as “level 

0” and the level increases towards the root page. XtraDB 

storage engine ensures the page number associated with a 

root page of any B
link

 tree remains intact as long as the 

tree exists. Figure 2 illustrates a simplified representation 

of the B
link

 tree used in XtraDB. 

 

Figure 2 

 

Within a page, records are stored as a linked list in sorted 

order. To reduce the access time, XtraDB uses a shortcut 

pointer, which is referred as a “directory slot”. The offset 

of the start of every sixth record in the linked list is stored 

in one directory slot, and the number of directory slots 

increases as more records are inserted into the page. 

Directory slots are built from the values of the indexing 

keys and the offsets to the corresponding records. Figure 

3 provides the graphical representation of “directory slot”. 



 

Figure 4 

In XtraDB, each page is 16KB in size. Out of this, 128 

bytes are used for bookkeeping and the remaining space is 

available for storing records. The user record grows 

towards the higher memory address whereas the 

“directory slots” grow towards the lower memory 

addresses. Figure 4 illustrates the page layout. 

 

Figure 4 

Tree traversal in XtraDB starts at the root page and then, 

goes down to the leaf level. If a search key is available, 

then it uses the given search key to identify the child page 

and repeats the same operation until the cursor reaches the 

leaf page. In case of tree traversal without a search key, 

the cursor will be positioned at the left most leaf page for 

forward scan and right most leaf page for reverse scan. 

Once the cursor is positioned at a leaf page, XtraDB uses 

the “next” (or “previous”) pointers to move to the next (or 

previous) page and read the records. Because of the “next” 

and “previous” pointers in a page, a minimum of four 

pages (current page, new page, next/previous page and the 

parent page) must be latched in case of a page split.  

 

In XtraDB, the tree modifications are performed under an 

x-latch on the index data structure. This can be considered 

as a tree latch, which blocks other concurrent accesses of 

the tree. The x-latch on the index becomes a bottleneck in 

the case of highly concurrent tree modifications. The 

existing XtraDB implementation holds latches on index 

data structure, parent page, current page, new page and 

next or previous page during a page spilt. 

2.2 Foster B-trees 

Foster B-trees [GKK12] are a new variant of B-trees that 

combine advantages of prior B-tree variants optimized for 

multi-core processors and modern memory hierarchies 

with flash storage and nonvolatile memory. The defining 

properties of Foster B-trees are a single incoming pointer 

per node at all times, fence keys in every node, and 

structural operations similar to Blink trees. Single incoming 

pointer to a node reduces the number of latches required 

in case of node split, which is ideal for multi-core 

architectures. Figure 5 provides the pictorial 

representation of a Foster B-tree.  

 

Figure 5 

3. Foster B-tree implementation in XtraDB 

3.1 Data structure changes for implementing 

Foster B-tree 

We redesigned the Blink tree data structures of XtraDB to 

implement Foster B-tree. Since Foster B-trees do not need 

next and previous pointers, we removed these from the 

existing B-tree structure and added new members to store 

fence keys and foster child pointers. Figure 6 illustrates 

the new XtraDB page layout. 

 
The pointers to fence keys are kept at a fixed location 

(x+0x3FF0 and x+0x3FF2 where x is the start address of 

the page) for quicker access, but the actual fence key can 

reside anywhere in the user record space. It should be 

noted that, the fence keys are not part of the user record 

chain. New methods are implemented to access fence 

keys. Fence key pointer initialized to 0 indicates +/- 

infinity as fence key. The fence keys are built from the 

values of indexing key.  

 



 

 
Figure 6 

 

To ensure consistency of new storage engine, every page 

must satisfy two conditions. The first condition defines 

the valid range for key values of user records for any 

given page. The valid key values must be less than the 

high fence key and must be greater than or equal to the 

low fence key. The second condition defines the relation 

between the fence keys of two consecutive pages at any 

given level. The high fence key of the left page must be 

equal to the low fence key of the right page. 

3.2 Algorithm changes for reducing latch 

contention 

To gain the benefits of Foster B-tree and NVM, some of 

the basic algorithms are redesigned and a few new 

algorithms are added. We redesigned the B-tree 

modification algorithm and added new algorithms for tree 

traversal. 

 

The traditional insert algorithm is based on a multi-pass 

approach. This approach works well with the current 

hardware and software stack. With Foster B trees, a single 

pass is enough. Table 1 shows a high-level comparison 

between the old algorithm and the new algorithm. The 

new algorithm is built into XtraDB’s “optimistic insert” 

method. 

 

The flowcharts of the original XtraDB algorithm and the 

new algorithm are shown in the Appendix. Flowchart 1 

represents original algorithm used by XtraDB and 

Flowchart 2 represents new algorithm. 

 

In case of traditional XtraDB, the “next” and “previous” 

pointers are used to move the cursor from one page to 

another after control reaches the desired level. Foster B-

tree has removed the “next” and previous” pointers and 

the tree traversal always start from the root page. We 

move from a page to the next using the value of fence 

keys. High fence key of the current page is used to 

identify the next page and Low fence is used to identify 

the previous page. 

 

In the future, the need to start traversal from the root page 

can be eliminated by using page caching. With this 

technique, to move to the next or the previous page, we 

need to move only one level up in the tree. The page 

cache will be invalidated in the case of a structural change 

to the B-tree and the traversal must start from the root 

again. 

 

 
Table 1 

S.I XtraDB XtraDB + Foster B 

tree 

1 Multi-pass approach 

(optimistic[1] insert 

followed by 

pessimistic[2] insert) 

Single-pass approach 

(only optimistic insert) 

2 Multiple tree traversal Single tree traversal 

3 Holds x-latch on the 

index for a long 

duration. 

Holds x-latch on the 

index for a shorter 

duration. The x-latch on 

the index is held only 

during the foster child 

adoption. 

4 In case of page split, a 

minimum of four 

nodes are x-latched.  

In case of page split, a 

maximum of two nodes 

are x-latched. 

5 In case of page split, 

the tree structure 

changes 

In case of page split, 

foster child is created 

and attached to current 

page.  

6 New page is attached 

to the parent page 

during the page split. 

Foster child is adopted 

during tree traversal. 

1. Optimistic insert assumes the new record will fit into the 
page when it inserts it. If this fails, storage engine will try the 

second attempt using pessimistic insert algorithm. 

2. Pessimistic insert will anticipate a page split and handle it 
appropriately. 

 

To gain the benefits of Foster B-tree in XtraDB, we 

redesigned the B-tree modification algorithm and added 

new algorithms for tree traversal. For inserting new 

records, XtraDB first attempts an “optimistic insert” 

algorithm. If this fails, it retries with a  “pessimistic insert” 

algorithm. This multi-pass approach degrades the 

performance and is not in alignment with design 



principles of Foster B-trees. To improve the performance, 

we eliminated “pessimistic insert” method and redesigned 

XtraDB “optimistic insert” to handle page splits. 

The “pessimistic insert” method is used whenever the 

insert results in page split. The “pessimistic insert” splits 

the page, moves half of the records to the new page and 

then, inserts the new record into the appropriate page. 

Data redistribution happens in all cases except when the 

new record is positioned at the end of the current page. 

XtraDB holds an x-latch on the index for the entire 

duration of the “pessimistic insert”. We added new 

algorithms to the “optimistic insert” method to handle 

page splits and data redistribution. If the new record 

cannot fit into the current page, then we create a foster-

child and attach it to the current page while holding an x-

latch on the foster-parent and foster-child. This reduces 

the number of x-latches acquired and eliminates the x-

latch on the index during inserts. Our new algorithm 

always tries to minimize the data movement. We achieved 

this by not always splitting the page in the middle – 

instead the page is split optimally based on position of the 

new record and size of fence keys. Table 1 lists the 

changes between the existing algorithm and the new 

algorithm. 

We attempt foster adoption during tree traversal and 

implement opportunistic adoption and forced adoption 

algorithms to optimize the overall performance. During 

the tree traversal, we perform opportunistic adoption if an 

x-latch can be acquired on the index in non-blocking 

mode. If the attempt to acquire x-latch on the index 

without blocking fails, foster adoption does not occur. 

This will eventually lead to the formation of foster chain. 

Once foster chain length exceeds the pre-defined 

threshold, we perform forced foster adoption. During 

forced foster adoption, we block until we acquire the x-

latch on the index. 

We implemented u-latch, update intended latch, to 

support opportunistic foster adoption. A successful u-latch 

elevates an existing s-latch on the index to an x-latch. 

During tree traversal u-latch is attempted in non-blocking 

mode. If it is successful, opportunistic foster adoption is 

performed. During foster adoption only the parent and 

foster child pages are x-latched. This approach reduces 

the number of x-latches acquired and the duration of x-

latch on the index significantly. 

4. Performance evaluation 

We evaluated the performance improvements of XtraDB 

with Foster B-tree Access method in three phases. In the 

first phase, we measured the reduction in the number of x-

latches acquired during the concurrent random inserts. In 

the second phase, we measured the throughput for a single 

worker thread inserting random records and, we evaluated 

the throughput improvement for concurrent random 

inserts in the last phase. 

In XtraDB, only INSERT operations cause page splits and 

foster child creation. In case of delete operations, XtraDB 

sets a special flag to mark the records as deleted and does 

not change the tree structure immediately. Also, the 

DELETE algorithm for a Foster B-tree acquires the same 

number of latches as the algorithm for DELETE on a 

regular B-tree. So we focused on just INSERT operations 

for our performance measurements. No standard 

benchmark is available for measuring the insert 

performance alone for a RDBMS; so we developed a 

multi-threaded application to perform random inserts and 

to measure the elapsed time. We instrumented the XtraDB 

code to monitor the latches acquired during database 

operations. 

We evaluated the performance on a system with 8 Intel 

cores and 16GB RAM running SuSE Linux 2.6.32. We 

used MariaDB 5.2.7 release for our evaluation. The test 

application creates a table with a record length of 80 bytes. 

The data types of the columns or primary key do not have 

any effect on the number of x-latches. We chose an 

integer column as the primary key to make dynamic data 

generation easy. 

To evaluate latch contention, we loaded the table with 1 

million records and then, randomly inserted 1 million 

records each from 16 concurrent threads. The seed values 

for the random number generator were chosen carefully to 

minimize the chances of generating non-unique values as 

keys. If any non-unique keys were generated, the worker 

threads ignore that record and continue with the rest of the 

records. 

As shown in table 2 and figure 7, Foster B-trees reduce 

the latch contentions during inserts by 99.6%, i.e., by a 

factor of 273.  

Table 2 

   XtraDB FBT Improvement  

Number of 

Records  16987225  16987225     

#X-Latch 

(index + B-

tree pages)  884321  3231 99.6%  

 



 

Figure 7 

To evaluate the impact of the new tree traversal 

algorithms we introduced, we ran the same application 

with one worker thread to insert 1 million, 2 million, 4 

million, 8 million and 16 million records. Since there is 

no latch contention in this experiment, we expected the 

performance of the Foster B-tree to be slightly worse than 

the default implementation because of the increased 

overheads while traversing and maintaining the tree. As 

shown in table 3 and figure 8, Foster B-trees performed 

on par with default XtraDB. This shows the overheads 

introduced by Foster B-tree are negligible. 

Table 3 

No of 
Records 
(million) 

Average Time 
(s) (XtraDB) 

Average Time 
(s) (FBT) 

1 76 73 

2 151 151 

4 299 302 

8 617 606 

16 1219 1214 
 

 

Figure 8 

To evaluate the performance improvement in throughput, 

we ran the same application with 16, 32 and 64 concurrent 

connections. Each worker thread inserted 1 million 

random records. As shown in Table 4 and Figure 9, Foster 

B-trees perform better with more number of concurrent 

connections. The performance improves linearly with 

increasing the number of threads and with 64 concurrent 

connections, it performs 20% better than default XtraDB. 

Table 4 

No of  
Connec

tions 

Average 
Time in 
seconds 
(XtraDB) 

Average 
Time in 
seconds 

(FBT) 

Improvement 
in % 

16 435 433 0.461894 

32 441 406 8.62069 

64 461 385 19.74026 
 

 

Figure 9 

5. Conclusions 

We have successfully demonstrated the benefits of Foster 

B-tree using MariaDB/XtraDB DMBS. We have 

integrated Foster B-tree with XtraDB and redesigned its 

algorithms to reap the benefits of Foster B-tree to improve 

the performance. We have redesigned the XtraDB page 

layout to have only one incoming pointer and removed the 

next and previous pointer. We have eliminated the 

pessimistic-inserts and implemented new algorithms to 

support “optimistic insert” to handle page splits. We have 

implemented an advanced approach to adopt foster 

children using U-latch. We have instrumented the XtraDB 

storage engine to monitor the number of latches acquired 

during database operations. We have evaluated the 

performance on an environment where the entire data set 

fit into memory and have recorded a significant reduction 



in latch contention on B-tree data structures.  

The results show the Foster B-tree is an ideal Access 

method for transactional storage engines designed for a 

NVM that supports byte addressing. 
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Flowchart 1 
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Flowchart 2 

 


