
127

RootSet: A Distributed Trust­based Knowledge
Representation Framework For Collaborative Data

Exchange
(Demo Paper)

Chinmay Jog
International Institute of
Information Technology

Bangalore,
26/C, Electronics City,

Bangalore India

jog.chinmay@iiitb.org

Sweety Agrawal
International Institute of
Information Technology

Bangalore,
26/C, Electronics City,

Bangalore India

sweety.v.agrawal@iiitb.org

Srinath Srinivasa
International Institute of
Information Technology

Bangalore,
26/C, Electronics City,

Bangalore India

sri@iiitb.ac.in

ABSTRACT

In a collaborative setting, several organizations need to ex-
change data with each other. Trust management is a ma-
jor hindrance for inter-organizational collaborations. Orga-
nizations show reluctance towards replication of data out-
side their own datacenters. This work demonstrates a
distributed trust-based platform for data exchange, called
RootSet, among several collaborating organizations. Root-
Set enables organizations to share data without replication.
It provides credential-based access control to manage data
access by users throughout the platform using access rules.
This work showcases several features of this tool.

Keywords: Knowledge Representation, Collaborative
Data Exchange, Trust Management, Distributed Knowledge
Management

1. INTRODUCTION
Collaborations between organizations frequently occur in

domains like healthcare, agriculture and governance to carry
out variety of tasks. Most of these collaborations involve
trust-based data exchange. While some collaborations may
use open datasets, others may use sensitive, private informa-
tion, especially in case of healthcare projects. TRUMP1 is
one such multi-organization healthcare project, which aims
to build a trusted mobile platform for self-management of
chronic illness in rural areas. This initiative requires to min-
imize the risks in sharing private information like health
records[3]. In such cases, collaborators may wish to expose
only specific information that is related to the collabora-
tion. As in case of TRUMP, collaborators may also wish to

1http://www.trump-india-uk.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 20th International Conference on Management of Data (COMAD),

17th­19th Dec 2014 at Hyderabad, India.
Copyright c©2014 Computer Society of India (CSI).

restrict the access to only some other collaborators. Also,
issues like legal compliance and data sensitivity may put
restrictions on physical location of the data, hindering col-
laboration efforts. For example, government organizations
are typically reluctant to replicate data outside the jurisdic-
tion of their nation. This problem of selective data sharing
without replicating data, is a very big impediment in form-
ing many collaborations.

In this paper, we present a distributed trust-based knowl-
edge management framework called RootSet, that enables
users to share data selectively, in a collaborative setting.
RootSet is based on a knowledge model called Many Worlds
on a Frame(MWF)[6], which allows users to store data in-
side a semantic boundary called the world. Data access
is controlled by defining rules on the world. In collabora-
tions, all the collaborators can have their own MWF servers,
which are interconnected to form a distributed MWF grid.
Using it, the collaborators can share their data with other
collaborators, without replicating it out of their data cen-
ters. Many cloud based integrity management solutions like
TrustStore[8] provide a trust-layer over the existing cloud
storage. These cloud storage solutions may not be able to
address the restrictions based on jurisdictions. Therefore,
these may still be unusable for organizations that have a
binding on the physical locations of the datacenters. Root-
Set addresses this problem by distributing the MWF servers
at the datacenters of collaborators.

The rest of this paper is organized as follows – section 2
describes the RootSet framework, followed by its features in
section 3. Section 4 discusses the implementation in brief,
and section 5 discusses the conclusions and future work.

2. ROOTSET
RootSet has three components – The core MWF model,

the grid manager, and the access manager. MWF is the
context-aware knowledge modelling framework. The grid
manager is responsible for managing the MWF grid. The
access manager is responsible for managing the credentials
based access control. In this section, we briefly discuss about
each of these components.

128

2.1 Many Worlds on a Frame(MWF)
Modelling context-sensitive knowledge has been a chal-

lenge for knowledge representation frameworks[6]. The
MWF model addresses this problem by providing semantic
boundary called world, that contains knowledge elements be-
longing to that semantic context. Each world has a type and
a location. The worlds are semantically interconnected to
each other using these type and location hierarchies. These
semantic interconnections form the Frame in MWF. The
type and the location relationships are transitive, reflex-
ive and anti-symmetric. The type hierarchy captures the
generalization-specialization semantics. Through the type
hierarchy, worlds can inherit properties. The location hier-
archy captures the containment semantics. Thus, through
the location hierarchy, container worlds impose privileges
and control access over all the contained worlds.

Roles and Associations. In MWF, worlds host data in
form of roles, and associations between roles. The roles are
played by role-players, which are other worlds. Associations
represent the relationships between the roles. In figure 1,
Person, Subject and College are worlds. Person plays a role
of Student and Faculty Member in College. Student and
Faculty member roles are associated with each other by the
Teaches association. Roles and associations have attributes
of their own, which form the schema or the structure of a
world. The role players and the associations between them
form the data.

2.2 Distributed MWF
The distributed MWF is a conglomeration of many stand-

alone MWF servers, that are fused together to form a sin-
gle frame that can span over the network. The distributed
MWF is useful especially in collaborative settings, where
all the collaborators can host their data on their own MWF
servers. The MWF servers can then come together to form a
grid, where each collaborator can decide on their own access
rules to allow users access to their data.

Figure 2: An MWF Grid

Pods and the MWF Grid. An MWF server is called a Pod.
Each pod ships with its own database, and can connect to a
grid. A grid is a set of MWF pods which are fused together
in one Frame. In the grid, one pod acts as the seed pod.
All other pods connect to the grid using the URI of the seed
pod. This is depicted using figure 2. Other than joining
the grid, no other communication needs to go through the
seed pod. Therefore, the seed pod does not function as a
bottleneck or a single point of failure for the grid.

Home location and Proxy of a World. In a collabora-
tion, worlds may be extended from or placed in other worlds

which are defined on other pods in the grid. In such sce-
narios, to avoid frequent accesses to the remotely located
worlds, we may need to cache some information related to
the world locally. This locally stored information represents
the proxy of the world. It is a read-only copy of the world,
in which the structure and the privilege information are
cached. It does not cache any data that is stored in the
world. The home location of the world is where the world
can be edited. Any changes to the structure can only be
performed at the home location. Any changes in the type
or location hierarchy can also be done at the home location.
While we can extend a world type from its proxy, we cannot
create a new proxy for an existing proxy. A world has a
unique home location, but may have any number of proxies.
However, each pod may have at most one proxy of a given
world.

Consistency in Distributed MWF. RootSet guarantees
causal consistency on the data. Causal consistency is de-
fined over all the world structures as well as percolation of
privileges across the grid of MWF servers. By causal con-
sistency, we mean that if an event e has occurred before
an event e′ on a world w, then all the proxies of the world
w will also reflect the same consequence in the same order.
For example, if two users u1 and u2 simultaneously modify a
world w, and u1 revokes privilege of u2 to change the world
before u2 commits the change, then only changes made by
u1 are committed. The changes made by user u2 are not
committed. All proxies of world w are notified of both the
changes, and the changes reflect in the same order at all the
proxies.

2.3 Credentials based access control
Traditionally, trust in terms of data exchange has been

modelled on the basis of access control models. Various ac-
cess control mechanisms including identity-based access[1,
5, 7], role-based access[4], credentials-based access[6] have
been discussed in literature. RootSet provides an access
control mechanism based on the roles played by a user in
different worlds[2]. A detailed comparison between creden-
tials based access control with other access control mech-
anisms is given in [2]. The credentials-based access con-
trol is based on a set of privilege rules[2]. The creden-
tials of a user are the set of roles played by the user in
different worlds. An access rule is defined using a set of
credentials which when satisfied grants a privilege package.
The privilege rules are of the form PrivilegePackagei ←

r1(t1, l1), r2(t2, l2), . . . , rn(tn, ln), where ri is a role defined
in a world of type ti and located in world li. A user satisfies
a privilege rule when his participation set includes all the
ri(ti, li) tuples for the given privilege rule. On satisfying a
privilege rule, a user gets a privilege package. A privilege
package is a 5-bit binary string. The bits represent, in or-
der, the five operations that a user can perform – Visibility,
Privilege, Frame, Structure and Data. A visibility privilege
grants read-access to a user on a world. Privilege-level privi-
lege grants a user to add, modify or delete the privilege rules
for a world. Frame level privilege grants access to modify
the type and containment lineage, as well as add new worlds
in the containment lineage. Structure level privilege grants
access to add, modify or delete roles and associations in a
world. Data level privilege grants access to add or delete role
instances and association instances. Apart from these, each

129

Figure 1: Many worlds on a frame

World Name

Type and Location Hierarchy

Aggregated Knowledge

Figure 3: Knowledge aggregation in Worlds

world also has a set of administrators. Administrators have
the all privileges except visibility of data. A world also has
a default rule. Default rule is a rule which is applied when
a user does not satisfy any of the privilege rules defined for
the world.

3. FEATURES
In this section, we discuss the key features of RootSet

that are critical for a collaborative cross domain inter-
organizational data exchange. We outline the planned and
implemented features of RootSet.

Aggregation of Knowledge. A main feature of RootSet is
data aggregation. If a world participates in various other
worlds, it aggregates all the data, and makes it available for
users at one place. This can be seen in figure 3.

Exporting worlds. RootSet provides a mechanism to ex-
port a world in XML and HTML formats. Using this fea-
ture, users can extract context specific data in an aggregated
form. The export utility exports the lineage, structure and
the data contained in the world.

Provenance. RootSet provides a way to trace back all the
changes committed for a world, along with the privilege

packages used to perform the changes. All the changes are
logged in the database. Thus, a user can look back at the
exact sequence of events to trace back a particular change.

Bulk load. RootSet provides a way to bulk load data and
ontologies. Given mappings for each of the entity types in a
structured file, it has the ability to search for worlds, create
required worlds, and upload data into them. This feature
helps in migrating from an existing ontology based tool onto
RootSet.

4. IMPLEMENTATION
RootSet uses the Model-View-Controller architecture in

its implementation. It’s prototype has been built using the
Ruby on Rails framework. It uses Rails 4 framework and
Ruby 2.1. HTML 5 and the bootstrap Javascript framework
powers its user interface. It also uses d3.js to display charts.
It uses sqlite3 as the database engine. It supports google
authentication. It uses the Apache Solr indexing engine to
locally index the worlds. The Solr server powers a full-text
search capability in the implementation.

5. CONCLUSIONS AND FUTURE WORK
RootSet has been proposed to enhance multi-

organizational collaborations. Some key features have

130

been discussed. It mainly addresses the problem of sharing
data in a collaborative setting. It nullifies a key challenge
of giving away data outside an organization’s datacenters
for enabling collaborations. Implementing constraint based
data-validation, exporting worlds into standard RDF
representations, and a stronger risk-aware credentials based
authorization are planned for future work.

6. REFERENCES
[1] S. Agarwal, B. Sprick, and S. Wortmann. Credential

based access control for semantic web services. In
AAAI Spring Symposium-Semantic Web Services,
volume 1, 2004.

[2] S. Agrawal, C. Jog, and S. Srinivasa. Integrity
management in a trusted utilitarian data exchange
platform. In To appear- 13th International Conference
on Ontologies, DataBases, and Applications of
Semantics (ODBASE 2014). Springer, 2014.

[3] C. Burnett, P. Edwards, T. Norman, L. Chen,
Y. Rahulamathavan, M. Jaffray, and E. Pignotti.
Trump: A trusted mobile platform for self-management
of chronic illness in rural areas. In M. Huth, N. Asokan,
S. apkun, I. Flechais, and L. Coles-Kemp, editors,
Trust and Trustworthy Computing, volume 7904 of

Lecture Notes in Computer Science, pages 142–150.
Springer Berlin Heidelberg, 2013.

[4] D. F. Ferraiolo and D. R. Kuhn. Role-based access
controls. arXiv preprint arXiv:0903.2171, 2009.

[5] A. J. Lee. Credential-based access control. In
Encyclopedia of Cryptography and Security, pages
271–272. Springer, 2011.

[6] S. Srinivasa, S. Agrawal, C. Jog, and J. Deshmukh.
Characterizing utilitarian aggregation of open
knowledge. In Proceedings of First ACM IKDD
Conference on Data Sciences, Delhi, March 2014, pages
789–796. ACM Digital Library, 2014.

[7] S. D. C. D. Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, G. Psaila, and P. Samarati. Integrating
trust management and access control in data-intensive
web applications. ACM Transactions on the Web
(TWEB), 6(2):6, 2012.

[8] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic.
Truststore: Making amazon s3 trustworthy with
services composition. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pages 600–605. IEEE
Computer Society, 2010.

