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1 Introduction and summary 

Stirling numbers have applications in many areas of mathematics, proba-
bility, statistics, operations research, engineering, chemistry, physics, com-
puter science, biology, ecology and education. Some examples of applica-
tions include: moments of the Poisson distribution, moments of fixed points 
of random permutations, rhyming schemes and the cereal box problem. 

In this note, we derive some new expressions related to Stirling numbers. 
The results are organized as follows. 

In Section 2, we give new expressions for 

n-1 

Ar(n) = L kr 
k=l 

for n = 2, 3, .... Section 3 gives expressions for 

i1 · · · ik for 0 < k < r (1.1) 
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and for the Stirling numbers of the first kind, s(r, k), (sometimes denoted 
as s;), defined by 

r 

(x)r = L s(r, k) xk 
k=O 

for r = 0, 1, ... , where 

(x)r x(x-1) .. ·(x-r+1) 
r(x + 1)/r(x + 1- r) 
r-1 
L( -1)k Dk(r)xr-k' 
k=O 

and we set D0 (r) = 1. This gives 

s(r, r- k) = ( -1)k Dk(r). 

(1.2) 

(1.3) 

Stirling numbers of the second kind S(n, k), sometimes denoted are 
defined by 

n 

xn = L S(n, m)(x)m (1.4) 
m=O 

for n = 0, 1, .... 

The third equality in (1.3) is not difficult to see. Note that x(x -
1) · · · (x - r + 1) can be expanded as xr + w1xr-1 + · · · + Wr-1X. The 
coefficient Wk is precisely the sum of all k products (product of k distinct 
terms) out of { -1, -2, ... , -(r- 1)}. So, it follows from the definition, 
(1.1), that Wk = (-1)kDk(r). 

Section 4 gives an expression for 

fork ::Sr. We prove the remarkable result (and a generalization of it) that 

where Dk(x) is the extension of Dk(r) to x in R Some related functions 
are also considered. 
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2 Sums of powers 

Theorem 2.1 gives expressions for 

n-1 

Ar(n) = L kr 
k=1 

for r = 0, 1, ... and n = 2, 3, .... 

Theorem 2.1 We have 

r 1 
Ar(n) = {Br+1(n)- Br+l} /(r + 1) = L -k 1 S(r, k)(n)k+l (2.1) 

k=O + 
for r = 1, 2, ... , where Br(n) and Br = Br(O) are the rth Bernoulli polyno-
mial and rth Bernoulli number. 

Proof: The first equality in (2.1) is equation (23.1.4) in Abramowitz and 
Stegun (1964, page 804). The second equality follows from the first formula 
in the 'Relation to falling factorial' section of http:/ /en.wikipedia.org / wiki 
/ Bernoulli_polynomials. 0 

3 Stirling numbers and sums of products 

The Stirling numbers of the first and second kind, defined by (1.2) and (1.4) 
above, have generating functions 

00 

L s(n,m)xmjm! = {ln(1 +x)}m /m! for Jxl < 1, 
n=m 

00 

L S(n, m)xn jn! = [exp(x)- 1Jm jm!, 
n=m 

00 m 

L S(n, m)xn-m = IJ (1- ix)- 1 for JxJ < m- 1. 

n=m i=1 

See Abramowitz and Stegun (1964) for closed forms, tables, recurrence 
formulas and related formulas. Comtet (1974, page 135) notes that 

Js(n, m)J = Bn,m (0!, 1!, 2!, ... ) , 
S(n, m) = Bn,m (1, 1, 1, ... ) , 
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where Bn,m(x1 ,x2 , .. . ) is the partial exponential Bell polynomial defined 
by 

and tabled on page 307 there. Comtet (1974, page 144) shows that the 
infinite matrix { s( n, k), n 2: 0, k 2: 0} is the inverse of the infinite matrix 
{S(n, k), n 2: 0, k 2: 0}. Comtet (1974) also gives their role in Taylor 
series for g( exp( t) - 1) and f (ln( 1 + u)) for general functions g, f. He gives 
asymptotic expansions for them for n large on page 293 and tables them 
on page 310 for n :S: 15 giving references for larger n. 

The sum of products Dk(r) may be computed using the recurrence 
relation given by Theorem 3.1. 

Theorem 3.1 We have the recurrence relation 
r-1 

Dk(r) = L iDk-t(i) 
i=l 

with the initial value 

Proof: By definition, Dk ( r) is the sum of all k products of the form i 1 · · · ik 
for 1 :S: i 1 < · · · < ik :S: r - 1. Now consider only those k products with 
ik = i for 1 :S: i :S: r- 1. The sum of all such k products is iDk-t(i). So, 
the result follows. D 

Riordan (1958, page 82, problem 7) gives a formula for S(n, n- k) in 
terms of what he calls the associated Stirling numbers of the second kind. 

For the connection between Stirling numbers and Stirling polynomials 
see, for example, Erdelyi et al. (1955, page 257). For a table of the Stir-
ling numbers and their expression as a multiple of a generalized Bernoulli 
number, see David and Barton (1962, pages 287 and 294). 

We end this section with another recurrence relation for the partial sums 
Dk given by Theorem 3.2. 

Theorem 3.2 We have the recurrence relation 
r-1 

(2r- 1) Dr(j) + 2) -1)j-laj,j-nDr-n(j- n) = 0, (3.1) 
n=l 

where aj,r = ( -1)n(2j- r- 1)2n2-n jn! at n = j- r. 
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Proof: The result comes from the identity (see Comtet (1974)) 

j 

2l(k)j = L aj,r(2k)r 
r=l 

for j = 1, 2, .... Taking the coefficient of (2k)1-r for r = 1, 2, ... ,j -1 gives 
(3.1). D 

4 Related results 

Here, we give expressions for 

This was computed iteratively from 

r 

Ck(r) = L rCk-1 (r) 
i=l 

using a MACSYMA program. This gave the remarkable formula 

The relation (4.2) is a particular case of (4.3) in Theorem 4.1. 

Theorem 4.1 We have 

( ) _ ( 1)a+Hb+H···d ( ) Ca,b, ... r - - a,b, ... -r , 

where 

Ca,b, ... (r) = ·a ·b 
2 J ... ' 

da,b, ... (r) = ·a ·b 2 J .... 
O<i<j< .. ·<r 

Proof: The proof of (4.3) follows from Theorem 4.2. D 

A generalization of (4.3) is given by Theorem 4.2. 

89 

( 4.1) 

(4.2) 
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Theorem 4.2 Suppose p, q, ... are polynomials (or more generally func-
tions with power series expansions) such that p( -r) = ( -1 )ap( r), q( -r) = 
( -1 )b q( r), ... for some integers a, b, ... so that 

d (r)-p,q,... - I: Pa(i)qb(j) · · · 
O<i<j<··-<r 

and 

c (r)-p,q,... - I: Pa ( i)qb(j) · · · 
O:S:i:S:J:S:···:S:r 

also are polynomials in r (or more generally have power series expansions 
in r ). Then 

( ) _ ( 1)a+Hb+H···d ( ) cp,q, ... r - - p,q, ... -r . 

Proof: Let Z = { ... ,-2,-1,0,1,2, ... } and z+ = {0,1,2, ... }. Fori in 
z+ let ai,J be any real number. For k in z+ and r in Z, define Ck(r) and 
Dk(r) as follows: 

and 

1, 
0, 
ak,r-lDk-l(r- 1) + Dk(r- 1), 

1, 
0, 
ak,rCk-l(r -1) + Ck(r -1), 

if k = 0, 
if k > 0 and r = 0, 
otherwise 

if k = 0, 
if k > 0 and r = 0, 
otherwise. 

Then one can prove by induction that for r > 0, 

and 

Dk(r) = L a1,i1 · • · ak,ik 
O<it<···<ik<r 

ck (r) = L al,it ... Ok,ik. 
O:S:it :S:···:S:ik ::;r 
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Consider for instance ( 4.4). Induction is trivial for the cases k = 0 orr = 0. 
So, if k > 0 and r > 0 assume (4.4) holds. Then 

Also 

O<i1 <···<i•<ik+1 <r 

sum of all products with ik+l = r - 1 

+sum of all products with ik+l < r - 1 

L a1,i1 · · · ak,i.ak+1,r-1 

O<i1 < .. ·<ik<r-1 

+ 
O<i1 < .. ·<ik<ik+1 <r-1 

ak+1,r-1 L a1,i1 · · · ak,ik 
0<i1< .. ·<i•<r-1 

L a1,i1 · · · ak,i• 
O<i1<· .. <ik<r+1 

sum of all products with ik = r 

+sum of all products with ik < r 

L a1,i1 · · · ak,r 
O<i1 <· .. <ik-1 <r 

+ L a1,i1 · · · ak,ik 
O<i1<···<ik<r 

ak,r L a1,i1 · · · ak-1,ik_ 1 

O<i1 <· .. <ik-1 <r 

+ 2::: a1,i1 · · · ak,ik 
O<i1<· .. <ik<r 

ak,rDk-1(r) + Dk(r). 

So, (4.4) follows by induction. The proof of (4.5) is similar. 

Now suppose there are integers m 1, m2, ... such that 

ai,-j = ( -1)m'ai,j 

for i 2 1 and j in Z. Define 

= 
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Then by applying the above recurrence formula for D we find that C' 
satisfies the above recurrence formula for C and so C£(r) = Ck(r). The 
proof is complete. 0 

An alternative expression for Ck(r) of (4.1), and so by (4.2) for Dk(r) 
is to use the expression given by Theorem 4.3. 

Theorem 4.3 For any fixed numbers x 1, ... , Xn, we have 

k 

xil · · · Xjk = L Bk,r(a)jr! 
r=l 

fork 2:: 1, where aj = S1jj, a= (a1,a2, ... ), and Bk,r(a) is the partial 
ordinary Bell polynomial tabled on page 309 of Comtet (1 974), where 

are the power sums. 

Proof: We have 

n 00 

- l:ln(1- Xkz) = L:a1z1 = T 
k=l j=l 

say. So, 

n oo 

IJ (1- xkz)- 1 = l:Tr jr!. (4.6) 
k=l r=O 

By definition, 

00 

k Tr = L...- Bk,r(a)z . 
j=r 

Taking the coefficient of zk in ( 4.6), since the left hand side of ( 4.6) is equal 
to 

we obtain the required expression for ck,n· 0 
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