
Improving Bounds for FPGA Logic Minimization

Tim Todman, Haofan Fu, Oskar Mencer and Wayne Luk

Department of Computing, Imperial College of Science, Technology and Medicine

Imperial College

180 Queen’s Gate, London SW7 2BZ, England

Abstract—We present a methodology for improving the bounds
of combinational designs implemented on networks of lookup
tables, moving them closer to the theoretical minimum. Our work
effectively extends optimality to span logic minimization and tech-
nology mapping. We obtain a proof of optimality by restricting
ourselves to 4-input look-up tables (LUTs) and generating all
possible circuits up to a certain area or latency depending on
the optimization mode. Since simple-minded generation would
take a long time, we develop levels of abstraction (steps) and
techniques to restrict and order the search space, and produce
results in practical time. We use logic decomposition to break up
large designs, using the resulting trees to guide our search and
prune the search space. The price of this optimality is that we
are limited to small blocks; however, such blocks can be used to
build larger designs.

I. INTRODUCTION

We address the problem of identifying minimal circuits

for a function by improving the upper and lower bounds of

resources it can use. We find the lower bound using global

generation: in principle, generating every possible configura-

tion of a device. In pratice, we use local symmetries to give the

effect of exhaustive generation at reduced cost, using Field-

Programmable Gate Array devices (FPGAs) for high-speed

emulation of configurations and connections of look-up tables

(LUTs). By searching the space of LUT configurations and

interconnections directly, we combine logic minimisation and

technology mapping from Boolean functions to LUTs. We find

the upper bound using logic decomposition, applying local

generation on the components of the decomposition. If we

are lucky, global generation uncovers the minimum possible

implementation. Otherwise, we get an improved measure of

the bounds within which the optimal design must lie, as well

as a locally optimized implementation.

Our main contributions in this paper are to:

• Improve the measure of the bounds for optimal solutions

• Build a framework for circuit generation combining logic

minimization and technology mapping

• Use logic decomposition to guide search, pruning the

search space and giving the upper bound

• Evaluate our techniques on standard benchmarks

The rest of this paper is structured as follows: Section II

gives an overview of our approach, comparing it with related

work. Section III shows our circuit generation framework

combining logic minimization and technology mapping. Sec-

tion IV shows parallel hardware for generating circuits on

FPGAs. Section V uses logic decomposition to guide and

speed up the search, finding the upper bound. Section VI gives

LUTs

Global

generation

Decomposition and

Local generation

1 min max

1 FPGA
512

FPGAs

(a)

(b)

Input: function Y to be optimized,

goal (latency or area)

Global circuit

generation

Local circuit

generation

Logic

decomposition

Output: lower bound

Output: upper bound

5121

Fig. 1. Improving bounds by generation and decomposition: (a) Process
input (logic function) and outputs (upper and lower bounds). (b) Starting
with the initial maximum max and minimum min number of LUTs, global
circuit generation increases the lower bound, while decomposition and local
generation reduce the upper. Generation is parallelizable, so multiple FPGAs
can be used for generation, allowing a higher lower bound by generating more
circuits in a reasonable time. Ultimately we find either the absolute minimum
circuit by global generation, or new, tighter bounds within which it must lie.

results and evaluates the use of logic decomposition in our

framework for logic minimization and technology mapping.

Finally, Section VII concludes and suggests future work.

II. OVERVIEW AND RELATED WORK

Our approach improves the initial lower and upper bounds

of the number of LUTs required to implement a given logic

function. (fig. 1), using circuit generation and logic decompo-

sition: global circuit generation, on the entire design, improves

the minimum; local generation, on the parts of the decomposed

design, improves the maximum.

We break generation into four steps (fig. 2). We implement

step 4 in parallel hardware on FPGAs, relying on two key

FPGA properties: (a) LUTs: high-speed table look-up. (b)

Massive parallelism: many instances in parallel. We limit

ourselves to single output functions; generation for multiple

output functions is impractical.

Early works on area minimization decompose the circuit

into a set of trees, and apply technology mapping on tree

structures [1], [2]. Cong et al. concentrate on enumeration

of single output, K-input connected subgraphs (fanout-free

cones) within the circuit, and prove that the problem can still

be optimally solved by decomposing the circuit into maximal

fanout-free cones (MFFC), and enumerating separately on

each MFFC [3]. The proposed algorithm restricts the solution

Step 1

Table I: get range of latencies or areas

Step 2a (optimise for Latency)

Find shapes for each latency,

sort by latency, then by

generation effort

Step 2b (optimise for Area)

Find shapes for each area,

 sort by area, then by

generation effort

Step 3

(A) Generate each connection for each shape

(B) Generate each graph for each connection

Step 4

For each graph, for all inputs, generate all LUT configurations

Input: function Y to be optimised,

goal (latency or area)

Output: circuit graph of optimised design

Fig. 2. Circuit generation. Step 2 differs for area (step 2a) and latency (step
2b). Step 4 can run in software or parallel hardware (section IV).

to duplication-free mappings where each circuit gate must be

mapped to exactly one LUT. Later work by Cong et al. [4]

introduces heuristics to reduce the runtime, and extends the

approach to duplicable mappings.

More recently, Ling et al [5] reformulated the technology

mapping problem as a Boolean satisfiability (SAT) problem,

showing that state-of-the-art FPGA technology mapping al-

gorithms miss optimal solutions. They also created an algo-

rithm solving the optimal area mapping problem. Safarpour et

al. [8] decompose the resulting SAT problem into two easier

problems to increase efficiency. Cong et al. [9] derive their

SAT formulation from the implicant rather than the minterm

representation of the problem, creating a smaller problem

which can be solved faster and cover more target problems.

Two recent efforts using enumeration concern an implicit

technique for enumerating structural choices in circuit opti-

mization based on rewiring and resubstitution [6], and the

adoption of reverse search in enumerative optimization for

obtaining, for instance, the k shortest Euclidean spanning
trees [7]. Our research complements this work, since we

exploit circuit parallelism to speed up generation.

III. FRAMEWORK

This section shows our circuit generation framework’s four-

step approach, developing expressions for the upper and lower

bound sizes of mappings from function to graph of LUTs.

Fig. 2 shows how we break the problem into four steps: Step 1:

given an N-bit input, 1-bit output boolean input function Y and

an optimization mode (area or latency), identify observable

inputs and limit the search space. Step 2: generate all circuit

shapes (vectors of the numbers of LUTs in each layer) within

the search space from step 1; sort by (a) latency or (b) area.

Step 3: generate all possible interconnections for each shape,

Step 4: generate all possible LUT configurations for each

circuit graph. We generate graphs of 4-input LUTs, with H
layers of LUTs, where layer h has Lh LUTs; Ltot LUTs in

total.

Logic functions with more than four inputs require multiple

LUTs. We further refine the steps of fig. 2 for N -input logic
functions.

TABLE I

STEP 1: THEORETICAL UPPER AND LOWER BOUNDS FOR LATENCY

(MAXIMAL DEPTH OF LUTS FROM INPUTS TO OUTPUT) AND AREA

(NUMBER OF LUTS) FOR VARIOUS NUMBERS OF INPUTS.

function optimize for latency optimize for area
#inputs min max min max

≤ 4 1 1 1 1
5 2 2 2 3

N log4(N) (N − 3) ⌊(N + 1)/3⌋ 2N−3 − 1
O(logN) O(N) O(N) O(2N)

Step 1 Count observable inputs, index into table I to find

the area or latency bounds. We define latency as the maximal

depth in LUTs from design inputs to design output, and area as

the total number of LUTs. We calculate the initial upper bound

by observing that an n + 1-input design can be implemented
using two n-input LUTs multipexed by an additional LUT
controlled by the n + 1th input.

Three rules facilitate calculation of minumum area and la-

tency required: (1) each observable design input must connect

to at least one LUT input, (2) at least one of the LUT inputs

must connect to a LUT output at a previous layer, (3) there is

a single LUT at the highest layer.

These rules ensure that (1) no input is redundant, (2) no

LUT is disconnected (redundant) and (3) there is only one

design output.

Step 2 Find all shapes for the bounds from step 1 (table II).

Sort the resulting list of shapes by latency (if optimizing for

latency, step 2a) or area (if optimizing for area, step 2b).

Within the sorted list, sort equal-area (step 2a) or equal-latency

(step 2b) shapes by generation effort: order by size of search

space in steps 3 and 4. For example, for an 7-input design for

minimum area, first choose the smallest shape that will accept

seven inputs: (1,1) in our terminology. If this fails, choose

the next smallest shape: (2,1). Similarly, find the minimum

latency design by iterating from the minimum latency topology

to the maximum. We observe that the number of shapes for

a given number of LUTs Ltot and layers H is bounded by

the binomial coefficient
(

Ltot

H

)

. Thus the total number of

shapes is bounded by 2Ltot [10], and the total number of

shapes for the bounds of areas from step 1 is bounded by:
∑2N−3−1

⌊(N+1)/3⌋ 2Ltot = 22N−3

− 2⌊(N+1)/3⌋

Step 3 Generate all interconnections. Step 3(A): produce a

set of connections for each shape: topologically distinct trees

where the output of each LUT in a layer must connect to

the input of a LUT in the next layer. Step 3(B): generate

directed acyclic graphs for each connection: all combinations

of connections from each LUT input unconnected in step 3(A)

to each LUT output in previous layers, and the design inputs.

For a LUT at layer h, the number of possible interconnections
is: Lh−1 ∗ (N +

∑h−1
0 Li)

3.

Step 4 For all graphs, generate each configuration of each

LUT, for each input. The output of the final circuit must match

Y for each input over the input space of 2N . We use parallel

hardware to speed this step, shown in the next section.

TABLE II

STEP 2: ALL THE DIFFERENT SHAPES FOR ONE TO THREE 4-LUTS

Latency
1 2 3 4

Area 1 (1)
2 (1,1)
3 (2,1) (1,1,1)

Target

Hardware

0

LUT 1,

Config1

LUT 0,

config0

+0

LUT 0,

config0

+p-1

=

=

Target

Hardware

1

LUT 1,

config1

LUT 0,

config0

+0

LUT 0,

config0

+p-1

=

=

Input

vector 0

Input

vector 1

p

p

p

4

4

N

N

target 1

target 0

Fig. 3. (a) Hardware for parallel generation of shape (1,1), with I = 2 input
vectors in parallel. For each input vector, we replicate the target hardware
and emulation of LUT 1, and LUT 0 for each of p different configurations.
We use this design for both breadth- and depth-first generation. Dotted lines
indicate hardware omitted for clarity.

IV. GENERATION CIRCUIT GENERATION

This section shows our designs for implementing step 4 of

figure 2 (generating all LUT configurations for each graph, for

all inputs) by parallel generation on reconfigurable hardware.

We build FPGA circuits using ASC, A Stream Com-

piler [11]. For our implementation, this means we can write

low-level optimizations and high-level structure all within the

same C++ description. We build one ASC design per shape:

Step 4 Generate an ASC circuit for each graph output from

step 3(B). Instantiate the target hardware, datapath containing

LUT emulators and comparators, and a finite state machine

to loop through each input until the first failing one, for each

configuration, stopping at the first configuration that matches

the target Y output for each input. We emulate LUTs, rather

than use FPGA LUTs directly, to avoid reconfiguring the

design for each set of LUT configurations.

Fig. 3 shows the datapath our parallel generation hardware,

which we use for both depth-first and breadth-first approaches.

The difference is in the state machine driving the datapath:

depth-first tries each input until the first failing one; breadth-

first tries only a small set of inputs. In this design, failing

means that none of the configurations of LUT0 match the the

target (output of Y) for all the parallel inputs.

Mapping to Xilinx LUTs. Part of the above design can map

explicitly to Xilinx Virtex II CLB resources – similar tech-

niques can apply to other FPGA families. Our hardware design

has two properties: (a) for p LUTs emulated in parallel, each
parallel configuration for LUT 0 lies in the same arithmetic

sequence c..c + p, (b) thus the log2(p) least-significant bits
of each configuration are constant, and can be emulated with

ROMs.

V. LOGIC DECOMPOSITION

This section shows how we use logic decomposition to im-

prove the measure of the upper bound number of LUTs needed

to implement the target design from the initial maximum.

S298,

Output 14
prime

5
6

LUT

1

LUT

2
5

decomposition

(a) (b)

(c)
(d)

x

x

LUT 0

F

4

4

4

LUT

1

x LUT 0

F

2

5

Fig. 4. Using logic decomposition: motivating example. One benchmark (a)
is decomposed into a five-input function and a NOR gate with input labelled x
(b). We show that only designs (c) and (d) need be considered, a considerably
smaller search space than for a general six-input function, and for LUT 0, we
need only generate three-input function F.

Logic decomposition takes a circuit and returns a collection

of subcircuits and their connections, which, when composed

together, give the same output as the input circuit.

To show the potential benefits of logic decomposition, con-

sider a small example: output 14 of ISCAS benchmark s298.

This has six observable inputs: too large to generate on a single

CPU or FPGA. The total search space for a six-input function

is of order O(2128), using up to seven LUTs. Figure 4 shows
the results of decomposing this design (a) into (b): a two-input

NOR gate and a five-input prime (non-decomposable) block.

After decomposition, we can reduce the search space to (c) and

(d) : a five-input function takes at most three LUTs (d), and

this design can implement the NOR in LUT 0. Three LUTs is a

significant search-space reduction compared to seven without

decomposition. Furthermore, because part of the function of

LUT 0 is now fixed, its search space reduces to a three-input

function F (d) (search space size 223

= 28, compared to

216 for a 4-input function). The total search-space reduction

is thus 216/28 = 256. Also, the bounds improve from 2..3
(latency) and 2..7 (area) to 2..2 (latency) and 2..3 (area).

Logic decomposition improves the upper bound, generating

each subsearch separately. Although the overall result is no

longer optimal, each generated subcircuit remains optimal.

Because circuit generation takes time exponential in the

number of design inputs, we choose a disjoint decomposition

method, so the decomposed functions have no common inputs;

specifically, we use Plaza and Bertacco’s STACCATO method

and software [12]. Staccato decomposes a logic function

into a tree of subfunctions, each with disjoint inputs. Each

subfunction is either associative (AND, OR, XOR), or a prime

function – one that cannot be decomposed further.

Our approach divides into four steps: (1) apply logic de-

composition to design, (2) traverse the decomposition tree,

separating out the prime (non-decomposable) blocks, (3) gen-

erate each prime block, (4) build the output hardware from

the generated blocks. Step 3 applies the generation techniques

TABLE III

RANGE IMPROVEMENT. SHOWS NUMBER OF OBSERVABLE INPUTS, MINIMAL SHAPE FOUND AND RESULTS FROM XILINX XSTV8.1 AND FOR DAOMAP

AND FLOWMAP, USING THE RASP PACKAGE FROM UCLA [13].

Name Output #Obs. #Shapes Shape #LUTs Area bounds Latency bounds
Inputs XST DAOmap FlowMap (old) (imp.) (old) (imp.)

s27 1 5 2 (1,1) 2 5 5 2..3 2..2 2..2 2..2
2 5 2 (1,1) 2 2 2 2..3 2..2 2..2 2..2
3 5 2 (1,1) 2 5 5 2..3 2..2 2..2 2..2

s298 8 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
10 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
12 7 268 (2,1) 3 5 5 2..15 3..3 2..2 3..3
14 6 18 (2,1) 3 3 3 2..7 3..3 2..2 3..3

b01 4 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
5 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
6 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
7 5 2 (1,1) 2 2 3 2..3 2..2 2..2 2..2

designed in the rest of this paper, using the global optimization

goal (latency or area). Note that the decomposed prime blocks

may still have too many inputs to practically generate; these

cases must rely on conventional tools for optimization.

VI. RESULTS AND EVALUATION

This section shows results for software and hardware gen-

eration for several ISCAS benchmarks, showing original and

improved bounds achieved.

Table III shows benchmarks chosen from the standard

ISCAS 85, 89 and 99 sets, with bounds of LUTs for area

and latencies – these worst-case results are the initial upper

and lower bounds from table I. The XST, DAOmap [15] and

FlowMap [14] results are for each output individually – we

remove hardware for other outputs. The bounds improvement

results for these benchmarks show runtime and minimal shapes

found (software results run on an Intel Xeon 2Ghz processor).

Generation times vary up to an order of magnitude. All the

software generation results correspond to an generation rate of

roughly 4.8 × 106 configurations per second, about 20% the

rate of our hardware. Hardware generation runs on a single

Xilinx XC2V6000 FPGA (Celoxica RC2000 board).

VII. CONCLUSION

We show a methodology for optimising circuits for FPGA

implementation that combines logic minimization and technol-

ogy mapping. We develop a four-step process to give the effect

of generating all possible circuits ordered by user optimization

goal: latency or area. Our reconfigurable hardware implemen-

tation speeds this process by rapidly finding which generated

circuits match the target design. We use logic decomposition

to guide and speed our search process, eliminating searches

using the resulting decomposition tree. Although our approach

is only globally optimal for small designs, it is still locally

optimal for larger designs, and can be applied to building

blocks of larger designs.

Current and future work includes porting generation to a

large multiple-FPGA machine. This is ideal for generation as

many generators can run in parallel across multiple FPGAs.

We would also like to extend generation to cover multiple-

output designs, sequential designs and other design elements

beyond LUTs. Our ultimate goal is to subsume many tradi-

tionally separate optimization steps into one generation step,

with results guaranteed to be optimal.

REFERENCES

[1] K. Keutzer. “DAGON: Technology Binding and Local Optimization by
DAG Matching”. In Proc. DAC 1987, pages 341–347, 1987

[2] R. Francis, J. Rose, and Z. Vranesic. “Chortle-crf: Fast Technology
Mapping for Lookup Table-Based FPGAs”. In Proc. DAC 1991, pages
227–233, 1991.

[3] J. Cong, and Y. Ding. “On area/depth trade-off in LUT-based FPGA
technology mapping”. In Proc. of DAC 1993, pages 213–218, 1993.

[4] J. Cong, C. Wu, and Y. Ding. “Cut ranking and pruning: enabling a
general and efficient FPGA mapping solution”. In Proc. FPGA 1999,
pages 29–35, 1999.

[5] A. Ling, D.P. Singh and S.P. Brown, “FPGA Technology Mapping: A
Study of Optimality”, In Proceedings of DAC 2005, IEEE, 2005.

[6] V.N. Kravets and P. Kudva, “Implicit Enumeration of Structural Changes
in Circuit Optimization”, Proc. DAC, pp. 438–441, 2004.

[7] J. Nievergelt, “Exhaustive Search, Combinatorial Optimization and Enu-
meration: Exploring the Potential of Raw Computing Power”, Proc. Conf.
on Current Trends in Theory and Practice of Informatics, LNCS 1963,
pp. 18–35, 2000.

[8] S. Safarpour, A. Veneris, G. Baeckler and R. Yuan, “Efficient SAT-based
Boolean Matching for FPGA Technology Mapping”, in Proc. Design
Automation Conference, IEEE, 2006.

[9] J. Cong and K. Minkovich, “Improved SAT-based Boolean Matching
Using Implicants for LUT-based FPGAs”, in FPGA ’07, ACM, 2007.

[10] Ronald L Graham, Donald E Knuth, Oren Patashnik, Concrete Mathe-
matics: A Foundation for Computer Science, Addison-Wesley, 1989.

[11] Oskar Mencer, “ASC, A Stream Compiler for Computing with FPGAs”
IEEE Transactions on CAD, IEEE, 2006.

[12] S. Plaza and V. Bertacco. “STACCATO: Disjoint Support Decomposi-
tions from BDDs through Symbolic Kernels”. In Proceedings Asia South
Pacific Design Conference, 2005.

[13] UCLA VLSI CAD lab., RASP – LUT-Based FPGA Technology Map-
ping Package, release B1.1, at http://cadlab.cs.ucla.edu/
software release/rasp/htdocs/ .

[14] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Al-
gorithm for Delay Optimization in Lookup-table Based FPGA Designs”,
in IEEE Trans. on CAD of ICs and Systems 13:1, IEEE, Jan. 1994.

[15] D. Chen, and J. Cong,“DAOmap : A Depth-Optimal Area Optimization
Mapping Algorithm for FPGA Designs”, in Proc. ICCAD, pp. 752-759,
Nov. 2004.

