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Abstract

Laboratory activity is an indispensable part of science
and engineering education. To develop children’s inter-
est in science and engineering, we want to create hands-
on activities using artificial intelligence. In this paper,
we first describe the use of case-based reasoning (CBR)
and an existing knowledge base to yield a combinatorial
design space for experiments. We then apply automated
planning techniques to generate experiment procedures.
We further use functional modeling to represent the ex-
periment devices and demonstrate how that representa-
tion enables the planner to generate a valid Rube Gold-
berg Machine. Finally, a semantic similarity metric is
proposed to evaluate the quality of a generated chain of
experiments.

Introduction

In Science Olympiad! competitions, middle school and high
school students from all over the country participate in sci-
ence experiment design contests to demonstrate relevant sci-
entific concepts. That there are competitions already shows
that creating science experiments is not easy. Designing ex-
periments requires not only immense knowledge about the
domain but also sufficient information about the properties
of available materials. More importantly, students also need
imagination and organization skills to arrange the materials
rationally and plan out the details of data collection.

Consider building an artificial intelligence system to cre-
ate novel science experiments. With scientific knowledge
and sample experiments in hand, forming useful represen-
tations of this data is the key challenge. Much past work
has attempted to design experiments for scientific research
itself rather than for students. Early work can be traced
back to MOLGEN (Stefik, 1981), a knowledge-based sys-
tem that plans molecular genetics experiments using hier-
archical planning techniques. A layered control structure
was also introduced to enable meta-planning. MOLGEN fo-
cused on the detailed domain knowledge and required much
human intervention for a valid experiment plan to be gener-
ated. Such systems are not suitable for generating engaging
science experiments for students.

Beyond single experiments, it may be more engaging for
students to connect a series of devices to form a chain. There
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is, in fact, a Rube Goldberg Machine (RGM) competition
in Science Olympiad called Mission Possible* for creating
chain-reaction machines. The Rube Goldberg Inc also or-
ganizes a contest® specifically for designing RGM. RGM
design has also been brought into class to help teaching.
Sharpe, Qin, and Recktenwald (2015) have shown that an
RGM-like device setup is good at engaging students and
helping them gain deeper understanding of difficult con-
cepts. In fact, Wu et al. (2015) have started to build valid
RGMs from the perspective of scene understanding using
deep learning and a simulation engine.

In creating such “comically-involved, complicated inven-
tions laboriously contrived to perform a simple operation”,
judging criteria explicitly require a notion of surprise. As
a recent rule book says, “RGMs should work but they also
need to capture attention. The more theatrical and funny
your machine is, the better it will score!”.

In order to build a system that generates creative RGM
ideas, we answer several key questions.

e How can knowledge about experimental materials be rep-
resented to enable similarity-based retrieval?

e Which class of parts in the existing knowledge base can
be used for material substitution?

e How can chains of experiments be generated?

e How can procedure instructions to build RGMs be gener-
ated automatically?

e Which generated chain is the most interesting and has
highest educational value?

We build algorithmic components to address these ques-
tions; putting them together yields a full computational cre-
ativity system to generate valid RGMs and assess their qual-
ity. By creativity, we mean simultaneously achieving nov-
elty and domain-specific quality.

Fig. 1 shows the basic structure of our system. First,
we propose a feature-based case representation for experi-
ment materials and adapt mixed-attribute dissimilarity mea-
sures from data mining into a distance metric for material
retrieval. We also suggest using WordNet to generate more
possible substitution materials with the help of word sense

Zhttps://www.soinc.org/mission-possible-c
*https://www.rubegoldberg.com/education/contest/



Enumerating Combinatorial
Design Space

Generating Valid
Sequences

Selecting the best

Retrieval
from Material
Case Base

Feature
Analysis

Functional
Modeling and
Planning

Creativity Rube

Experiments
Repository

9
Machine +
Assembling
Instructions

Procedure
Planner

Retrieval
from
WordNet

Word Sense
Disambiguation

Figure 1: System Structure

disambiguation. Inspired by engineering design, we apply
the functional modeling language to represent units used in
constructing RGMs and use a forward planner to generate
chains of experiments. Procedure plans for building RGMs
are also suggested by a partial order planner. We generate
examples of experiment chains using our system and pro-
pose a creativity evaluation metric for RGMs based on rules
from the student competitions and semantic similarity com-
putation using word vectors.

Choosing Materials

Designing science experiments and projects is similar to
culinary recipe creation in that both involve suggesting sets
of materials and procedures. An Al system with the capa-
bility of suggesting unusual combination of materials for a
known goal often amuses people (Olteteanu and Falomir,
2016) and is considered creative according to Bayesian sur-
prise (Itti and Baldi, 2006; Varshney et al., 2013a; Franga et
al., 2016).

In RGM generation, however, not all combinations of de-
vices can be sequenced into a chain due to common material
constraints in consecutive devices. Viewing an experimental
device as a decomposable system made up of experimen-
tal materials, new experiments can be designed if one has
access to a set of materials similar to ones in inspiration ex-
periments. By doing this, the constrained combinatorial de-
sign space of materials for generating valid RGMs can be
enlarged considerably.

Morris et al. (2012); Pinel, Varshney, and Bhattacharjya
(2015) suggest that culinary ingredients may be classified
into a hierarchy of categories. To generate a recipe, a cer-
tain number of ingredients are selected from each category
based on pairing rules learned from existing recipes. Unlike
in culinary creativity where a single taxonomy of ingredients
is applicable to most recipe generation tasks, a suitable clas-
sification for one case will likely fail in other cases for ex-
periment generation since the usage of materials is context-
dependent.

This issue is more apparent when we try to design ex-
periments using materials that are commonly found at home
since a single material may serve different purposes in dif-
ferent scenarios. For example, one might logically classify
a marble ball and steel ball into the same category due to
their common shape. This would work to roll different ob-
jects that perform rotational motion down a ramp and make
a series of measurements and observations. However in the

Gauss rifle experiment, the marble is not a good substitute
for the steel ball since the marble is not ferromagnetic. The
marble will not be attracted and accelerate towards the mag-
net to produce enough momentum to eject the steel bullet.
In addition, a single classification will restrict creativity
by dismissing many possible candidates for material substi-
tution. For example, keyboard is put under the computer ac-
cessories category whereas wood plank is classified as a type
of construction material. In such a taxonomy, keyboard is
very distant from wood plank. However, if features such as
shape (both approximately cuboid) and surface finish (both
have at least one flat surface) are provided, the keyboard
will be considered in the set of replacement materials for the
wood plank. Therefore, specific feature descriptions of ma-
terials are more pragmatic than a comprehensive and refined
taxonomy of materials for experiment generation.

Feature-based retrieval

Since science experiment design is knowledge intensive,
we want to take advantage of existing data through proper
knowledge representation. To ensure the validity of experi-
ment, we start by considering existing experiments as cases
and experiment materials as the varying factor.

In engineering design, CBR methods have been applied
for material selection (Ashby et al., 2004). Material at-
tributes of mixed types are analyzed and stored in the case
base. Based on requirements specified by the designer, a
list of materials can be retrieved from the case base. Exper-
iment material substitution is similar to material selection
in that features of the original material can be used as key
terms to search the knowledge base. Accurate feature in-
formation can be extracted from material vendors’ websites
and refined using crowdsourcing platforms (Demartini et al.,
2017). Olteteanu and Falomir (2016) have demonstrated the
effectiveness of feature-based retrieval in creative replace-
ment of everyday objects. Good candidates for replacements
are those having high similarity with the original material.
In our application, we use the nearest neighbor strategy to
search for substitution material.

Material attributes include basic features such as length,
shape, or weight, but also context-specific properties such
as melting point or electrical conductivity. By referencing
the material ontology defined in Ashino (2010), we built
a material property ontology to standardize the use of fea-
ture names to enable the sharing of material information
among different databases using the Protégé ontology edi-
tor (Musen, 2015).

Note that material features are not restricted to numeric
attributes, but could also include nominal, binary, and ordi-
nal attributes. Han and Kamber (2000) introduced dissimi-
larity measures for attributes of mixed types. We define the
distance metric for our nearest neighbor retrieval in the same
manner. Numeric, nominal, binary, and ordinal attributes are
dealt with differently as follows. In all equations, z;; is the
value of attribute f for object i.

e For numeric attributes, the distance is normalized with the
difference between the highest and lowest value possible
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e For ordinal attributes, first count the number of possible
ordered states M. Then convert the attribute to its corre-
sponding rank, 7y € {1, ..., M }. The rank is normalized
and mapped to [0, 1] by the following:
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After conversion, values for ordinal attributes are treated
the same way as numerical attributes to compute dg ),

e Since not all material features are relevant to a particu-
lar experiment, domain experts could label the essential
material features to the set £ and the less important fea-
tures to set L. We assign higher weights to more relevant
features and lower weights to the less relevant ones when
computing the overall distance between material pairs to
ensure the replaceability of the retrieved material. The
overall distance d(4, j) between experiment material ¢ and
j is defined as:
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where 61({ ) e {0, 1} indicates whether attribute f appears
in both material ¢ and j. (51(;) = 0 if an attribute is missing
in either material ¢ or j; 5Z(jf ) -1 otherwise.

An example of the described knowledge representation and
retrieved substitution material is shown in Fig. 2. Material
features essential to the problem scenario are highlighted.
Constraints are used to check the compatibility of materials
within an experiment. The generated combination will be
dismissed if materials in a single experiment do not satisfy
the constraints specified. Constraints are also used for RGM
generation discussed later in this paper where compatibility
between different components is essential.

Retrieval from general semantic resources

We propose to augment material substitution retrieval us-
ing WordNet (Miller, 1995), a general-purpose knowledge
base. In WordNet, nouns are organized into a hierarchical
structure in which words are linked by “is a” relationships in
terms of their meanings. A more generic concept is referred
to as a hypernym whereas a specific instance of a concept is
referred to as a hyponym. A hyponym inherits all features
of the more generic concept and adds features that distin-
guishes it from superordinate and sister terms (Touretzky,
1986). Although features of entities are not explicitly speci-
fied for each synset entry in WordNet, one can still search for

Material:
whiteboard
Feature: .
geometry: cuboid Material:
length: 0.61 m file binder
width: 0.46 m Feature:
thickness: 3 cm geometry: triangular prism
made of: aluminium width: 0.311 m
surface roughness: low length: 0.557 m
color: white thickness: 3.8 cm
weight: 2.1 kg weight: 0.3 kg
color: black

Constraint:
load capacity: [0, 30 kg]
pages hold: 375

Ball \“

Material: \ roliing /|
plank N / Material:
Feature: - marble
geometry: cuboid Feature:

surface roughness: medium
strength: medium motion: rotational
elasticity: low surface roughness: low
length: 0.9 m strength: high

width: 0.25 m diameter: 1 cm
thickness: 5 cm

weight: 7.5 kg

geometry: sphere

weight: 0.0013 kg

e Constraint:
Constraint: drop without crack height: [0, 3m]

load capacity: [0, 244.1 kg]

Figure 2: Replacement found by nearest neighbor retrieval

entities with similar features by traversing through the hier-
archy. One way of searching is by first looking up the hy-
pernym of the target word and then listing out all hyponyms
of the hypernym.

Fig. 3 shows the hierarchical structure in WordNet and
selected terms returned on a possible query. In a scenario
of building a ramp, terms returned like sheet metal, panel,
and plate glass are all good replacements for a board. Also,
a query of the hyponym of the target word can also return
good candidates like surfboard, ironing board, and wall-
board. This method augments the substitution set without
requiring extensive human effort in labeling features for ex-
periment materials.

A problem one might face is the material term might be a
polysemous word. In WordNet, words are grouped into sets
of synonyms called synsets. An example of synset encod-
ing is ‘board.n.01’, in which the first entry is the word itself,
second entry is the part of speech (POS) tag and the third
entry represents the index of sense that the term corresponds
to. When looking up a word, all possible synsets associ-
ated with different meanings of the word will be returned.
To search for substitution materials for experiments, the ex-
act synset entry that the original material corresponds to is
required. However, the synset entry will not be available
unless someone assigns the label manually or using Word
Sense Disambiguation (WSD) techniques.

For our application, we use a Support Vector Machine
(SVM) classifier to disambiguate the sense of a target word.
The training data for the classifier is a list of example sen-
tences that include the target words tagged with correspond-
ing sense labels. We use word embeddings to represent the
contextual features since they are more efficient for training
and better at capturing relationships among concepts. After
the classifier has been trained, it can predict sense labels for
previously unseen examples based on the likelihood of each
sense given the contextual features (Zhong and Ng, 2010).

As an example, we trained a linear SVM to disambiguate
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hypernym

hyponym

the three most common senses of the word “board”. We
collected 176 examples in total from several resources*>®
to form a balanced dataset for training. We cleaned up the
context corpora by removing punctuations, non-alphabetic
characters, and common stop words. Remaining words are
converted to their lemma forms in lower case.

A window size of five words on each sides of the tar-
get word is used to represent the context. Words within
the window are mapped to a list of embeddings W =
{v_5,...;,V_1,V1,...,v5}. The word embeddings we use
are obtained by training the skip-gram word2vec model
(Mikolov et al., 2013) available in gensim package (Rehiifek
and Sojka, 2010) with Wikicorpus scraped from the science
domain. Similar to Tacobacci, Pilehvar, and Navigli (2016),
we use the average strategy by computing the centroid of
embeddings of the selected surrounding words to obtain the
context vector.

S

After extracting features for all examples, the
set of contextual features and sense label pairs
{(C1,51),(Cx, Sa), ..., (Cp, Syp)} are used to train the
linear SVM. To test the performance of the SVM classifier,
we run 5-fold cross-validation on the entire dataset and the
accuracy is M = 0.77,SD = 0.07.

C:

Rube Goldberg Machine Generation

Experiential learning activities are not limited to the con-
ventional controlled experiment setting where repeated mea-
surements are done to verify certain physical laws or rela-
tionships. Instead, learning concepts by building an RGM
may be more engaging for students. In an RGM, a series
of devices are setup in a way such that one device triggers
another in a sequence. Along the chain reactions, many dif-
ferent science and engineering concepts are demonstrated.
Learning could be more entertaining if the advisor could
suggest possible ideas of building an RGM.

In science projects for students, an experimental setup
typically has some function. For instance, a ramp can be

*http://www.comp.nus.edu.sg/ nlp/corpora.html
Shttp://sentence.yourdictionary.com/Board
Shttp://www.manythings.org/sentences/words/board/1.html
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Figure 4: Functional modeling representation of devices

sub-function:  ConvertGPEtoKE

precondition:  Energy(Human)

effect: Material(Wheel), Energy(K.E.),
- Energy(Human)

Table 1: Sub-function Schema

considered as a module that performs kinetic energy and po-
tential energy conversion for the object rolling on it. These
modules are also frequently used in building an RGM. Given
the many possibilities of modules made possible due to com-
bination of materials, the design space will be even bigger if
we can build a chain of these modules.

Functional Modeling Representation

Before thinking about automatic chain synthesis, it is impor-
tant to come up with a systematic way to describe and rep-
resent the devices and relationship between them. Given the
diversity of devices and the multi-disciplinary knowledge in-
volved, coming up with a consistent knowledge representa-
tion is non-trivial. In engineering design, a holistic design is
usually disassembled into sub-modules for conceptual anal-
ysis. Pahl, Beitz, and Wallace (1984) represent functional
modules using block diagrams and call them sub-functions.
Each sub-function block has input and output flows that fall
in three main categories: energy, material, and signals. Each
sub-function can be mapped to a corresponding physical em-
bodiment. As suggested by Bohm, Stone, and Szykman
(2005), the functional model allows multiple different types
of input and output flows for each block to ensure complete-
ness in knowledge representation. Real mapping examples
such as power screwdriver and automobile seat can be found
in Hirtz et al. (2002).

Devices in RGMs can be represented using sub-functions.
We find the taxonomy of modeling vocabulary defined by
Hirtz et al. (2002) useful for representing the devices in an
RGM. By referencing the modeling language, we formally
analyze the function of each device and its input and out-
put to obtain sub-function representations of device units as
shown in Fig. 4. For example, a Gauss rifle device can be
interpreted as a system that converts magnetic potential en-
ergy to kinetic energy (K.E.). Human effort in the Energy
category is the input to trigger the system. Both a steel ball
in the Material category and K.E. in the Energy are outputs
of the system.

For our application, we represent each sub-function block
as planning operators using a STRIPS-like representation.
Input and output flows of each sub-function are represented
as preconditions and effects associated with the operator re-
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spectively. An example of such a sub-function operator is
shown in Table 1. A planning problem can be formed when
a set of sub-function operators, initial input, and goal output
are specified. We use a forward search algorithm for plan-
ning. Part of a possible state space graph expanded by the
forward planner is shown in Fig. 5. In the state space graph,
each oval represents a world state described by the flows. At
first, only the initial state appears in the state space graph.
An applicable operator (represented by the rectangles) can
be added after a state if its preconditions are supported in
that state. A new state is also added to the graph due to the
change brought about by the operator. The algorithm ter-
minates when the goal condition is found in a new state. A
valid chain of functional blocks is a path in the graph from
initial condition to the goal. By mapping each functional
block in the chain to its corresponding physical embodiment,
we get an RGM. Since materials used in each device are
also binded with constraints, these constraints can be used
to check the compatibility between adjacent units for phys-
ical embodiment selection. Fig. 6 shows several generated
sub-function chains and corresponding RGMs.

The idea of building RGMs from science project compo-
nents based on their input/output matching and compatibil-
ity can be further extended to the design of actual engineer-
ing systems and products (Li et al., 2013). Knowledge repre-
sentation in our system is distinct from other planning appli-
cations like the story generation (Riedl and Young, 2006).
Functional modeling language better reveals the scientific
concepts behind the engineering processes and is thus better
for educating students.

Suggesting Assembling Procedure Plans

Procedural instructions for building each module and con-
necting different modules into a chain are equally impor-
tant. Much research has been done to create procedural
artifacts including business processes (Heinrich, Klier, and
Zimmermann, 2015), manufacturing simulations, and space
missions. In computational creativity, efforts have also been
made to create procedural artifacts. In Chef Watson, a graph
matching and merging approach has been proposed to cre-
ate recipe steps (Pinel, Varshney, and Bhattacharjya, 2015).
Existing recipe instructions are parsed into directed acyclic

action: placeOn(A, B)

precondition:  have(A), have(B), canHandle(A),
withinLoadCapacity(A, B)

effect: on(A, B)

Table 2: Action Schema

graphs in which nodes are ingredients and discrete actions.
We find the planning approach appropriate for our system
since not all actions in an experiment are associated with a
material or a concrete entity.

For generating procedures, the initial world state can be
described with as a set of literals such as available materials,
constraints. The desired outcome can be stated as propo-
sitions to be satisfied for the goal state. Actions are rep-
resented using operators that include a set of preconditions
and effects of executing the actions. For our problem, we
use a partial order planner to generate plans of assembling
procedure. At every iteration, the planner randomly selects
an operator from the knowledge base that satisfy any goal
conditions, referred to as open condition flaws. Once an ac-
tion has been instantiated, the preconditions of this action
becomes the new open condition flaws. On the next itera-
tion, operators are selected to repair both old and new flaws.
A causal link is constructed between action s; and s via
a specific condition e, represented as s; — So, when ex-
ecution of s requires condition e established by s;. The
algorithm terminates when each precondition of each action
is supported by the effects of a previous action or by condi-
tions in the initial world state. A causal chain of actions that
transform the initial world state to the goal state is thus a log-
ical procedure for conducting the experiment. Since partial
order planning enforces causal dependency, generated plans
are ensured to be valid.

For our problem setting, the STRIPS-like representation
is again used to define the planning problem. An example
action schema is shown in Table 2. A plan is generated by
the partial order planner for the Gauss rifle experiment see
Fig. 7. Natural language generation techniques mentioned
by Wasko and Dale (1999) can be applied to generate human
readable texts from plans.

Selection through Creativity Evaluation

As part of the computational creativity system, internal as-
sessment of creativity of the generated artifact is essen-
tial (Varshney et al., 2013b). We find that ramps, spirals,
domino, and other physical contact-based devices are very
common in RGMs. Creating a machine simply by repeat-
ing these components may not be as engaging as those that
involve greater variety of reactions. Rules from the “Mis-
sion Possible” competition give higher scores to RGMs us-
ing components from different categories and having more
energy transfers. Considering these rules, we count the num-
ber of energy transformations, disciplines, and concepts in-
volved in the three generated RGM examples and display
the result in Fig. 8. The example in Fig. 6¢ might outper-
form the other two since it involves more energy transfor-
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Figure 7: Assembling Plan

Transition | Similarity score
A—B 0.385
B—C 0.337
C—D 0.136
D—E 0.320

Table 3: Cosine score for concepts in each transition

mations and fields of knowledges with comparable number
of concepts. We use the above metrics for creativity evalu-
ation since they directly indicate the knowledge content of
generated artifacts. According to Cohen (1999), knowledge
is one of the three key requirements for creative behavior.

For educational purposes, we think that an engaging chain
should demonstrate concepts from different disciplines. In
particular, the more different the concepts involved in adja-
cent devices, the more novel the chain and thus should be
given higher priority. We analyzed the concepts involved in
each devices; concepts binded with each device in the gener-
ated example (a) is shown in Table 4. To measure the extent
of transition in concept domains, we need to map each con-
cept to the pre-trained vector representations. Cosine metric
has been used to measure the semantic similarity of words
in vector representations. We adopt the cosine similarity and
compute the transition score by the following:

(Ziecl Vi)T(Zz‘ng Vj)
1> icc, Vil 2icc, Vil

where v is the distributed representation of a concept, C
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Figure 8: Quality measures

and C5 are the sets of concepts related to two adjacent com-
ponents respectively. The transition scores shown in Table 3
agree with our intuition as transitions across different disci-
plines have lower cosine score than those within a discipline.
A chain with low cosine score and more cross-discipline
transitions should be considered more creative.

Conclusion

We have described a full computational creativity system
that generates RGMs. Several contributions of the system
have been discussed. To recap, both CBR and lexical substi-
tution techniques are demonstrated to suggest high quality
replacement material. We also apply functional modeling
concepts to device representation and generate chains of ex-
periments using a forward planner. Classical planning con-
cepts are applied to represent RGM construction problems
and a partial order planner is used to generate procedural in-
structions. To guide creative artifact selection, we prioritize
chains involving the most discipline transitions by comput-
ing semantic similarity of relevant concepts. We will con-
tinue to develop the system and expand the knowledge base
by encoding more components into their corresponding sub-
function representations and identifying the related concepts
to those components via crowdsourcing.

As future work, we can measure the creativity of gener-
ated chains by analyzing the response of human audiences,
e.g. through eye-tracking experiments, to understand de-
vices in the chain that are attractors, sustainers, and relators
(Candy and Bilda, 2009; Edmonds, Muller, and Connell,
2006). This could potentially help us evaluate the comical-
ity of generated RGMs, which is difficult to measure using
which is difficult to measure otherwise.
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