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Abstract

We take the position that the creative act of computer pro-
gramming has been under-investigated in Computational Cre-
ativity research. It is time for a concerted study of software
engineering from the perspective of creative software. Such
software should produce code and algorithms as artefacts of
interest in their own right, rather than as a means to an end.
We briefly survey and critique existing automated program-
ming approaches, propose some novel methods for this, and
investigate potential application areas for automated software
engineering. Central to our position is the notion that creative
software generators should perform in an unsupervised man-
ner in order to problematise the world rather than (or in addi-
tion to) solving given problems. This will necessarily utilise
some current methodologies and philosophies from Compu-
tational Creativity research, and we explore the ways in which
these could guide future software synthesis approaches.

Introduction and Motivation
Creative people write software for a number of purposes.
Often, coding is a means to an end of achieving some goal,
automating some task or solving some problem. In these
cases, the value of the written code is secondary to the value
of running the code in a particular application. However, in
other contexts, the software itself is appreciated as an impor-
tant creation or discovery over and above any application of
it (if there is one). As discussed below, examples of where
this is the case include scientific discovery, automated cre-
ators, recreational coding, and games (for education or en-
tertainment) which use coding as a game mechanic.

Like a product or process in the arts or sciences, code can
take on a life of its own, being studied, modified, used in
unforeseen applications and even celebrated culturally. We
explore here the position that Computational Creativity re-
search would be well served by thinking of computer pro-
grams as important artefacts in their own right, rather than
purely as task-completing or problem-solving processes. We
therefore advocate studying and automating the creative act
of software engineering, similar to studying and automating
the creative act of painting, writing, composing, etc.

It is tempting to point out that, as Computational Creativ-
ity researchers, we build software to generate artefacts such
as paintings, poems, musical compositions, videogames,
etc., and hence automating the engineering of such software

systems would represent a meta-approach of value to the
field. However, it is too ambitious currently to suggest the
automatic production of generative systems in all but highly
specialised applications. Moreover, this would obscure our
point that the code artefacts themselves, rather than outputs
from running the code, should be the end goal for implemen-
tations which simulate creativity in programming.

Critical to our outlook for the study of automating cre-
ativity in programming is the notion that it should be used
to problematise the world rather than (or in addition to)
solving given problems. By problematise, we mean that
the generated code exposes opportunities either for better
understanding the world through problem solving (e.g., the
code exposes an unexpected anomaly or hypothesis about
a dataset), or application of the code in cultural contexts to
change the world (e.g., the code can be used as a mechanic in
a videogame). In both cases, it is important to note that the
generated code needs to be appreciated as a cultural artefact
in its own right, for its aesthetic and knowledge-enhancing
qualities and not just for its utility, in order for the opportu-
nities to be fully understood and exploited.

As a hypothetical example, imagine in the early days of
computer graphics that an automated code synthesis sys-
tem had output an image filtering algorithm which per-
formed edge detection, i.e., similar to the invention by
Canny (1986). Imagine further that this was a completely
unexpected piece of code, i.e., the user had no idea in ad-
vance that edge detection was even something that software
could do. In this hypothetical context, the discovery of this
algorithm would lead to a series of problems going from un-
known unknowns1 to known unknowns. In other words, the
new discovery does not immediately provide all the answers
about this new domain, but it does expose which questions
are interesting for further study. Such exposed questions
would include: how does this algorithm work; how good
is the edge detection and how do we measure this; what are
the practical applications of this software; what are the artis-

1The term ‘unknown unknowns’ is originally attributed to psy-
chologists Luft and Ingham in their development of the Johari win-
dow technique. However, it was brought to popular attention by
US Secretary of Defense Donald Rumsfeld in 2002, with the state-
ment: “We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know.”



Figure 1: Duff’s device (Duff 1988).

tic affordances of this software; what are other approaches
to edge detection, etc. Solving some of these problems will
lead to better understanding the world, while others will lead
to new practical opportunities. Moreover, studying the code
as an important cultural artefact in its own right may itself
lead to the generalisation and formalisation of the edge de-
tection process found in the generated code in language in-
dependent terms. It is not too far fetched to make an analogy
here with formative artworks by an artist – while better al-
gorithms may follow, having the original algorithm in the
world is important historically and culturally.

Currently, the responsibility for asking these follow-up
questions falls to the people who set the code generation
system in motion and who study its output (which assumes
that the output is comprehensible to humans – by no means
a given). It is interesting to imagine an AI system which is
capable of appraising generated code in this way.

The edge detection example above considers software
from a functional perspective: the interesting part is the op-
eration the code performs. However, the same principle can
apply to more abstract code structures, where the the code it-
self is interesting (within the application domain of software
engineering rather than elsewhere). For an historical exam-
ple, Duff’s device (1988) is a clever abuse of the switch-
case statement in C (see figure 1), which allows a loop
to be partially unrolled (often resulting in faster execution)
without introducing any restrictions on the number of itera-
tions the loop may execute. As previously, imagine this had
been discovered not by a software engineer at Lucasfilm, but
by an automated programming system. It similarly exposes
new problems: how does it work; is it general; how much
efficiency gain does it yield? Solving these may lead to new
discoveries by human or by computer, just as Duff’s device
inspired a particularly elegant implementation of the corou-
tine idiom in C, as described by Tatham (2000).

In both these examples, an obviously useful piece of soft-
ware has highlighted many new and interesting problems.
While automated programming clearly has problem-solving
applications, we believe that applications which expose un-
known unknowns are key to modelling and utilising creative
behaviours, which in turn is essential to studying the full
potential of automated approaches to code generation. Cre-
ative behaviours free the approach from difficult constraints,
but in turn introduce a number of difficulties in execution,

which are discussed below. We believe that creative auto-
mated coding approaches will be able to enhance the arts,
lead to scientific breakthroughs and drive progress in society.
We further believe that advances in automated programming
have been held back by the almost-universal application of
them within the problem-solving rather than artefact gener-
ation paradigm of AI. Bringing creative automated coding
into Computational Creativity research would open new av-
enues of research, provide a step change in the value of arte-
facts being generated and unearth new application domains.
We would expect to see more interesting and sophisticated
processes being undertaken by software, advancing our un-
derstanding of what it means for software to be creative.

The rest of the paper is organised as follows. In the next
section, we look at various ways in which programming has
been automated, and provide a critique highlighting the in-
appropriateness of these methods with respect to creative af-
fordances and cultural celebration of code. Following this,
we suggest alternative approaches for the automatic gener-
ation of code within the problematising paradigm described
above, and highlight some potential applications. We con-
clude by discussing how automated programming could be
guided by modern Computational Creativity practice and in
return enhance our philosophical understanding of software
being creative, and describe future research directions to ex-
plore the creative potential of automated code generation.

Automated Programming Approaches
In common usage, the term ‘automatic programming’ refers
to a range of techniques devised to enable people to pro-
gram more efficiently, e.g., source code creation through
templates within an IDE. Within Artificial Intelligence re-
search, the notion of the fully automated construction of
computer programs is to be found within the fields of ma-
chine learning, evolutionary programming and automated
programming synthesis. We look at each here with respect
to their suitability for problematising the world via valued
code generation rather than problem solving.

In machine learning, the most obvious areas where auto-
mated programming is found are when the learned classifiers
are explicitly code, as with Inductive Logic Programming
(Muggleton and De Raedt 1994), i.e., where Prolog pro-
grams are learned for classification and prediction problems.
However, all machine learning methods effectively learn
representations that are easily interpretable as computer pro-
grams. Importantly, deep learning methods are currently be-
ing investigated as automated programming systems, with
the learned networks examined as computer programs in ad-
dition to approximations of neural structures. For instance,
deep learning luminary Yann LeCun has recently stated:

“Deep Learning has outlived its usefulness as a buzz-
phrase . . . Vive Differentiable Programming! . . . the
important point is that people are now building a new
kind of software by assembling networks of parameter-
ized functional blocks and by training them from exam-
ples using some form of gradient-based optimization.”
facebook.com/yann.lecun/posts/10155003011462143



As an example of the power of deep learning for auto-
mated coding, we can turn again to graphics. Previously,
in order to transfer an artist’s style, or a particular texture,
from one image to another – e.g., producing a pastiche of an
artist’s work by applying a filter to a given image – one had
to write a bespoke program or devise a macro in an applica-
tion like Adobe’s Photoshop. The graphics community has
investigated style transfer for aspects such as colour (Abad-
pour and Kasaei 2007), and produced scores of individual
style transfer methods for various artists/textures, with pas-
tiche generation finding its way into mainstream graphics
packages. However, this was only done for famous artists
or particularly useful textures, as hand-programming style
transfer methods was time consuming. With the advent of
neural network approaches (Gatys, Ecker, and Bethge 2016),
a deep neural model can be trained which applies the style of
one image to the content of a second image, with impressive
results and no user programming required. It is clear that
each application of the approach generates a program, albeit
in the form of a generative neural network, which performs
the same function as the previously hand-crafted ones.

The drawbacks to the usage of machine learning tech-
niques to expose truly unknown unknowns revolve around
both the supervised nature of the application and the format
of the programs which can be learned. In general, supervised
machine learning techniques involve labeling examples into
classes and generating methods which can classify unseen
examples with high accuracy. As such, supervised methods
are suitable for solving known unknowns, where the user
knows what he/she wants, but doesn’t know exactly what it
looks like. However, this is too restrictive to imagine super-
vised machine learning approaches being used to expose un-
known unknowns. Unsupervised methods like data mining
can make discoveries the user didn’t know they were looking
for, but even in these situations, the nature of the discoveries
is usually prescribed in advance, in terms of their structure,
underlying concepts, or the way they relate variables in the
data. Hence, these are not truly unknown unknown problems
which are unearthed. If we refer back to the edge detection
hypothetical example, that kind of discovery is of software
which does something that no-one has thought of doing be-
fore, which does not project well onto either supervised or
unsupervised machine learning methods.

Another drawback of deep learning techniques for our
purposes is that their representation of a “program” is rather
opaque from a human perspective. They do not produce
code, at least not in a form that a human software engi-
neer would recognise. A trained Artificial Neural Network
(ANN) consists of a network structure (which is generally a
product of human effort rather than of the AI system), along
with thousands or millions of parameter values. Despite ef-
forts to explain and visualise the workings of ANNs (Mon-
tavon, Samek, and Müller 2018), it is difficult to appreciate
the beauty in a well-tuned ANN in the same way one might
appreciate the beauty in a well-written program. For humans
at least, it is easier to understand and appreciate a million
lines of C++ code than to understand a million real-valued
parameters. Notwithstanding efforts in Computational Cre-
ativity research to provide alternative scenarios in which

creative software can be evaluated, e.g., modeling empow-
erment for intrinsic motivation (Guckelsberger, Salge, and
Colton 2017) or societal curiosity (Saunders 2007), the eval-
uation of the products and processes of creative systems is
largely human-centric. Hence, at least for the time being, it
seems that if generated code is to be appreciated culturally,
then it should either be understandable by humans (which, as
argued below, most generated code is not), or there should
be some way of generating high-fidelity explanations of it
automatically, noting that different types of users will ap-
preciate code in different ways (Cook et al. 2013).

Evolutionary programming techniques such as genetic
programming (GP) produce code directly in a variety of lan-
guages, using a sophisticated array of search techniques with
crossover and mutation at their heart, guided by user given
(or sometimes machine learned) fitness functions. More-
over, they are used for both supervised tasks, e.g., generating
classifiers for machine learning applications, and in unsuper-
vised tasks, for instance in evolutionary art projects where
the user specifies the fitness of genomes (code) by select-
ing between phenomes (e.g., images) generated by execut-
ing the code (Romero and Machado 2007). The expressivity
of many GP approaches means that they could in principle
construct code of real value which does something that no
one has thought of doing before, potentially exposing un-
known unknowns and problematising the world.

Unfortunately, the nature of crossover and mutation does
not lend itself to the production of easily understandable
code. Overly complicated code is not a problem when the
value of the application of the software outweighs the value
of the code itself. However, in projects where the code it-
self is to be celebrated, this issue could be a barrier to usage
of GP approaches. In addition, there has been some recog-
nition in the field of Computational Creativity, that the pro-
cess by which an artefact is created is used in assessing the
value of the artefact itself (Colton 2008), and that creative
systems should frame both their processes and products in
order to enable full appreciation of the creative act(s) they
perform (Charnley, Pease, and Colton 2012). Artists have
embraced the idea of Darwinian-like evolution of software
driving artistic projects: they often use scientific descrip-
tions of evolution when framing their art, and present the
evolution of their pieces in terms of the family tree of off-
spring phenomes (e.g., images). However, neither of these
is the same as using the actual construction process of a pro-
gram to add value to the creative act and the product.

In a comprehensive survey, Gulwani et. al (2017) describe
automated program synthesis as:

“. . . automatically finding a program in the underlying
programming language that satisfies the user intent ex-
pressed in the form of some specification.”

With deep learning being used directly for program synthe-
sis, as described by Balog et al. (2017), it seems likely that
there will be a step change in the abilities of software to au-
tomatically generate code in this context. However, the situ-
ation in automated program synthesis is that – almost with-
out exception – automatic generation of software is done to
solve a particular problem in a supervised manner. Problem



types include finding code which can turn given inputs into
given outputs and improving existing code, for instance via
genetic improvement as per the Gen-O-Fix software (Swan,
Epitropakis, and Woodward 2014) or via code transplanta-
tion (Barr et al. 2015). While these approaches create new
code, they do not cater for the situation where the user has
data or existing code that he/she wants to investigate by au-
tomatically generating programs, but doesn’t know exactly
how that investigation should proceed. Indeed, to the best
of our knowledge, it seems that no one has ever applied pro-
gram synthesis in a setting where what constitutes a “good”
generated program is unknown in advance and is to be dis-
covered via the process itself. As such, it is difficult to imag-
ine employing the methods developed in this field to gener-
ate code that no one knows anything about in advance.

Certain methods and methodologies from Artificial Intel-
ligence research have found natural application in Compu-
tational Creativity projects, while others have barely been
used. Evolutionary programming, for example, is a main-
stay of the field, while machine learning has had fewer, but
notable applications, and automated program synthesis ap-
proaches have – to the best of our knowledge – never been
applied to tasks associated with creative behaviour. There
have been successful ad-hoc approaches to direct code gen-
eration where, to some extent, the code has been appreci-
ated over and above its value in application (Cook et al.
2013). Here, within the context of the generation of entire
videogames by the ANGELINA system (Cook, Colton, and
Gow 2016), code was generated directly to control the action
of the player’s character when they pressed the special pow-
ers key (the space bar) on a keyboard. Game levels were
then generated around this special character function, i.e.,
which required the usage of the function in order to com-
plete the level. The generated code was not simply applied,
but examined as a valuable artefact, to pass on information
to players about what it did (although this was not needed
in most cases). Notwithstanding these ad-hoc approaches,
in general the idea of creatively generating code as artefacts
to be appreciated in their own right has been largely under-
investigated in Computational Creativity research.

Creative Approaches
to Automated Programming

Taking the above critique into account, to maximise the
potential for automated code generation, we advocate ap-
proaches which produce human-understandable code in
human-like ways. By “human-like ways” we mean mir-
roring the various ways in which human software engineers
approach the task of programming: a set of logical iterative
steps, top-down or bottom-up, drawing heavily on design
patterns and other accepted wisdom, and generally bearing
almost no resemblance to the search-based techniques often
used by automated systems. In this way, the generated code
could be properly appreciated by people, and the creative
system can appeal to the code construction method when
framing its efforts. We propose two such approaches here.

Given the logical nature of programming languages and
the plethora of mathematical/statistical applications of code,

it is not surprising that many early (and indeed many mod-
ern) computer scientists were originally mathematicians. In
this vein, programming languages and logic have much
overlap, with Prolog, for instance, being described as a form
of logic, a database and a programming language, and logic
and maths topics being essential in a computer science edu-
cation. It is therefore not too difficult to imagine a genera-
tive system able to produce mathematical theories graduat-
ing from a mathematical discovery system to an automated
coding system, which is precisely what we have started to
do with the HR program (Colton and Muggleton 2006).

The latest iteration of the software, called HR3 and de-
scribed by Colton, Ramezani, and Llano (2014), was re-
engineered from scratch to be an automated programming
system, while inheriting the mathematical abilities devel-
oped for previous versions. As an example of the difference
in approaches, in the domain of number theory, HR2 was
given background knowledge including data about which
numbers wholly divide which other numbers, e.g., it was
given the full set of divisors for the numbers 1 to 1000. It
would then invent mathematical concepts, such as perfect
squares and prime numbers, and express these in human-
readable ways, e.g., as LaTeX sentences or in first order
logic (for integration with third party automated theorem
provers, model generators and constraint solvers). It would
further hypothesise, using standard mathematical symbols,
certain conjectures about the concepts which were empiri-
cally true, e.g., that an integer can never be both prime and
square. Where possible, it would appeal to theorem provers
and model generators to prove/disprove the conjectures, and
use this to assess and rank the concepts and conjectures, in
advance of presentation to the user.

In contrast, HR3 is given as background knowledge Java
code which can generate integers up to a user-given limit
on the number line, and code which can determine the di-
visors of a given integer. It then invents concepts in similar
ways to HR2, but the concepts are themselves expressed as
Java methods which can be run independently of HR3, with
the user supplying integer inputs. Conjectures are similarly
presented as Java methods which, when executed, test the
conjecture empirically over given data (which, as in the case
of number theory, can be generated). Hence, if a particular
conjecture has tested true on the integers from 1 to a million
before being presented, a user can choose to run the method
up to 1 billion, before further investigation. The user can, of
course, interpret the concepts and conjectures expressed as
methods in Java in more mathematical ways if they so de-
sire, but they are spared the common task of implementing
them, as they are originally generated directly as code.

In addition to working with background knowledge that
is Java code, HR3 can work with standard data from ma-
chine learning applications and/or Prolog files. In addition
to the code-centric redesign of the software, another impor-
tant innovation is the usage of randomised data to filter un-
interesting conjectures. As described by Colton, Ramezani,
and Llano (2014), HR3 is orders of magnitude faster than
HR2 and is able to generate millions of concepts and conjec-
tures in minutes/hours (depending on the extent of the data
over which it is running). The space of Java methods which



HR3 can generate includes numerous duplicates, which on
the surface look different, but perform essentially the same
calculation. When HR3 makes conjectures relating these
methods, they are ultimately disappointing, as they express
an artefact of the code construction process rather than a dis-
covery about the data over which the code is run. However,
such disappointing conjectures can be discarded if they are
also true of randomised data, as the probability of the conjec-
ture arising because of a pattern in random data is miniscule,
so the conjectures must relate code not data, and can be dis-
carded (although HR3 can use the information about related
code to substitute slower programs with faster ones). A final
innovation in HR3 is an ability to make conjectures which
are not 100% true, in preparation for working on noisy data.

We note that the HR systems have been used many times
to problematise the world, by inventing mathematical con-
cepts and asking questions about their value, then making
conjectures and asking questions about their truth. As an
early example, HR1 invented the concept of refactorable
numbers as those integers for which the number of divisors
is itself a divisor. It further hypothesised that odd refac-
torable numbers are square numbers, which – along with
other generated conjectures – was proved by Colton (1999).
This discovery was certainly an unknown unknown as the
user (first author) had no conception of refactorable numbers
in advance: HR1 told him something new and interesting in
number theory that he didn’t know he was looking for.

Many approaches to automated programming treat the
problem as one of search: there exists some notional space
of fully-formed programs, and the job of the automated pro-
gramming system is to locate a particular point in this space.
In contrast, programming as a human activity is a highly iter-
ative process, in which a program is built and refined over a
period of development. Arguably, this approach bears some
resemblance to local search in the program space, but this
does not seem to capture the nature of software engineering
as an iterative process. There are many formalisms for iter-
ative software engineering by people. An interesting exam-
ple is test-driven development (TDD) (Beck 2002), which
breaks programming into a series of rapid cycles. A new
feature (or bug fix) is implemented into a program by (1)
writing one or more unit tests to verify the prospective fea-
ture; (2) writing the bare minimum of code to cause the new
test case to pass without breaking any existing tests; and (3)
refactoring the code to add structure and remove duplication.
TDD leads to better quality code at the expense of increased
development time (George and Williams 2004). TDD could
be used to guide automated programming, allowing systems
to build a software artefact iteratively rather than monolithi-
cally, but to our knowledge, this has not been studied.

The game designer Sid Meier says that “[playing] a
game is a series of interesting choices” (Rollings & Mor-
ris 2000). This also fits creative processes for artefact gen-
eration, so it seems promising to apply decision-making
techniques from games in areas where a series of interest-
ing choices must be made, which of course characterises
programming. One such technique is Monte Carlo Tree
Search (MCTS) (Kocsis and Szepesvári 2006; Chaslot et
al. 2006), which is successful in a wide variety of adver-

sarial games (Browne et al. 2012) and decision problems
beyond games (Mańdziuk 2018). A closely related tech-
nique is Nested Monte Carlo Search (NMCS) (Cazenave
2009), which outperforms MCTS in deterministic single-
agent domains. White, Yoo, and Singer (2015) compare
MCTS and NMCS to more traditional Genetic Program-
ming approaches. MCTS and NMCS are found to be com-
petitive on some benchmark tests, which were rooted in
the idea of automated programming as problem solving.
Game tree search, as performed by MCTS approaches is
objective-focused, in that it aims to “win the game” (i.e.,
find a terminal state with a high value according to some util-
ity function). This lends itself more to the problem-solving
paradigm of AI than to artefact generation. Methods such
as novelty search (Lehman and Stanley 2011) or surprise
search (Yannakakis and Liapis 2016), which explore a space
for novel or surprising instances rather than seeking a global
optimum, may be useful if the aim is to generate interesting
programs rather than solve a concrete problem.

Potential Applications of Code Creation
We expect that giving software the ability to creatively gen-
erate code will have myriad uses. We propose the following
general areas in which code-centric creative automated pro-
gram generation may be employed with a significant impact.

• Problematising emerging scientific domains

Scientific understanding is constantly being updated in re-
sponse to new results, which come from new data derived
from new experiments, often via new machinery. On the
cutting edge of scientific domains, breakthroughs such as
improved instrumentation, a theoretical advance, or unex-
pected experimental results can lead to an explosion of ac-
tivity when lots of concepts and conjectures are proposed
and understanding emerges. As an example, brain scanning
equipment occasionally becomes more accurate in sensing
structure and activity in brains, i.e., at previously unseen res-
olutions. In response, physical models of the brain can be
challenged and updated and/or new ones invented to capture
the information arising from the higher resolution scans.

In these emerging fields, there is as much a need to prob-
lematise current understanding as there is to solve problems
which have arisen. When people do this, they notice patterns
with no explanation, invent concepts to capture groupings
without knowing precisely the conceptual definition, pose
hypotheses on small amounts of empirical evidence and at-
tempt to find more substantial support, and attempt to derive
explanations to phenomena without the necessary language.
Often, as the concepts, conjectures and explanations become
more concrete, they will be turned into program code to be-
come operationalised, which affords more accurate study of
the scientific data being harvested.

We propose to automate the task of problematising sci-
entific understanding from the opposite direction. That is,
rather than starting from observations and ending up at code,
we suggest using a system such as HR3 to start by automat-
ically inventing code which exposes previously unforseen
patterns in data, then conceptualising from the code. In



particular, we initially intend to frame the task of prob-
lematising a given dataset as finding quadruples of code
〈A1, A2, A3, A4〉. Here, algorithms A1 and A2 manipulate
data to produce outputs related by algorithm A3, and algo-
rithm A4 shows that this relationship may be interesting. As
an example, A1 and A2 could output a number for each da-
tum in the dataset, A3 could relate A1 and A2 with a boolean
output which is true whenever A2 produces a multiple of A3,
and A4 measures the proportion of data points for which this
is true. An individual quadruple could be selected and pre-
sented because, for the relationship A3, the output of A4 was
the highest among those with A3 in the third slot.

The algorithms in any quadruplet which is statisti-
cally significantly true of the data can be analysed as an
empirically-supported hypothesis, which may lead to more
general conceptual definitions, from which more hypotheses
will flow, leading ultimately to an improved theoretical un-
derstanding of the processes which produced the data, via
the lens of the generated algorithms. By enabling the auto-
matic generation of all four algorithms in a quadruple, we
hope to maximise the chances of discovering problems that
are both interesting and truly unexpected. It may even be
feasible and desirable to close the loop on the scientific pro-
cess and automate the design and execution of experiments
to gather more data in response to the discovery of patterns
expressed via generated code, as per the Robot Scientist de-
scribed by Sparkes et al. (2010), where machine learning,
rather than creative code generation, drove the process.

• Self-modifying automated creators

Many existing creative systems could be enhanced by en-
abling the software an to alter its own code and/or produce
new code for enhanced functionality. We hypothesise that
this would lead to increased appearance of autonomy, sur-
prising levels of novelty and more sophisticated processing
in the creative systems. As an example, we investigated
painting style invention in Colton et al. (2015). This was
done with offline generation of different styles as sets of pa-
rameters, with online style choices driven by machine vi-
sion. An alternative approach would be for the software to
invent code to control aspects of the painting process, e.g.,
how it simulates natural media, and how it uses them in sim-
ulated drawing and painting processes. In this context, we
can imagine generative software detailing the code genera-
tion in commentaries to accompany paintings, framing its
creations with descriptions of how it invented new processes
– which could have much cultural appeal in the arts.

The FloWr system has been used for process invention,
via the generation of novel flowcharts which act as gener-
ative text systems, as described by Charnley, Colton, and
Llano (2014). As an example output, FloWr invented a
flowchart which took the speeches of Churchill as input, ex-
tracted phrases with high negative or positive valence, then
outputs them in pairs where each has the same footprint
(number of syllables). This approach could be enhanced
with code invention for the processes inside each node of
the flowchart. One cultural application of this that we plan
to undertake is to produce an anthology of poems, each
of which has been generated by a different flowchart, with

Figure 2: Example ShaderToy post, where users share We-
bGL shader programs producing 3D animated effects (in this
case, a flyover of a procedurally generated landscape).

nodes containing generated code. Here, each poem would
be portrayed alongside the code which generated it, so both
can be celebrated in the anthology, similar to how Montfort
and Fedorova (2013) present both poems and code.

As mentioned previously, Cook et al. (2013) investigated
how direct code generation could be used to successfully
invent game mechanics for videogames. Here, the AN-
GELINA system performed code generation as part of the
game design process, but this could be taken further, so
that games themselves procedurally generate code for game
mechanics, in a similar way to how they perform proce-
dural content generation (PCG). Just as PCG keeps games
fresh, extends their lifetime and adds intrigue, procedural
mechanic generation could do similar, perhaps in a puzzle
context, where players have to work out what the game me-
chanic is doing through usage of it. In this context, we can
imagine the game presenting the code for a game mechanic
in user-understandable ways, as hints to how best to use it.

• Contributing to recreational coding communities
There are several communities of programmers who write
code for recreational, rather than pragmatic, purposes.
These have varying levels of application to “real-world”
domains. At one end of the scale, the ShaderToy com-
munity (shadertoy.com), illustrated in figure 2, write GPU
fragment shader programs to produce complex 3D visu-
alisations, which have applications in the development of
games and other real-time graphics. ShaderToy’s roots can
be traced back to the demoscene, a digital art culture which
arose in the 1980s around producing advanced graphical and
audio effects from the home computers of the time (Reuna-
nen 2017). Many of the techniques developed by demoscene
coders, particularly in the domain of real-time 3D rendering,
found applications in games and other software domains.

Much less concerned with real-world applicability are
those programmers who write quines (Hofstadter 1979),
which are programs that output their own source code, and
polyglots, which are programs whose source code is a valid
program in multiple languages, performing the same or dif-
ferent tasks in each. These exercises in creative intellect
have arguably no practical purpose, but the activity of pro-
gramming and reading the programs of others is an interest-
ing pastime to many. An even more extreme example is the
International Obfuscated C Code Contest (ioccc.org), where



Figure 3: Example Dwitter post (140-character JavaScript
program producing animated effects) of a chequered flag
blowing in the wind, and follower comment.

participants compete to solve problems in the most unusual
and intentionally obtuse ways possible, contrary to the usual
principles of good software engineering. Between the two
extremes are communities such as Dwitter (dwitter.net, see
fig. 3), and Code Golf (codegolf.stackexchange.com), where
programmers write programs (to generate animated graph-
ics and solve various computational problems, respectively),
but try to do so with the fewest characters possible.

The appeal of recreational programming is twofold. To
the programmer, it is an enjoyable intellectual exercise,
like a cryptic crossword or logic puzzle. In this regard, it
has similarities to programming-based puzzle games such
as Shenzhen I/O, Silicon Zeroes and Human Resource Ma-
chine, where players code as part of the gameplay, although
these games tend to adapt a more traditional view of coding
as problem solving, albeit in a game environment. To the
community, it is a celebration of code as an artefact that ex-
ists solely for its own sake, to be appreciated in itself, rather
than as producing useful/pleasing output. We believe that
automated creative programming approaches such as those
described above could contribute to recreational program-
ming communities, perhaps producing intriguing software
that people might not normally think of coding, in a similar
way to how boardgame playing agents occasionally make
moves that grandmasters would not necessarily think of.

Conclusions and Future Work
We have argued that Computational Creativity research
would be well served by investigating the creative act of
software engineering and implementing systems for gener-
ative coding. We proposed that such automated software
production should lead to culturally appreciated programs
which problematise the world, providing enhanced under-

standing and opportunities in areas like scientific discov-
ery, generative systems and recreational coding. We pro-
posed approaches including extending mathematical theory
formation to automated programming, and applying MCTS
to making decisions in iterative code formation.

Whatever the method for achieving creative automated
programming, if applied for the purposes of problematising
the world, this will need to be guided by current thinking
in Computational Creativity research. The problem solv-
ing paradigm has dominated over the artefact generation
paradigm in AI research largely because solving carefully
hand crafted problems is guaranteed to be valuable, and sys-
tems can be formally evaluated in terms of quality of solu-
tion, efficiency, coverage, etc. Notwithstanding some com-
petitions pitching one generative system against another,
such as the Mario level generation competition (Shaker et
al. 2011), it is generally difficult to compare and contrast
the kinds of artistic creations or scientific discoveries that
Computational Creativity systems generate. This will be ex-
acerbated when generated code artefacts expose unknown
unknowns, as the user should be totally unaware of the prob-
lem posed, and hence likely to not recognise its value easily.

In this context, it seems likely that the software will
have to make some efforts to convince users of the value
of the code it generates, drawing on approaches to fram-
ing its processes and products as per Charnley, Pease, and
Colton (2012). Moreover, evaluations of generated algo-
rithms may actually involve assessing the creativity of the
software which produced them, and could draw on work
by Colton, Pease, and Charnley (2011). In return, enabling
software to generate code could help solve a philosophical
issue which we could term the “mini-me” problem: that cre-
ativity is projected onto the programmer and/or the user of
generative software because of the explicit nature of the in-
structions given through human programming. When cre-
ative software can in principle rewrite its entire code-base, it
will be possible to argue that the programmer has negligible
effect on how the software operates or what it produces.

The first steps towards applying the HR3 system to cre-
ative code generation have been taken (Colton, Ramezani,
and Llano 2014), but there is much work still left to do. In
particular, we need to address how to scale up from the soft-
ware producing small programs to more sophisticated soft-
ware. We will be investigating both the approach to pro-
ducing code-quadruples to expose unknown unknowns de-
scribed above, where four algorithms will be related, and
HR3 inventing code to sit inside larger flowcharts gener-
ated by the FloWr system (Charnley, Colton, and Llano
2014). We will also look into how sampling methods for
both data and the code space can be used to enable HR3 to
search deeper for larger algorithmic constructions. Finally,
we plan to develop a methodology whereby domain experts
such as scientists or game designers can easily provide guid-
ance to the code generation process in terms of mathemati-
cal/programmatic/logical ingredients for code and give feed-
back about the quality of the code produced.

The study of deep learning systems as generators of com-
puter programs hints at an explosion of interest across com-
puter science in software systems programming themselves



and/or automatically designing code for practical and prob-
lem solving purposes. Within this ecosystem, there will be
space for a range of approaches, including unsupervised ap-
proaches to creative automated program synthesis as pro-
posed here. It is possible that deep learning will be seen
historically as the first truly successful approach to auto-
mated programming, and we hope that more unsupervised
approaches, driven by the desire to problematise the world
through generated code celebrated in its own right, will also
be influential in the progress of computer science.
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