The HR3 System for Automated Code Generation in Creative Settings

Simon Colton,!? Alison Pease,®> Michael Cook' and Chunyang Chen'!
! SensiLab, Faculty of Information Technology, Monash University, Australia
2 Game Al Group, School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
3 Department of Computing, University of Dundee, UK
s.colton@qmul.ac.uk a.pease@dundee.ac.uk mike@gamesbyangelina.org chunyang.chen@monash.edu

Abstract

We describe the HR3 system for automated code generation,
and its use in creative tasks. We outline the motivations
and overall ideology behind its construction, most notably
by identifying some distinctions in Al methodology which
can be ignored when Al tasks are viewed as code generation
problems to be solved. We further describe the nature of the
approach in terms of: a programmatic interface to a Java API;
production rule-based batch processing of data; on-demand
code generation and inspection, and the usage of randomised
and meta-level codebases. To support the claim that the ap-
proach is general purpose, we describe five applications in
three areas normally covered by separate Computational Cre-
ativity systems, namely mathematical discovery, datamining
and generative art. We end by discussing future directions
for the HR3 system and how this project might address some
higher-level issues in Computational Creativity.

Introduction

In (Colton, Powley, and Cook 2018), we proposed inves-
tigating and automating the creative act of software engi-
neering as a major driving force for Computational Creativ-
ity research. We further suggested two main principles for
undertaking projects where automated code generation was
a central technique, namely: (i) that this could/should be
done to problematise the world, i.e., used to introduce new
problems/hypotheses/conjectures and creative affordances
instead of/in addition to merely solving given problems, and
(ii) generated programs should be celebrated as creations in
their own right, not just as a means to an end. In this way,
automatic code generation could provide a suitable test-
ing ground for cutting edge Computational Creativity tech-
niques such as framing (Charnley, Pease, and Colton 2012)
and dialogue generation to convince users of the value of the
generated code artefacts, and address difficult philosophical
issues in the field, such as (a lack of) autonomy and inten-
tionality in hand-programmed creative systems.

Existing techniques for code generation include auto-
mated program synthesis (Gulwani, Polozov, and Singh
2017), genetic programming (Krawiec 2016) and machine
learning techniques such as inductive logic programming
(Muggleton 1991). These are surveyed in (Colton, Pow-
ley, and Cook 2018), and a tentative position is presented
that their limitations preclude them becoming the basis for a

general-purpose automated code generation approach. An-
other contribution to automated code generation is the HR
series of theory formation systems. HR1 (Colton 2002)
was a mathematical concept formation program employed
in discovery tasks such as the invention of integer sequences
(Colton, Bundy, and Walsh 2000). HR2 (Colton and Mug-
gleton 2006) was a more general-purpose datamining sys-
tem, but has mainly been applied to mathematical discovery
tasks, often in conjunction with other reasoning systems, for
example to classify finite algebras (Sorge et al. 2008).

These systems can be seen as automated code generators,
as HR1 and HR2 could produce Prolog code to represent the
concepts it invented, and HR2 could also take code as input
to generate data instead of reading it from a file. The code
could be written in Prolog or Java and could wrap around
code from systems like the Maple computer algebra system
(Redfern 1999), so HR2 was essentially making discover-
ies about Maple code (Colton 2004). The HR3 system has
been developed from scratch over the last five years to fully
embrace automated code generation based on the central ap-
proach of the earlier systems. An early report on the design
decisions was given in (Colton, Ramezani, and Llano 2014),
along with a comparison of HR3 with HR2 and details of
two applications. We describe the latest version of the sys-
tem here, with five new applications, most notably with HR3
being used for the first time in generative art.

Ideology and Motivation

We are developing HR3 as a general-purpose code gener-
ation intelligent system for tasks requiring creativity. Our
long-term aim is for it to undertake any coding task that a
human programmer could complete, and coding tasks that
people wouldn’t be expected to hand-code, e.g., for gener-
ating images of imaginary faces. To achieve this, we view
as many traditional Al tasks as possible as automated code
generation problems. Our ideology also includes attempting
to remove the following distinctions, which seem somewhat
artificial in a context of automated code generation:

® Task Distinctions. Broadly speaking, generative Al
methods produce valuable artefacts such as paintings,
videogames, poems, musical composition, mathemati-
cal concepts, etc., which become an object of interac-
tion/consumption/study. In contrast, analytic methods pro-
duce more information about given artefacts, and support

methods provide additional code which makes the whole
project work. In a generative art project, for example, we
might require software which (a) produces images (genera-
tive), (b) provides information about the textures in the im-
ages (analytic), and (c) presents certain images based on tex-
ture (support). A human programmer could write code for
all these tasks, hence we aim for HR3 to do similarly.

® Domain Distinctions. Certain Al approaches, like
datamining, are domain independent, but the same is
not always true of the practical implementations of these
approaches. This is particularly the case for the kinds
of generative systems seen in Computational Creativity
research, e.g., it would be unusual currently to see a music-
generating system write a poem or paint a picture. Often
systems are further task-localised, e.g., to generate harmon-
isations of given melodies rather than producing new ones.
We aim for HR3 to be domain independent by enabling it to
work with data of any type in a domain-independent way.

® Clarity Distinctions. There is often a distinction made
between ‘black box’ techniques, the results/processing of
which are difficult to understand, and more comprehensi-
ble techniques. We aim for HR3 to be able to generate
both simple programs if necessary for people to understand
them (for example, in datamining), and complex programs
where some other criteria such as correctness, speed, variety
or beauty in the processing and/or output is more important
than clarity, e.g., in generative art.

There are other distinctions in Al methodology that we
aim to blur, such as the difference between training and
testing stages in machine learning applications, which ap-
proaches such as online-learning (Fiat and Woeginger 1998)
and one-shot learning already address. Ultimately, we aim
for another major distinction to be removed, which is that
between a program and its programmer. That is, as HR3
can output code, we ultimately aim for it to re-write, aug-
ment and enhance parts of its own program, and we briefly
discuss potential benefits of this in the conclusions section.

We gain motivation from the meteoric success of deep
learning (DL) approaches in Al. These approaches are ap-
plied to both analytic and generative tasks and are domain
independent. Moreover, as argued in (Colton, Powley, and
Cook 2018), DL clearly performs automatic programming,
although the output is not code. Deep learning is so pow-
erful because it produces very large (but not overfitting)
programs represented as artificial neural networks (ANNS).
This comes at the cost of comprehensibility, as it is usu-
ally difficult to understand how an ANN performs a predic-
tion, or generates an artefact. Methods to understand ANNs
come from visualisation (which led to the huge growth in
generative uses of DL), as well as methods akin to human
neuroimaging (seeing which parts of an ANN fire for given
inputs) and psychology (asking how an ANN views a series
of inputs), but these are rarely as specific or comprehensible
as those produced by symbolic Al approaches.

Charnley, Pease and Colton (2012) argue that software ex-
plaining how and why it made something is important in
accepting the software as creative, and Colton, Pease and
Saunders (2018) add that communicating authenticity will

likely be required for acceptance of output as valid, in cer-
tain areas like poetry. Hence, we believe that more explain-
able Al system are preferred in creative settings over black
box approaches. As described below, HR3’s operation is not
constrained by a rigid representation scheme, and the Java
output it produces can, in principle, manipulate data in any
way. General code is more flexible than ANNSs, hence HR3
could be more task independent than DL, and code is easier
to understand than ANN processing, hence HR3 could be as
powerful, yet more comprehensible, than DL.

In the next section, we describe how HR3 operates as a
Java API in data-centric creative projects. We then illus-
trate how HR3 operates, by presenting five new applica-
tions in three distinct areas, namely mathematical discovery,
datamining and generative art. To conclude, we return to
the ideology above to see where HR3 adheres, and where
improvements are needed. We end by discussing how this
project addresses some Computational Creativity issues, and
by describing some directions for future work.

Automated Code Generation

HR3 is a Java Application Programming Interface (API)
which can be called upon in various ways for creative
projects, to automatically build and employ a codebase
comprising a set of methods. Projects with HR3 are data-
centric, with each method comprising procedures that ma-
nipulate a database which is either read from a file or gen-
erated initially by user-supplied background methods. The
simplest way to employ HR3 is to write a single Java file ad-
hering to a few constraints. Normally, this file grows and is
constantly tweaked during the project, so we think of it as a
sketchpad. Sketchpads employ the HR3 API in a codebase
generation phase, followed by a codebase interrogation
phase. A GUI is available as an Integrated Development
Environment (IDE). While sketchpads can be developed in
other IDEs like Eclipse, the HR3 IDE allows the staggering
of the generation and interrogation phases, so codebases stay
in memory while the user alters and executes the interroga-
tion code repeatedly. As codebase generation can be slow,
while interrogation isn’t usually, this saves time.

Importantly (and somewhat ironically for a code gener-
ation system), no compilable code is generated until re-
quested by the user, which is usually during the interrogation
phase. To explain this, we note that in the worst-case sce-
nario, automated code generation — for instance via a genetic
programming (GP) approach — must: (i) generate a represen-
tation for a new program, e.g., by crossover and mutation of
programs represented as trees (ii) translate the program into
compilable code (iii) write this to a file (iv) compile the file
into a program (v) run the program (vi) collate the output
and (vii) analyse the output, e.g., to estimate fitness. The
generation of millions of programs in this way can be slow,
which is why in GP, there are many optimisations available.
With HR3, for efficiency, we avoid stages (i) to (iv). That is,
data is manipulated internally in such a way that it contains
the output from methods that HR3 has invented. Standalone
Java programs are not created, compiled and executed dur-
ing codebase generation, but are rather produced on-demand
during the interrogation phase later.

Production Rule Batch Applications

HR3 starts by executing the user-given background methods
expressed as Java code in a sketchpad. The first background
method always produces a set of string constants that act as
labels for what we call data records. The other background
methods flesh out the records by each producing an ordered
list of tuples (one list per record) by generating data pro-
grammatically and/or reading it from a file. For example,
in the datamining applications below, the background meth-
ods read data from a CSV file. The first background method
generates record IDs using the line numbers in the file and
the other methods each extract one value per line, produc-
ing singleton tuples in the ordered lists. In contrast, in the
numerical discovery application below, the first background
method generates a set of integers, and the others calculate
the divisors and digits of each integer, producing different
length tuples for different integers. The two generative art
applications below similarly start with an empty database
and background methods which generate appropriate data.

The background methods are taken as the seed codebase
that HR3 will construct all future methods from. The user
directs the usage of production rules (PRs, described be-
low) which manipulate information about existing methods
into that for a set of newly invented procedures. The appli-
cation of a PR to an existing method generates new output
as an ordered list of tuples for each record, and also a new
procedure, represented as a tree capturing the series of PR
steps used to construct it — see figure 1 for an example pro-
cedure. Because quite different procedures can produce the
same output, we define a method as a pair which contains
(i) the data output by the manipulations of the PRs for the
method on the database, and (ii) a set of different procedures
which produced that output.

Starting with the seed codebase, the repeated application
of PRs to existing methods builds up the codebase. Unary
PRs are applied to one existing method, and binary PRs are
applied to two. Under normal operation, each production
rule is applied to the batch of methods (unary) or pairs of
methods (binary) in the codebase that the PR hasn’t pre-
viously been applied to. For a background or generated
method, m, and an ordered list of records R, we write m(r)
for the output of m when applied to a » € R and we write
m(R) for the ordered list of outputs of m when applied to
every r € R, in order. With this notation, the core compo-
nents of a codebase containing H methods are:

® Aset R ={ry,...,r,} of record IDs
® Sets C;, Cy, C, of integer, float and string constants resp.
® A set of methods M = {my,...,mpy}, where Vi:

mi(R) = ({m;(r1),...,m;i(rn)}, {proci,...,procg})
where m;(R) is an ordered list ranging over r € R, such
that m;(r) is a set of typed tuples of the same length,
ie., mq(r) = {to, Ce ,tn} and Vt € mq;(r), dilstt; =
(c1,...,c), with each ¢; being a member of C;, C or C;
® A set, F, of procedures for methods, m, where
VreR,m(r)={}

Informally, for every method HR3 invents, it records (a) the
output of that method when applied to the database, as an

ordered list of sets of tuples, one set per record, and (b) the
set of procedures that generate methods producing exactly
this output. HR3 also separately keeps a set of procedures
that led to empty outputs for every record in the database.

The main innovation in the HR projects has been the use
of production rules which generate data as positive exam-
ples of mathematical concepts (in HR1 and HR?2) and output
by procedures (in HR3). The data generation processes are
cumulative, as they manipulate output from existing proce-
dures into the output for multiple new ones. This is more
efficient than starting from scratch each time with the data
generated from the background methods, and is analogous to
how GP approaches cache sub-tree outputs (Keijzer 2004).
There are currently 27 PRs, split into six categories, given
in the following table with an indication of whether they are
unary (1), binary (2) or neither (0).

Logical: conjunction(2), disjunction(2),
existential(1), instantiation(1),
inversion(1), negation(2),

overlap(2), unifyVariables(1)

Mathematical: exponential(1), trigonometry(1)

Meta: cull(0), tag(0)

Numerical: banding(1), bounds(1), count(1),
interArithmetic(2), interNumCompare(2),
intraArithmetic(1), intraNumCompare(1),
makeFractional(1), round(1)

Programmatic: interBitwise(2), randomChooser(1)

Statistical: normalise(1), numSummary(2), rank(1)
sampling(1)

A sequence of PR applications specified by the user in the
sketchpad are carried out by HR3 during the codebase con-
struction phase. Many PRs have a parameterisation speci-
fying different ways they can be applied, e.g., the numSum-
mary production rule calculates: min, max, mean, summa-
tion, standard deviation and range values. These can be all
applied, or a subset specified with a parameterisation. With
all possible parameterisations, the PRs produce 49 different
types of Java statement. However, this belies a larger num-
ber, as there is a different application of the instantiation
rule per constant in C;, C'y and C, and multiple applications
of unifyVariables, overlap and existential, depending on the
types in the tuples output by the methods. The PRs in the
Meta category don’t produce new procedures, but rather cull
selectively reduces the codebase for memory/time-intensive
projects, and tag labels certain methods, so future PR steps
can be applied only to batches of methods tagged appropri-
ately. We include as much processing as possible like this at
production rule level, to increase homogenuity.

The application of a unary PR to an existing method m
involves first manipulating m(r) for every r € R to pro-
duce a new set of tuples m’(r), and then manipulating the
procedure for m into a new one for m’. For each existing
method in a batch application of a PR, HR3 cycles through
all possible parameterisations of the PR, curtailed by the
user if required. As an example, the existential production
rule is parameterised by an integer which represents a posi-
tion, p, in the tuples of m(r). For a given record r, it oper-
ates by first removing the entry at position p from each tuple

Conjunction

Instantiation(pos0 = 18)

Instantiation(pos0 = 18)

Divisors Count(pos0)

Divisors

Figure 1: Example procedure for a Boolean method over
integers, with PR name and parameterisations in brackets.

in m(r), and then removing any repetitions in the resulting
set, recording the remaining altered tuples in m/(r). As an-
other example, the frigonometry PR is also parameterised
by a position p and cycles through all possibilities for this.
It replaces the value x in each tuple at p with ¢(z) cycling
through ¢ € {sin, cos,tan}.

Each binary PR manipulates the output of two existing
methods, e.g., given methods m, and mo and record r, the
conjunction/disjunction/negation PRs produce tuples thus:

Conjunction: m/(r) ={t:t €my(r)andt € ma(r)}
Disjunction: m/(r) ={t:t € mi(r)ort € ma(r)}
Negation: m/(r) ={t:t € my(r)andt & ma(r)}

The storage, retrieval and manipulation of tuples in HR3
has been optimised to make the application of such bi-
nary production rules as efficient as possible, as there can
be millions of applications of binary rules, with far fewer
for unary PRs. With the negation PR, HR3 applies it to
both pairs (m,ms), and (msg, my), and for all three of
these binary PRs, HR3 checks that m; # msy. As another
example, the interArithmetic PR calculates new tuples by
adding/subtracting/dividing/multiplying values in the same
position in each pair of tuples of m; and mo.

As mentioned above, different sequences of PR manipu-
lations of the database can lead to different procedures that
produce exactly the same output. It would be redundant to
store this output repeatedly, so instead HR3 adds details of
any procedure with exactly the same output as that in an
existing method m, to the set of procedures that form part
of m. It only adds a new method to the codebase if the
output, m(R), is distinct from all the other methods cur-
rently in the codebase. We have undertaken much experi-
mentation with representation and hashing schemes, as the
retrieval of a match to a new output is one of the slowest
parts of HR3’s process. Whenever HR3 invents a method m
for which Vr € R, m(r) = {}, it does not add this method
to the codebase, but stores the procedure for it in a set, F,
along with others that also produced empty outputs.

On-Demand Code Generation and Inspection

After the codebase construction, HR3 moves onto the user’s
code in the sketchpad which details how to interrogate the
codebase. HR3 can be instructed to turn a particular proce-
dure from a method into executable Java code via the Spoon
API for Java code generation (Pawlak et al. 2015). In the
next section, we show how HR3 forms a codebase of meth-

ods which apply to integers, and from which the user ex-
tracts some coincidences. In one run of the sketchpad, HR3
invented a Boolean procedure which checks whether an in-
teger is a multiple of 18 and has 18 divisors, as portrayed in
figure 1. The code generated by HR3 for this procedure is
given in figure 2. We see that the comments to the method
include a definition in a mathematical form which refers to
the code for calculating divisors, as given by the user. The
comments also give a flattened version of the tree for the pro-
cedure and the set of examples (output) that HR3 calculated
for it during the codebase construction.

The code in figure 2 is in its most compressed form, and
refers directly to the PRs HR3 employed in constructing
method number 7255. This presentation is for people who
understand HR3’s processing. However, the user can spec-
ify that HR3 replaces the calls to methods such as count
and instantiation by code which manipulates data di-
rectly. If this is not specified, then the methods referred
to in the body of method7255 are included in the Java
file, in addition to the background code, which is extracted
from the sketchpad, to make the file stand-alone. To make
the file executable, a suitable main method, which calls
method7255 with appropriate inputs, is also added.

The stand-alone code for a method provides an accurate
representation of how it manipulates data, but also allows
users to run the code on a larger set of records, e.g., the user
could apply method7255 to the integers between one and
a million, even though the codebase was constructed using
a much smaller set. The HR3 API enables users to search
for methods, e.g., all Boolean methods which output true for
a particular record, or all methods with more than 17 posi-
tive examples, etc. Users can also employ the API to out-
put code for conjectures involving methods of interest, m.
For instance, they can ask for equivalence conjectures, i.e.,
all the other methods m’ which output the same or similar
(based on average per-record set equality) tuples as m over
the database, up to a user-given minimum correctness level,
such as 90%. The Java for equivalences contains the code
for particular procedures of m and m/’, as well as a main
method to check equivalence of their outputs, enabling the
user to check the conjecture over a larger set of inputs.

The user can also use HR3 to produce implication conjec-
tures, where the output from method m/ is a subset or super-
set of that of m, and mutual-exclusion conjectures, where
methods m/’ are found which share little or no output with m,
again with a minimum correctness level. The set E of empty
procedures can also be the source of non-existence conjec-
tures, and the user can ask for Java code to check these over
a larger set of inputs. The HR3 API includes techniques for
presenting, sorting and filtering conjectures, and for check-
ing them against random data, as described below.

Random and Meta-Codebases

HR3 works directly with Java code, rather than a formal-
ism like first order logic, so can in principle produce algo-
rithms for any task, given the correct application of the right
production rules. Such an expressive approach means that
HR3 generates multiple methods which look different but
produce the same output. In some cases, these highlight a

ArrayList<Object[]> count_1 =
ArrayList<Object[]> instantiation_2 =

// Def: [a] : (18.0=|xl:(divisors(a,xl))|) & (divisors(a,18.0))
// Proc: [Conjunction,[Instantiation,[Count,[divisors,0],0],0,0,18],[Instantiation,[divisors,0],0,0,18]]
// Ex: 180, 252, 288, 396, 450, 468, 612, 684, 828, 882, 972, 1044, 1116, 1332, 1476, 1548, 1692, 1908
public ArrayList<Object[]> method7255 0() {

ArrayList<Object[]> divisorsAsTuples = divisorsAsTuples(stringData);

ArrayList<Object[]> instantiation_1 = instantiation(divisorsAsTuples, 0, 0, 18.0);

count (divisorsAsTuples,
instantiation(count_1, 0, 0, 18.0);
return conjunction(instantiation_2, instantiation_1);

0);

Figure 2: Code fragment generated for the procedure given in figure 1.

discovery about the data, but in others the equivalence is
due to the nature of the procedures alone. In the latter case,
conjectures identifying such patterns are rarely interesting,
and it is frustrating to check the conjecture only to find that
it expresses an algorithmic tautology. The lack of formalism
largely rules out a deductive approach to showing equiva-
lence in these case. Instead, we implemented techniques to
generate a random codebase by shuffling the data generated
by the original background methods.

When the procedures involved in a conjecture are applied
to the random data, if it is still true empirically, it can be
fairly safely ignored, as the lack of semantics in the shuffled
data indicates a very low probability that the nature of the
data is responsible for the pattern expressed by the conjec-
ture. Hence the only alternative is that the procedures them-
selves force any data into the pattern, and so the conjecture
is not interesting. During codebase interrogation, the user
can instruct HR3 to employ this method to filter out such
uninteresting conjectures. The usage of random codebases
is covered in more detail in (Colton, Ramezani, and Llano
2014), and it suffices here to note that the approach can be
used on any conjecture type. Moreover, HR3 employs ran-
dom codebases, along with random sequences of PR appli-
cations, to check that the on-demand code it produces for
method m outputs the same as the m(R) calculated during
the codebase construction phase. Used during the devel-
opment of new PRs, this has occasionally highlighted mis-
matches which have been corrected.

Given a ground codebase, G, HR3 constructs a meta-
codebase, GM, by first taking all the methods of G as the
records in G, and then giving each distinct tuple of con-
stants in m(R) (for any method m in G) a unique label. It
then automatically constructs and adds a single background
method, b, to GM. The output b(r) for a record r in GM
is a set of singleton tuples, with each of these meta-tuples
containing a label corresponding to the ground-tuple in G
that the ground-method in G (corresponding to r in GM),
outputs. The user can also specify that HR3 adds some ad-
ditional background methods to G™ that (i) calculate values
based on what the ground methods output (ii) express con-
jectures about the ground methods, and (iii) capture how the
methods were constructed, using the procedures in G. For
instance, HR3 can add a background method to the meta-
codebase which outputs the list of production rule names
that went into constructing the ground methods. Once con-
structed in this fashion, GM is ready for the codebase con-
struction stage, and HR3 can construct meta-methods which
highlight discoveries about the ground codebase.

Example Applications

We aim here to show robustness to different tasks/domains,
rather than how successful HR3 is for a particular applica-
tion or providing operational statistics, etc. We show our
ideology of expressing different Al tasks as code generation
problems in action, and highlight the practical usage of HR3
sketchpads to achieve goals in creative projects.

Mathematical Discovery

HR1 and HR2 were both effective in number theory, gen-
erating new integer sequences and making conjectures
(Colton, Bundy, and Walsh 2000). Applying HR3 to such
tasks, we employ the following simple sketchpad file:

package projects.maths_discovery.integer_sequences;
import java.util.ArrayList;

import ide.Sketchpad;

import production_rules.PR;

public class IntegerSequences extends HR3Sketchpad {

public ArrayList<String> makelIntegers(int 1, int u) {
// Code generating integers between 1 and u

}

public ArrayList<Integer> divisors(String n) {
// Code calculating divisors of n

}

public ArrayList<Integer> digits(String n) {
// Code calculating digits of n
}

public void generateCodeBase() {
generateRecords (IntegerSequences.class,
"makeIntegers", 1, 1000);
addBackgroundMethods (IntegerSequences.class,

"divisors",

"digits");

applyPR (PR.
applyPR (PR.
applyPR (PR.
applyPR (PR.
applyPR (PR.
applyPR (PR.
applyPR (PR.

}

public void

Count) ;
Conjunction);
Existential);

Instantiation,

Count) ;
Inversion,
Conjunction,

"useArity:1");

;
"repeats:2");

interrogateCodeBase () {
ArrayList<Integer> methodNums =

getBooleanMethodsTrueFor ("23",

printSeparator();

println (methodNums.size ()
(Integer mNum :

for

methodNums)

{

ng3m,

+ " methods");

"uselnteger:1,2,3");

n73m,

"113");

println (mNum + ".
+ getOutput (mNum)
}

}
}

This contains three background methods (bodies omitted
for brevity), plus a method for generating the codebase and
one for interrogating it. The code for generating integers,
and calculating the divisors and digits of an integer take
the most natural Integer input and output ArrayLists
of Integers. The IntegerSequence class uses
API methods inherited from HRSketchpad, includ-
ing generateRecords, addBackgroundMethods,

" + getDefinition (mNum, O0)
+ oy

4o

Prod Rule Progress Procedures Different Boolean Out-Repeats Out-Empties Tuples Memory(Gb) Time (ms) Methods/s
Background 2 2 0 0 0 8771 0.00415 72 28
Count 4 4 0 0 0 9866 0.00441 89 45
Conjunction 10 10 0 0 0 9866 0.00562 95 105
Existential 20 16 6 0 0 10866 0.00876 108 185
Instantiation .. 50 40 30 5 0 10866 0.00651 131 382
Count 58 47 30 6 0 10903 0.01073 137 423
Inversion 88 77 60 6 0 10903 0.01802 150 587
Conjunction 1994 792 743 646 551 10903 0.08788 324 6154
Conjunction 276917 16897 16817 198056 61959 10903 1.54067 32914 8413
1314 methods
15. exists x1 ((x1=|x2:(digits(a,x2))|) & (xl=|x3:(divisors(a,x3))|)) 1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,]
20. digits(a,3.0) (3, 13, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 53, 63, 73, 83, 93, 103, 113, 123, 130,]
22. 2.0=|x1: (divisors(a,x1))|[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, ...]
25. 2.0=|x1:(digits(a,x1)) |10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ...]
53. -(divisors(a,2.0))[(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, ...]
-(divisors(a,3.0)) (1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, ...]

54.

Figure 3: Example HR3 output from the IntegerSequences. java sketchpad given above.

applyPR and getBooleanMethodsTrueFor, and
there are many more available. In the sketchpad, the user
specifies generating integers 1 to 1,000 for R, and provides
some batch parameters to focus the application of the PRs,
i.e., specifying that instantiation should only use integers 1,
2 and 3; inversion (which finds the complement of tuple sets)
should only be applied to methods of arity 1; and the final
conjunction batch step should be repeated twice. The inter-
rogation of the codeBase in the sketchpad is a puzzle: what
do the numbers 23, 53, 73 and 113 have in common?

The output from running this sketchpad is in figure 3. We
see that — using a single thread on a 2.6Ghz MacBook Pro
laptop — the generation phase took around 33 seconds, and
HR3 generated and tested 276,917 procedures (at 8,413 per
second), producing 16,897 different methods (in terms of
procedure outputs), of which 16,817 were Boolean. 198,056
PR steps generated procedures with the same output as one
in a method already in the codebase, and 61,959 steps pro-
duced an empty procedure. HR3 answers the puzzle with
1,314 procedures, with six given in figure 3: the integers 23,
53, 73, 113 have the same number of (distinct) digits as di-
visors, namely 2, making them prime numbers, they all have
the digit 3 in them, but are not divisible by 2 or 3.

To take the application further than previously with HR2,
we dropped the constraints on the instantiation PR, ran
the codebase generation again, and altered the sketchpad
interrogateCodeBase instructions. In particular, we
added code to produce a meta-codebase, GM | from the
ground one G. Recalling that each record in G™ repre-
sents a method in G, the background methods in GM were
specified to be both the tuple labels (see above) and the pro-
duction rule steps for each procedure of m in G. Using
the applyPR API call, we applied the count and banding
PRs to build a meta-codebase. Using API calls interrogating
GM and cross-referencing the methods in GG, with around
10 lines of bespoke code in the sketchpad, we extracted all
methods of G which employed the instantiation PR ground-
ing variables to a particular number n which was also equal
to the number of tuples output by G. We then interpreted
these methods and their output as numerical coincidences.

The output was slim, and we were able to cherrypick and
tweet some of the more interesting coincidences, like: “Did
you know that between 1 and 1,000, there are 17 multiples
of 17 with the digit 7 in them, and 18 multiples of 18 with

an 8 in them?” and: “Between 1 and 1,000, there are 19
primes with a 1 and a 9 in them, and 54 numbers with a 5
and a 4 in them”. Running the sketchpad repeatedly with
different integer ranges, we produced more results, such as:
“Between 1 and 10,000, there are 36 multiples of 36 with
a 3 and a 6 in them, and 45 multiples of 45 with a 4 and a
5 in them” and: “Between 1 and 2018, there are 18 multi-
ples of 18 with exactly 18 divisors”. It is beyond the scope
of this paper (where we are assessing the generality, rather
than the power, of the approach) to evaluate this application
thoroughly. However, we are currently studying the value (if
any) of coincidences for everyday creativity, and aim to use
HR3 to find coincidences in text and other media.

Datamining

We re-frame datamining as the automatic generation of
triples of algorithms which are related via given data. Stan-
dard association rule (AR) mining extracts relationships of
the forma = vy Ab=v9Ac=v3 - d =14 Ne = vs.
While this representation is useful for understanding discov-
eries about the data, for it to be used operationally (e.g., to
see if it holds for a different dataset), the AR will need to be
expressed or interpreted as code. In this context, we see that
the left hand side (LHS) of the AR is captured by an algo-
rithm extracting all data records from a database for which
the value in column « is v1, in column b is v and column ¢
is v3, with the algorithm for the RHS similar. The implica-
tion of the AR is a third algorithm which relates the LHS and
RHS algorithms, in this case checking whether the output of
the LHS is a subset of the output for the RHS algorithm.
For various (good) reasons of efficiency, correctness
checking and avoiding redundancy, standard datamining is
usually limited to finding ARs of the above form, possibly
with negation added. HR3 can perform datamining in this
standard way by constructing a codebase with only the in-
stantiation and conjunction PRs on data supplied in a CSV
file, then using implication conjecture making at the interro-
gation stage. However, HR3 is able to construct and inves-
tigate a much richer variety of algorithms for the LHS and
RHS of ARs, but currently the relating algorithm is fixed to
the implication (subset), equivalence (equality) and mutual-
exclusivity conjectures mentioned above. For instance, by
employing the negate PR, HR3 can mine ARs with LHS and
RHS such as: a # v1 Ab = vy A ¢ # vs. By also employing

exists, this extends to: a = b A ¢ = v3 and the arithmetic
PRs enable constructions such as : a + b = v; A ¢ # d, etc.

Re-framed thus, we applied code generation to datamin-
ing two substantial datasets. The first contains the posi-
tion, size and colour of around 1.9m GUI elements from
roughly 10,000 Android app screens. We used HR3 to find
ARs linking GUI elements to the score on the Android store.
The second dataset contains traces from simple arcade-style
videogames, compiled to construct a forward model for the
game (Dockhorn and Appledoorn 2018). We also used HR3
to mine ARs that pay into a forward model for each game.
Both applications were successful, and HR3 was able to gen-
erate thousands of useful conjectures containing statements
of various types as above, interpreted as association rules.
The API enabled us to sample the data for efficiency, then
run generated Java code over the entire dataset to check the
validity of interesting ARs. We used the API to calculate
support, confidence and Z-values for each AR, with the lat-
ter being very useful in sorting results, as high Z-values of-
ten indicate surprising, yet well-supported results. The cor-
rectness minimum limit was also very useful for experimen-
tation, and the GUI staggering of codebase generation and
interrogation saved much time. In both cases, we used ran-
dom codebases to discard dull conjectures, which worked
very well, removing large numbers of conjectures, without
(on inspection) discarding any interesting ones.

Generative Art

To expand the tasks HR3 can be applied to, we looked
at pixel-based art of the kind generated in (Sims 1991).
Background methods in the sketchpad produce record IDs
as (z,y) pixels in ranges specified by the user (normally
250 % 250), and extract the x and the y coordinates. The code
generation phase involves initially applying the trigonom-
etry, exponential, interArithmetic and conjunction PRs in
batches. This produces thousands of large, incomprehen-
sible, functions (with 50+ nodes in the procedure tree),
which calculate an output for each pixel based on its coordi-
nates, using trigonomety, surds, exponentials and arithmetic.
Codebase construction ends with (a) the makeFractional PR
removing integer parts of outputs, (b) normalise mapping
outputs to integers in the range 0 to 255, and (c) overlap
constructing methods which output triples of these integers.
Tagging is employed so only methods output by the previ-
ous PR step are employed in the next one, which accelerates
a search for more complex procedures, required here.
Around 20 lines of code were added to the sketchpad to
take each method outputting triples, and interpret the out-
put as (r, g,b) values in a Buf feredImage object. For
any images of interest, the user generated Java code for the
corresponding method, which produced larger (4000 x 4000
pixel) images for high-res printing and screen display (see
figure 4(a)). The intended artwork for this project (entitled
Style Please as a pun on the phrase ‘Style Police’) was a
montage of a face which changes styles over time. Meta-
level codebase generation was employed to collate sets of
images in a particular style. In particular, the outputs from
the ground methods were processed using the banding PR
at the meta-level, followed by the count PR and another

Figure 4: (a) pixel-based generated images (b) the ‘scab-
bard’, ‘dragonfly’ and ‘crane’ plotted artworks from HR3
generated images (c) pop-up exhibition ‘DoodleFeatures’.

banding step. This identified images (i.e., sets of (r,g,b)
triples in the method outputs) where, for example, the num-
ber of green(ish) pixels was higher than that of red ones,
and many other visually obvious styles, such as greyscale,
rough/smooth textured, monotone, etc. 100,000 images of
(100 x 100) pixels were produced to provide material for
50 different styles of montage, and the artwork was cycled
through them on a 3m by 2m screen for a day.

In another generative art project, we used an AxiDraw
plotter to physically produce abstract art pieces, employing
HR3 within The Painting Fool project (Colton 2011). Sim-
ilarly to the pixel-based art, the project sketchpad directed
HR3 to produce methods which output a sextuplet for in-
puts ranging over the integers 1 to n (for a changeable n),
rather than coordinates. It used the same codebase genera-
tion phase as previously, but with additional overlap steps
at the end. The sextuplet for an input were interpreted as
the (i) x coordinate (ii) y coordinate (iii) rotation (iv) width
(v) height, and (vi) shape type [circle, square, triangle] for a
geometric shape that the plotter is able to draw.

Code was added to the sketchpad to (a) render the se-
quences of n shapes onto a BufferedImage to save,
and (b) write out the quadruples for each sequence into a
Javascript file to be read by the AxiDraw plotter. 100,000
images were passed through a pre-trained ResNet neural
model (Krizhevsky, Sutskever, and Hinton 2012) which cat-
egorises images into one of around 1,000 classes, corre-
sponding to real-world objects like ‘umbrella’ and environ-
ments such as ‘seashore’. All the roughly 100 images which
scored 0.8 or above (indicating that ResNet was certain that
the images looked like exemplars of the category) were in-
spected and 18 chosen for a pop-up exhibition called ‘Doo-
dleFeatures’, as portrayed in figure 4. For each, the ResNet
category and a representation of the rendering method was
added to the Javascript before this directed an AxiDraw plot.

Conclusions and Future Work

In addition to the applications above, HR3 has solved the
Countdown Numbers game (Colton 2014), performed in-
variant discovery in formal methods and addressed dynamic
investigation problems (Colton, Ramezani, and Llano 2014).
We have concentrated here on breadth of applications, but
we plan more in-depth evaluation of HR3’s strength for par-
ticular applications, and its ability to empower people in a
co-creative setting. We believe it significant that code gen-
eration has been applied to quite different tasks across appli-
cation domains. The flexibility of the HR3 approach comes
via: casting disparate Al tasks as automated programming;
the production rule approach, gaining efficiency by sepa-
rating code generation from output generation; using meta-
level codebases for support tasks, and random codebases to
help find the most interesting methods produced.

In the mathematical discovery and generative art applica-
tions, additional sketchpad code was needed from the user
to complete the project, which indicates room for improve-
ment, as HR3 should be able to generate support code. That
said, the meta-codebase generation did help with aspects of
the support code, and we have only just begun to explore
the affordances of meta codebases. We plan to expand the
domains and tasks to which HR3 can be applied, includ-
ing producing glue code (Liu, Bastani, and Yen 2006); data
compression; image filtering; and program synthesis tasks
(Gulwani, Polozov, and Singh 2017). This latter application
will likely require more goal-based search than is currently
implemented in HR3. We also plan to add more automation
to the approach, which currently relies too much on the user
correctly organising production rule steps in the sketchpad.
We aim for a (different) meta-level approach, where HR3
can write its own sketchpads to control code generation, so
the user can supply just some background code and/or data.

We also aim for HR3 to be more intelligent in the ap-
plication of the production rules, for instance, with better
abilities to work with functions producing unique outputs,
i.e., avoiding PR applications which will certainly lead to
empty methods. We also plan for it to output code in differ-
ent programming languages to Java and for it to improve as
a programmer, with (a) more production rules increasing its
expressivity, especially with programmatic constructs such
as loops and conditionals (b) more sophisticated code styles
employing techniques like inlining and variable naming, and
(c) more access to relevant data types such as images.

Returning to our ideology, we see that HR3’s generated
code has been applied across generative, analytic and sup-
port tasks, across domains, and (in the generative art exam-
ple) the image generation code is too large to comprehend,
which contrasts with the more comprehensible output in the
datamining and mathematical discovery applications. Hence
the HR3 implementation blurs the distinctions given above
into a continuum. It has problematised the world and in-
troduced artistic affordances by generating stand-alone code
inspected in its own right. We plan to add framing abilities
so that HR3 can explain and motivate the problems it intro-
duces, and suggest ways to capitalise on new affordances.

Software systems written to be taken seriously as creative
in their own right, often suffer criticism that the human pro-

grammer is the creative one, with the software a productiv-
ity, or at best, inspiration tool. We plan for future versions
of HR3 to alter their own code in an attempt to improve its
abilities, and contribute code to other creative Al projects.
In this way, we hope to argue that the software is fully inde-
pendent and hence worthy of being talked about as creative.

Acknowledgements

We wish to thank the anonymous reviewers for their very
helpful input. The third author was supported by a Research
Fellowship from the Royal Academy of Engineering.

References
Charnley, J.; Pease, A.; and Colton, S. 2012. On the notion of
framing in computational creativity. In Proc ICCC.
Colton, S., and Muggleton, S. 2006. Mathematical applications of
ILP. Machine Learning 64.
Colton, S.; Bundy, A.; and Walsh, T. 2000. Automatic invention
of integer sequences. In Proc. AAAL
Colton, S.; Pease, A.; and Saunders, R. 2018. Issues of authenticity
in autonomously creative systems. In Proc. ICCC.
Colton, S.; Powley, E.; and Cook, M. 2018. Investigating and
automating the creative act of software engineering. In Proc ICCC.
Colton, S.; Ramezani, R.; and Llano, T. 2014. The HR3 discovery
system: Design decisions and implementation details. In Proc.
AISB Symposium on Scientific Discovery.
Colton, S. 2002. Automated Theory Formation in Pure Mathemat-
ics. Springer.
Colton, S. 2004. Automated conjecture making in number theory
using HR, Otter and Maple. J. Symbolic Computation 39(5).
Colton, S. 2011. The Painting Fool: Stories from building an
automated painter. In McCormack, J., and d’Inverno, M., eds.,
Computers and Creativity. Springer.
Colton, S. 2014. Countdown numbers game: Solved, analysed,
extended. In Proc. AISB Symposium on Al and Games.
Dockhorn, A., and Appledoorn, D. 2018. Forward model approx-
imation for general video game learning. In Proc. IEEE Conf. on
Computational Intelligence and Games.
Fiat, A., and Woeginger, G., eds. 1998. Online Algorithms: The
State of the Art. Springer.
Gulwani, S.; Polozov, O.; and Singh, R. 2017. Program synthesis.
Foundations & Trends in Prog. Languages 4(1).
Keijzer, M. 2004. Alternatives in subtree caching for genetic pro-
gramming. In Proc. of the EuroGP conference.
Krawiec, K. 2016. Behavioral Program Synthesis with Genetic
Programming. Springer.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems.
Liu, J.; Bastani, F.; and Yen, I. 2006. Glue code synthesis for
distributed software programming. In Advances in Systems, Com-
puting Sciences and Software Engineering. Springer.
Muggleton, S. 1991. Inductive Logic Programming. New Genera-
tion Computing 8(4).
Pawlak, R.; Monperrus, M.; Petitprez, N.; Noguera, C.; Seinturier,
L. 2015. Spoon: A library for implementing analyses & transfor-
mations of Java code. Software: Practice & Experience 46.
Redfern, D. 1999. The Maple Handbook. Springer.
Sims, K. 1991. Artificial evolution for computer graphics. Com-
puter Graphics 25(4):319-328.
Sorge, V.; Meier, A.; McCasland, R.; and Colton, S. 2008. Auto-
matic construction and verification of isotopy invariants. Journal
of Automated Reasoning 40(2-3).

