

Single-Event Transient Tolerant Optical Receiver Using Triple Modular Redundancy

Authors Sami Sattar Dr. Glenn Cowan

2022 IEEE International Symposium on Circuits and Systems May 28- June 1, 2022 Hybrid Conference

Department of Electrical and Computer Engineering Concordia University

Outline

- Image: Motivation
- Problems
- Objectives
- Proposed Approach
 - Triple Modular Redundancy
 - Impedance Scaling Technique
 - Bit error rate of Triplicated design
 - Comparison of Conventional and Triplicated design
- Proposed Design of SET tolerant Optical Receiver
 Simulation Results
 Conclusion

Motivation

Problem with conventional Optical Receiver

Objectives

- 1. To design an optical receiver which tolerates radiation induced single -event transient errors.
- 2. Minimal performance degradation in gain, bandwidth, sensitivity and an overall power dissipation.

Transimpedance Gain	$\geq 75 \text{ dB}\Omega$
Data Rate	$10{ m Gbits^{-1}}$
-3 dB Bandwidth	$\approx 5 - 7 \mathrm{GHz}$
Power Dissipation	$\leq 30 \mathrm{mW}$
Single-Event Transient Tolerant	Yes

DESIGN SPECIFICATIONS OF THE PROPOSED RECEIVER

Fault Tolerance Using Triple Modular Redundancy

<u>Drawback</u>: Consumes 3 times larger area and power

Proposed Hypothesis

Impedance Scaling Technique[1]

[1]- R. Raut and M. N. S. Swamy, "Modern Analog Filter Analysis and Design: A Practical Approach," Germany, Wiley, 2011

Proposed Hypothesis Cont'd

Simplified Schematic of Conventional Receiver

- Three identical impedance scaled sub-receivers in parallel
- Similar Area, Power Dissipation as the conventional design
- TMR removes errors due to SETs
- TMR can improve BER of sub-receivers

Simplified Schematic of Triplicated Receiver

Triplicated Receiver Design

SET @T=t3

SET @T=t1

 V_{o2}

 $R_f \times 3$

Majority

Voter

T : t1 : t2 : t3 : t4

In

Vol

IV_o

Triplicated Receiver Bit-Error Rate (BER)

Consideration: Required BER of 10⁻¹²

BER of a conventional receiver = zWhere $z(x) = \frac{1}{x\sqrt{2\pi}} e^{\frac{-x^2}{2}}$ [2], $x = SNR(Q \ factor)$ And $z(7) \approx 10^{-12}$ BER of a triplicated receiver $\approx 3z^2$ $\approx 3(\text{BER}_{\text{sub-receiver}})^2$ $\mathsf{BER}_{\mathsf{sub-receiver}} \approx 5.773 \times 10^{-7}$ Required SNR/sub-receiver = 4.87 $SNR_{sub-receiver} = 4.04$ Optical power penalty = $10 \log \frac{4.87}{4.04} dB = 0.8 dB$

Comparison of Conventional and Triplicated Design

RESULTS SUMMARY OF CONVENTIONAL AND TRIPLICATED DESIGN

Parameters	Reference Design	Proposed Hypothesis	Triplicated Design ^b	
Data Rate [Gbps]	10	10	10	
$Z_{TIA} [\Omega]$	400	$Z_{TIA,ref}$	400	
BW [GHz]	7.31	$\mathrm{BW}_{\mathrm{ref}}$	7.25	
Pdc [mW]	2.20	$Pdc_{ref}/3 = 0.734$	0.73 (×3 = 2.19	
$v_{n,rms} \left[\mu V \right]$	372.8	$\sqrt{3} \times v_{n,ref} = 645.7$	631.1	
Iin _{pp} [µA]	12.89	$Iin_{ref}/3 = 4.296$	4.29	
VEO_{pp} [mV]	5.216	VEO_{ref}	5.19	
SNR	7.0	4.04	4.1	
SNR ^a	7.0	4.87	4.87	
Power penalty [dB]	-	0.8	0.8	

^aSNR required to achieve the BER of 10^{-12} , ^bValues of a single sub-receiver

Transient Response of Convent -ional and Triplicated Design

Complete Design of a Proposed Receiver

Frequency and Transient Response

SET Simulation Results

14

Summary of Results Comparison

RESULTS COMPARISON

References	This Work	[4]*-2019	[5]*-2013	[6]*-2019		
Bit Rate [Gb/s]	10	2.56	5	10		
Gain [dBΩ]	83.18	-	86	68.3		
Bandwidth [GHz]	7.2	-	-	8.5		
Ι _{in,rms} [μΑ]	0.93	-	-	0.97		
Power Dissipation [mW]	33	70	120	81		
Supply Voltage [V]	1.0	2.5	2.5	1.8		
Technology [nm]	65	65	130	180		
Type of Tolerance	SET	TID	TID	None		
*Measurement Results						

[4]-M. Menouni et al., "The IpGBTIA, a 2.5 Gbps Radiation-Tolerant Optical Receiver using InGaAs photodetector," *Topical Workshop on Electronics for Particle Physics*, Sep 2019, Santiago de Compostela, Spain. pp.030, (10.22323/1.370.0030). (hal-0257251)

[5]-M. Menouni, T. Xi, P. Gui, and P. Moreira, "A 5-Gb/s Radiation-Tolerant CMOS Optical Receiver," *in IEEE Transactions on Nuclear Science*, vol. 60, no. 4, pp. 3104-3109, Aug. 2013, doi: 10.1109/TNS.2013.2264477

[6]-D. Li et al., "Low-Noise Broadband CMOS TIA Based on Multi-Stage Stagger-Tuned Amplifier for High-Speed High-Sensitivity Optical Communication," in IEEE Transa ctions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3676-3689, Oct. 2019, doi: 10.1109/TCSI.2019.2916150

Conclusions

- 1. A new single event transient tolerant optical receiver is proposed and implemented in a 65 nm CMOS.
- 2. The proposed receiver use a TMR technique for radiation hardening.
- 3. An impedance scaling technique helps to maintain the gain, bandwidth, and an overall power dissipation similar to the reference design.
- 4. The proposed receiver removes the bit errors at the cost of 0.8 dB sensitivity degradation.
- 5. The proposed receiver removes the bit error if and only if single sub-receiver has SET in one UI.

References

[1]- R. Raut and M. N. S. Swamy, "Modern Analog Filter Analysis and Design: A Practical Approach," Germany, Wiley, 2011.
 [2]- B. Razavi, "Design of integrated circuits for optical communications," John Wiley and Sons, 2012.

[3]- D. G. Toro, "Temporal Filtering with Soft Error Detection and Correction Technique for Radiation Hardening Based on a C-element and BICS," *PhD Thesis, Universite de Bretagne* ÓCccidentale, 2014.

[4]- M. Menouni et al., "The IpGBTIA, a 2.5 Gbps Radiation-Tolerant Optical Receiver using InGaAs photodetector," *Topical Workshop on Electronics for Particle Physics*, Sep 2019, Santiago de Compostela, Spain. pp.030, (10.22323/1.370.0030). (hal-0257251)

[5]- M. Menouni, T. Xi, P. Gui, and P. Moreira, "A 5-Gb/s Radiation-Tolerant CMOS Optical Receiver," *in IEEE Transactions on Nuclear Science*, vol. 60, no. 4, pp. 3104-3109, Aug. 2013, doi: 10.1109/TNS.2013.2264477

[6]- D. Li et al., "Low-Noise Broadband CMOS TIA Based on Multi-Stage Stagger-Tuned Amplifier for High-Speed High -Sensitivity Optical Communication," *in IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 66, no. 10, pp. 3676-3689, Oct. 2019, doi: 10.1109/TCSI.2019.2916150

THANK YOU! Q & A