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INTRODUCTION

• Video coding applications are highly computing-intensive

• Many computing systems are equipped with GPUs

• GPUs have been used to accelerate different encoding stages

• Motion Estimation

• Intra Prediction

• In-loop Filtering
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INTRODUCTION

• Versatile Video Coding (VVC) standard introduced the 

affine prediction

• Similar to (translational) motion estimation, but allows affine 

motion model

• Responsible for most of the ME time > most time-

demanding tool*

• Accelerating affine prediction is prime to low delay 

applications
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*I. Siqueira, G. Correa and M. Grellert, "Complexity and Coding Efficiency
Assessment of the Versatile Video Coding Standard,“ @ ISCAS 2021



INTRODUCTION

• Most GPU techniques designed for ME are not efficient for 

affine prediction:

• Testing a predefined set of MVs has prohibitive complexity

• Pre-computing the distortion of all blocks demands unreasonable 
memory

• It is not possible to merge the distortion of adjacent blocks
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This work proposes to remodel the affine 
prediction aiming to explore GPU platforms



VVC AND AFFINE PREDICTION

• Frame is divided into Coding Tree Units (CTUs, 128x128 

samples)

• Each CTU is the root of a Coding Unit (CU) tree, which 

follows recursive partitioning

• Affine prediction is available for CUs 16x16 or larger
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VVC AND AFFINE PREDICTION

• Affine can employ two or three control points (CPs)

• Each CP is assigned a CP motion vector (CPMV)
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VVC AND AFFINE PREDICTION

• Affine can employ two or three control points (CPs)

• Each CP is assigned a CP motion vector (CPMV)

• CU divided into sub-blocks 4x4, each one is assigned a MV 

based on: CPMVs, CU dimensions, Sub-block position in CU
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VVC AND AFFINE PREDICTION

• Classical ME algorithms are not suitable for affine prediction

• VVC reference software introduces a Gradient-ME algorithm
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VVC AND AFFINE PREDICTION

• Classical ME algorithms are not suitable for affine prediction

• VVC reference software introduces a Gradient-ME algorithm
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VVC AND AFFINE PREDICTION

• Affine prediction raises novel parallelization challenges 

and opportunities:

• Compute the gradient of multiple samples concurrently

• Compute the prediction error of multiple samples concurrently

• Build the system of equations in parallel, multiple partial systems 

concurrently

• Compute the distortion of multiple sub-blocks concurrently
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PROPOSED MODEL - OVERVIEW

• Input: original and ref frame

• Output: best CPMVs and costs

• Gradient-ME is performed 5 times

• Remaining encoding stages carried by CPU
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PROPOSED MODEL - OVERVIEW

• Affine AMVP depends on CPMVs on adjacent blocks

• Incurs data dependencies between CUs

• Our simplified AAMVP always produces zero CPMV (0,0)

• Allows affine prediction of all blocks (Inter-CTU parallelism)

• Gradient-ME converges quickly → Final CPMVs are similar
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PROPOSED MODEL - OVERVIEW

• Refinement/simplification is burdensome and not very efficient

• Around 65% of Gradient-ME time

• Small coding efficiency gains*

• Proposed work discards these stages
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*Y. He, X. Xiu, Y. Ye, “CE4-related: Affine motion estimation 
improvements,” @ Document JVET-L0260

*X. Xiu, Y.-W. Chen, T.-C. Ma, H.-J. Jhu, X. Wang, “CE4-related: 
Motion estimation improvements,” @ Document JVET-O0592



PROPOSED MODEL - OVERVIEW

• Original SATD computed with variable size HAD matrices

• Creates a dependency between all sub-blocks of a CU

• Proposed work only uses 4x4 matrices aligned with sub-blocks

• Distortion of a sub-block is computed directly after its prediction

• Less accurate but highly parallel

• Final distortion obtained by adding partial values
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PROPOSED MODEL - DETAILS

• Currently supports 2 CPs and CUs 128x128

• Implemented in OpenCL

• 1 workgroup (WG) per CTU

• 256 workitems per workgroup (items on the same CTU share data)

• All CTUs predicted concurrently

• Prediction of a CTU broken into 8 stages (Intra-CTU parallelism)
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PROPOSED MODEL - DETAILS

24

I

..
.

II

..
.

ID

w255

w0

..
.

III

IV

V

VI

VII VIII..
.

II

..
.

Init 1st Gradient-ME iteration 2nd iter 

I II IV VI II

Concurrent Serial Synchronization

sub-block granularity sample granularity

..
. ...



PROPOSED MODEL - DETAILS

25

I

..
.

II

..
.

ID

w255

w0

..
.

III

IV

V

VI

VII VIII..
.

II

..
.

Init 1st Gradient-ME iteration 2nd iter 

I II IV VI II

Concurrent Serial Synchronization

sub-block granularity sample granularity

..
. ...

Stage I – SB Concurrency
Fetch the current CTU from global memory into private memory

Each item fetches 4 sub-blocks



PROPOSED MODEL - DETAILS
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Stage II – SB Concurrency
Each item predicts its 4 sub-blocks and computes their distortion

Predicted samples stored in shared memory
Distortion stored in shared memory



PROPOSED MODEL - DETAILS
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Stage III - Serial
W0 reduces all partial distortions into a single value



PROPOSED MODEL - DETAILS
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Stage IV – Sample parallelism
Each item computes the gradient for 64 samples

Gradient stored in global memory (large memory requirements)



PROPOSED MODEL - DETAILS
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Stage V – Serial
W0 computes the gradient for samples at the CU edges

Inherited from inner samples



PROPOSED MODEL - DETAILS
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Stage VI – Sample parallelism
Each item computes the prediction error for 64 samples

Error overwrites prediction signal in shared memory (memory reuse)
Each item computes 64 partial systems, stored in global memory



PROPOSED MODEL - DETAILS
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Stage VII – Serial
W0 reduces all partial systems into a single one



PROPOSED MODEL - DETAILS
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Stage VIII – Serial
W0 solves the system by least-squares minimization

System solution used to update the CPMVs



PROPOSED MODEL - DETAILS
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NOTEWORTHY
Stages II and III and conducted a sixth time 

at the end to verify the distortion of the last CPMVs



EXPERIMENTAL RESULTS

• Five 1080p videos → 1 workgroup per CU, 120 workgroups

• Speedup

• Measured in relation to AMVP + Gradient-ME + Refinement

• Versus VTM with and without SIMD optimizations

• Considers only time of 128x128 CUs and 2 CPs

• Coding efficiency → BD-BR in relation to VTM-CPU encoder

• SIMD does not interfere on coding efficiency
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EXPERIMENTAL RESULTS
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Speedup and coding efficiency results

Sequence
Speedup   

(vs Serial)
Speedup   

(vs SIMD)
BD-BR

BasketballDrive 63.24 33.92 0.07%

BQTerrace 42.22 23.40 0.32%

Cactus 43.81 25.40 0.02%

MarketPlace 70.30 36.27 0.31%

RitualDance 66.46 34.67 0.06%

Average 57.21 27.58 0.16%



EXPERIMENTAL RESULTS
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• Proposed method comprises 3 shares
• CPU → GPU: Move original and reference frames from CPU to GPU

• Affine: Conduct affine prediction on GPU

• GPU → CPU: Return the CPMVs and costs from GPU to CPU

10.41%

89.68%

0.03%

CPU → GPU

Affine

GPU → CPU



EXPERIMENTAL RESULTS
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Comparison to related works

Work Stage – Encoder Speedup BD-BR

Proposed Affine – VVC 57.21ac, 27.58bc 0.16%

Luo @ IEEE TMM2019 ME – HEVC 12.71ac 0.52%

Xiao @ IEEE TMM2019 ME – HEVC 11.26ad 0.10%

Grossi @ JRTIP 2018 ME – VP9 2.3bd N.A.

Park @ IEEE Access 2019 Affine – VVC 1.6bc 0.10%

aSpeedup vs Serial  bSpeedup vs SIMD cSpeedup of Affine/ME dSpeedup of whole encoder
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CONCLUSION
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• Affine prediction raises novel parallelization challenges 

and opportunities

• Leveraging knowledge of application and GPU 

architecture allows efficient modeling

• Significant speedup with minor coding efficiency losses

• Idea is generic for any block size, and both CPs
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