
PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011) 1

A Technical Anatomy of SPM.Python, a Scalable,
Parallel Version of Python

Minesh B. Amin‡∗

F

Abstract—SPM.Python is a scalable, parallel fault-tolerant version of the serial
Python language, and can be deployed to create parallel capabilities to solve
problems in domains spanning finance, life sciences, electronic design, IT, visu-
alization, and research. Software developers may use SPM.Python to augment
new or existing (Python) serial scripts for scalability across parallel hardware.
Alternatively, SPM.Python may be used to better manage the execution of stand-
alone (non-Python x86 and GPU) applications across compute resources in a
fault-tolerant manner taking into account hard deadlines.

Index Terms—fault tolerance, parallel closures, parallel exceptions, parallel
invariants, parallel programming, parallel sequence points, scalable vocabulary,
parallel management patterns

Prologue

Consider the following acid test for general purpose
parallel computing. A serial session is depicted on
the left, whereas the session on the right describes its
parallel equivalent:

>>> createVirtualCloud -async
>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

For example, the command cmdA -parallel may be a par-
allel make-like capability, while the command cmdB -parallel
may be a map-reduce capability. At the same time, the command
cmdC -parallel may be a fine grain parallel SAT solver that
limits itself to resources with specific incarnations of those utilized
by the command cmdA -parallel. Finally, cmdD -parallel
may be a parallel graph-based analytics capability.

Yet, notwithstanding the prosaic serial session, the equivalent
parallel session is in fact predicated on solutions to what were
several formally open problems, including (a) defining a scalable
vocabulary rich enough to capture the essence of a wide range of
parallel problems, (b) the ability to utilize a collection of hardware
resources in completely different ways, depending on the nature of
parallelism exploited by the respective commands within the same
session, and (c) the ability to treat the conclusion of each parallel
command as a sequence point, thus guaranteeing that there would
be no pending side effects post conclusion.

* Corresponding author: mamin@mbasciences.com
‡ MBA Sciences, Inc

Copyright © 2011 Minesh B. Amin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Introduction

In this paper, we shall review (patented) SPM technology, and
the methodology behind it, both predicated on the supposition
that parallelism entails nothing more than the management of a
collection of serial tasks, where management refers to the policies
by which:

• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

and serial tasks are classified in terms of either:

• Coarse grain – where tasks may not communicate prior to
conclusion, or

• Fine grain – where tasks may communicate prior to con-
clusion.

We shall review how SPM.Python augments the serial Python
language to include a suite of parallel primitives, henceforth
referred to as parallel closures. These closures represent the sole
means by which to express any parallelism when leveraging
SPM.Python. Their APIs are designed to be as close to the
developer’s intent as possible, and therefore easy to relate to.
Furthermore, the API of all closures represent the boundary that
delineates the serial component (authored and maintained by the
developer) from the parallel component (authored and embedded
within SPM.Python).

Specifically, the context for and solutions to four formerly
open technical problems will be reviewed:

a) decoupling tracking of resources from management of
resources,

b) declaration and definition of parallel closures, the build-
ing blocks of all parallel constructs,

c) design and architecture of parallel closures in a way
so that serial components are delineated from parallel
components, and

d) extensions to the general exception handling infrastruc-
ture to account for exceptions across many compute
resources.

We will illustrate key concepts by reviewing a simple, scalable,
fault-tolerant, self-cleaning 60-line Python script that can be used
to launch any stand-alone (x86 or GPU) applications in parallel.
Appendix A will provide another self-contained Python script that
calculates the total number of prime numbers within a given range;

mailto:mamin@mbasciences.com

2 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

thus, illustrating how any Python module may be parallelized
using one of SPM.Python’s several built-in parallel closures.

A TECHNICAL ANATOMY OF SPM.PYTHON, A SCALABLE, PARALLEL VERSION OF PYTHON 3

1 2 3

2

3

1

Task managers

Tracker

Status reports of channels

Acquisition of resources

Release of resources

Fig. 1: In order to facilitate the exploitation of multiple, potentially
different, forms of parallelism within a single session of SPM.Python,
tracking of resources is decoupled from the management of resources.
Therefore, while the tracker is always online, at any moment in time,
at most one task manager may be online.

Offline

Online

Hub

Spokes

D

CB

A

Fig. 2: Parallel sequence points in terms of online and offline states
of the Hub and Spokes. On the Hub, transition to online occurs when
a task manager is invoked; transition back to offline occurs when the
said manager concludes. On the Spoke, transition to online occurs
when a task evaluator is invoked; transition back to offline occurs
when the said evaluator concludes.

Related Work

Traditionally, most parallel solutions in Python have taken the
form of: (a) distributed task queues like Celery[1], Parallel
Python[2], (b) distributed frameworks like Disco (MapReduce)[3],
PaPy (parallel pipelines)[4], or (c) low-level wrappers around HPC
libraries like MPI[5], PVM[6]. In sharp contrast, SPM.Python is

a single runtime environment that provides access to multiple
different, distinct forms of parallelism by way of parallel prim-
itives called parallel closures.. Furthermore, these closures are
architectured to be as close to the developer’s intent as possible –
in terms of, say, either coarse or fine-grain DAG/templates/hybrid
flows, and lists – while de-emphasizing low-level error-prone
concepts like locks, threads, pipes, mutexes and semaphores.

Tracking of Resources

In SPM.Python, compute resources are tracked independently of
any task manager. In operation, any task manager may come online
and request resources from the tracker. The task manager would
then manage the execution of tasks using the acquired resources,
and when done, go offline (i.e. release the resources back to the
tracker). Another task manager may subsequently come online,
obtain the same or different resources used by a previous task
manager, and utilize those resources in a completely different way.
In other words, the task managers can be implemented more sim-
ply because each manager would have a more narrowly focused
discrete policy. Furthermore, a tight coupling can be established
between a task manager and the communication closures, thus
preventing a whole class of deadlocks from occurring. More
details can be found at [7].

Declaration and Definition of Parallel Closures

In SPM.Python, parallel closures are the building blocks of all
parallel constructs, and provide the sole means by which one may
express how serial components interact with parallel components.
The interactions may take place in one of two contexts (a) when
creating, submitting, and evaluating tasks, and (b) when creat-
ing and processing messages. However, any usage of a parallel
closure within any resource is predicated on a successful, safe,
asynchronous and race-free declaration and definition across many
compute resources. We solve this problem by augmenting the
traditional concept of serial sequence points by introducing the
notion of offline and online states. The declaration and definition
of parallel closures is only permitted when the resource in question
is in the offline state – a state when SPM.Python guarantees that
the serial component of the resource may not communicate with
the outside world and vice versa. So, all resources start off offline
(A , C).

On
the Hub, the transition to the online state occurs when a

parallel (task manager) closure is invoked; the transition back
to the offline state does not occur until just before the closure
concludes. On the Spoke, SPM.Python receives a task from the
Hub while offline (C), and at which point any preloading of
Python modules is performed. One side effect of this preloading
may be the declaration and definition of parallel closures. Next,
the transition to online is made before SPM.Python invokes the
callback (D) for the task; the transition back to offline does not
occur until just after the callback concludes.

4 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

(Coarse grain)

Task
Generator

Status reporter

Evaluator

SPM.Python

A

C

D

B

Serial functionality

Fig. 3: The architectural and runtime perspectives of coarse grain
task manager closures. Note that such closures do not permit tasks to
communicate prior to conclusion.

(Fine grain (limited))

Task
Generator

Status reporter

Evaluator

SPM.Python

A

C

D

B

Serial functionality

Fig. 4: The architectural and runtime perspective of fine grain
(limited) task manager closures. Note that such closures permit tasks
to communicate only with the Hub.

(Fine grain (general))

Task
Generator

Status reporter

Evaluator

SPM.Python

A

C

D

B

Serial functionality

Fig. 5: The architectural and runtime perspective of fine grain
(general) task manager closures. Note that such closures permit
communication among Spokes and, if appropriate, with the Hub.

Types of Fault-Tolerant Parallel Closures

A key tenet of the serial software ecosystem is the asymptotic
parity between the serial compute resources available to the
developers and the end-users, which makes possible the reporting,
reproduction, and resolution of bugs.

With parallel software, this most fundamental of tenets is vio-
lated; software engineers need to be able to produce high-quality

parallel software in what is an essentially serial environment, yet
be able to deploy the said software in a parallel environment.

SPM.Python addresses this dichotomy by offering a suite of
easy to relate to parallel closures. These closures enable the
prototyping, validation, and testing of parallel solutions in an
essentially serial-like development environment, yet are scalable
when exercised in any parallel environment.

Coarse grain

Exploiting coarse grain parallelism is anchored around the asyn-
chronous declaration and definition of a parallel (task manager)
closure () across all resources (Hub and Spokes). On the Hub,
this is depicted by (A). On the Spokes, this is only possible prior
to the evaluation of a task, as depicted by (C), when the modules
may be preloaded.

Next,
existing serial functionality () may be parallelized by having

it be augmented with serial code () to:

• generate and submit tasks to the parallel task manager, and
handle status reports/exceptions from tasks, as depicted by
(B)

• evaluate tasks, as depicted by (D)

Finally, actual parallelism can commence by invoking the task
manager on the Hub with a collection of tasks, and a handle to
a pool of resources (B). The backend of the task manager would
ensure the concurrent scheduling and evaluation of tasks across
all Spokes. Note that coarse grain task manager closures do not
permit the usage of any form of communication closures ().

Fine grain (limited)

Fine grain (limited) parallelism augments the coarse grain par-
allelism by allowing tasks to communicate with the Hub prior
to their conclusion. The closures () that would permit such
communication must be declared and defined following the steps
reviewed for parallel task manager closures ().

However,
in order to avoid the vast majority of deadlocks, the com-

munication closures must be designed in a way so that all
communication is initiated by the Spokes; the Hub must be
restricted to processing incoming messages from the Spokes, and,
if appropriate, replying to them.

Fine grain (general)

Fine grain (general) parallelism augments the fine grain (limited)
parallelism by permitting communication among Spokes.

However,
in order to avoid the vast majority of deadlocks, the fine grain

(general) task manager closures must treat all Spokes under their
control as a single unit; the premature termination of any Spoke
must be treated as a premature termination of all Spokes.

A TECHNICAL ANATOMY OF SPM.PYTHON, A SCALABLE, PARALLEL VERSION OF PYTHON 5

(Coarse grain)

Task
Generator

Status reporter

Evaluator

SPM.Python

Serial functionality

A

B D

C

Fig. 6: The architectural and runtime perspectives of coarse grain
parallel exceptions.

(Fine grain (limited))

Task
Generator

Status reporter

Evaluator

SPM.Python

Serial functionality

A

B D

C

Fig. 7: The architectural and runtime perspectives of fine grain
(limited) parallel exceptions.

(Fine grain (general))

Task
Generator

Status reporter

Evaluator

SPM.Python

Serial functionality

A

B D

C

Fig. 8: The architectural and runtime perspectives of fine grain
(general) parallel exceptions.

Types of Fault-Tolerant Parallel Exceptions

To quote Wikipedia, "exception handling is a construct designed
to handle the occurrence of exceptions, special conditions that
change the normal flow of program execution".

The ability to throw and catch exceptions forms the bedrock
of the serial Python language. We will review details of how we

extended the basic serial exception infrastructure to account for
exceptions that may occur across many compute resources.

Our solution is predicated on the notion that parallel task man-
agers must take ownership of how serial exceptions are handled
across all resources under their control. Therefore, unlike in the
serial world, the parallel exception handling infrastructure must be
customized for each type of parallel task manager.

Coarse grain

Exception handling, as traditionally defined in the serial context,
is designed to handle the change in the normal flow of program
execution ... a rather straightforward concept given that there is
only one call-stack.

However,
when exploiting parallelism, the normal flow of program

execution involves multiple resources and, therefore, multiple call-
stacks need to be processed in a fault-tolerant manner. Further-
more, in order to enforce various forms of parallel invariants, we
need an ability to throw exceptions at any resource, but which may
only be caught by the Hub.

Stated another way, in order to make our problem tractable in
the context of coarse grain parallelism:

• on a Spoke, any uncaught/uncatchable exception must be
treated and reported as final status of the task. Therefore,
an exception free execution on the Hub would result in the
normal unrolling of the call-stack at the Hub, as depicted
by (A , B).

• on the Hub, any uncaught exception from any callbacks
invoked by the task manager must result in the forcible
termination and, if appropriate, relaunching of Spokes, as
depicted by (C , D).

Fine grain (limited)

The exception handling infrastructure in the context of fine grain
(limited) parallelism may be identical to that for coarse grain
parallelism provided stale replies generated by the Hub and meant
for some Spoke can be filtered out at the Hub itself.

Fine grain (general)

Given that fine grain task manager closures treat all Spokes as a
single unit:

• on a Spoke, any uncaught/uncatchable exception must be
treated and reported as final status of all the Spokes.
Therefore, an exception free execution on the Hub and
all Spokes would result in the normal unrolling of the call-
stack at the Hub, as depicted by (A , B).

• any uncaught/uncatchable exception from any callbacks
invoked by the task manager or by any Spoke should result
in the forcible termination and, if appropriate, relaunching
of Spokes, as depicted by (C , D).

6 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Centralized

Decentralized

PartitionAggregate

Clone

Once

Repeat

Parallel Management

Patterns

DAG

Graph

Grid

Partition

List

Fig. 9: Partition/List Parallel Management Pattern.

Stand−alone

A

C

D
B

SPM.Python

Task
Generator

Status reporter

Evaluator

(x86/GPU) application

Fig. 10: The architectural and runtime perspective of launching stand-
alone applications in parallel using SPM.Python.

Problem Decomposition

Understanding the nature of any parallel problem is key to de-
termining the appropriate solution. Parallel Management Patterns
(PMPs) provide a framework for decomposing and authoring
scalable, fault-tolerant parallel solutions. In other-words, if the
end goal is some parallel application, PMPs enable us to classify
the journey to the end goal in terms of the nature of parallelism
to be exploited, while parallel closures provided by SPM.Python
enable us to express the parallelism implied by any PMP.

For the purpose of illustration, we shall review an implemen-
tation of the Partition/List PMP, a pattern that captures the essence
of how to execute a list of tasks across many compute resources
in a fault-tolerant manner.

Problem Statement

Our goal is to invoke the SPM coprocess API:
.

spm.util.coprocess.shell.policyA(cmd = ...,
timeout = ...,
)

across multiple resources. We shall capture the context - in the
form of arguments needed, and the final result to be returned - of
each execution by way of tasks. To that end, we shall augment
the aforementioned serial functionality by authoring a scalable,
parallel, fault-tolerant Python script made up of the following
components:

• declaration of a (task manager) closure at the Hub,
• definition of tasks, processing of status reports, and invo-

cation of task manager at the Hub.

As an aside, note that the backend of our closure will evaluate the
task on our behalf ... a process that is rather straightforward given
that we would be invoking a built-in method (shell.policyA).

A Task manager: Declaration and Definition

In order to create (declare and define) an instance of the task
manager, we require the Hub to be offline to in order to avoid
various types of parallel race conditions. This invariant is captured
by the decorator statements on lines 1 and 2.

A natural point in time to perform this initialization step would
be when loading the module containing the statements prior to
actual usage. In other words, initialization should occur when
the file containing __init method is imported by the Python
interpreter.

The arguments for creating our instance bear highlighting.
Each instance of any closure must be unique within a module;
hence, the unique string as argument 1. Furthermore, all instances
of our closure are defined in terms of two stages. Of these,
functionality for stage 1 is expected via a callback; hence argument
2 (__taskStat).

.
1 @spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
2 @spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
3 def __init():
4 return spm.pclosure.macro.papply.list.grainCoarse.\
5 policyA.defun(signature = ’signature::Hub’,
6 stage1Cb = __taskStat,
7);
8
9 __pc = __init();

A TECHNICAL ANATOMY OF SPM.PYTHON, A SCALABLE, PARALLEL VERSION OF PYTHON 7

r"""
task<list> :: struct {
SPM component ...
spm :: struct {

meta :: struct {
label :: scalar<stringSnippet> = deferred;
api :: scalar<ApiMethod> = deferred;
apiArgs :: dict<string,mixed> = deferred;
timeout :: scalar<timeout> = deferred;

};

core :: struct {
relaunchPre :: scalar<bool> = None;
relaunchPost :: scalar<bool> = None;
nameHost :: scalar<auto> = None;
whoAmI :: scalar<auto> = None;

};

stat :: struct {
exception :: scalar<auto> = None;
returnValue :: scalar<record> = None;

};
};
non-SPM component ...

};
"""

Fig. 11: Typedef for the definition of list of tasks.

Exception
|
+-- SPMError

|
+-- SPMTaskDropped
+-- SPMTaskLoad
| |
| +-- SPMTaskLoadUncaught
| +-- SPMTaskLoadFatal
| +-- SPMTaskLoadKill
| +-- SPMTaskLoadTimeout
|
+-- SPMTaskEval

|
+-- SPMTaskEvalUncaught
+-- SPMTaskEvalFatal
+-- SPMTaskEvalKill
+-- SPMTaskEvalTimeout

Fig. 12: Hierarchy of (parallel) SPM exceptions.

A Task manager: Population and Invocation

Our goal in the function main is to be able to invoke the task
manager (line 18). However, before doing so, we must populate it
with the tasks to be executed. This is achieved by submitting our
tasks by way of the API stage0, as shown in lines 11 through 16.

Once our task manager is invoked, the Hub transitions to the
online state. The transition back to offline does not occur until just
prior to the conclusion of the invocation.

.
1 @spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
2 @spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
3 def main(pool,
4 taskApi,
5 taskApiArgs,
6 taskTimeout):
7 # Initialize ’stage0’.
8 __pc.stage0.init.main(typedef = ...); # See Figure 11.
9 hdl = __pc.stage0.payload.tie();

10 # Create a list of tasks
11 for entry in taskApiArgs:
12 hdl.spm.meta.label = ’***’; # Not interested.
13 hdl.spm.meta.api = taskApi;
14 hdl.spm.meta.apiArgs = entry;
15 hdl.spm.meta.timeout = taskTimeout;
16 hdl.Push();
17 # Invoke the pmanager
18 __pc.stage0.event.manage(pool = pool,
19 nSpokesMin = ...
20 nSpokesMax = ...
21 timeoutWaitForSpokes = ...
22 timeoutExecution = ...
23);
24 return;

B Task manager: (Final) Status Reports

The method __taskStat (used when declaring and defining our
closure) is automatically invoked by the task manager to process
the status report of any task. Note that this method is invoked
while the Hub is in the online state. This invariant is captured by
the decorator statements on lines 1 and 2.

.
1 @spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
2 @spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
3 def __taskStat(pc):
4 try:
5 hdl = pc.stage1.payload.tie();
6 returnValue = hdl.spm.stat.returnValue;
7 if (returnValue.Has(attr = ’stdOut’)):
8 print("\tstdOut : %s", returnValue.stdOut);
9 if (returnValue.Has(attr = ’stdErr’)):

10 print("\tstdErr : %s", returnValue.stdErr);
11 if (returnValue.Has(attr = ’stdOutErr’)):
12 print("\tstdOutErr: %s", returnValue.stdOutErr);
13 except (SPMTaskDropped,
14 SPMTaskLoad,
15 SPMTaskEval,
16), (hdl,):
17 pass;
18
19 return (pc.stage1.event.done(),
20 None,
21)[-1];

C Task manager: Preloading of Python modules

D Task manager: Task Evaluation

As each task involves the invocation of one of the built-in spm
coprocess methods, we do not need to define any method to
accept and evaluate any task. Instead, our task manager will
automatically evaluate our tasks on the Spokes, and return the
respective status reports to the Hub.

8 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

l GNU/Linux [] spm.3.110602.trial.A.python
(Trial Edition)

Spm.Python 3.110602 / Python 2.4.6

[GCC 4.4.3 (64 bit) on linux2]

NOTE

>>>> Trial period ends at <<<<

>>>> 24:00 hrs (Pacific Standard Time) <<<<

>>>> July 28, 2011 <<<<

Type "help", "copyright", "credits", "license" or "spm.Api()" for more information.

Type "spm.DemoExtract(dirname = ...)" to extract demo scripts.

Please visit www.mbasciences.com for the latest and growing

collection of scripts and technical briefs classified in terms of

parallel management patterns.

l >>> import pool
l >>> import demo
l >>> taskApi = spm.util.coprocess.shell.policyA;
l >>> taskApiArgs = \

[

dict(cmd = "echo ‘hostname‘",

timeout = spm.util.timeout.after(seconds = 1)),

dict(cmd = "echo ‘hostname‘",

timeout = spm.util.timeout.after(seconds = 2)),

];

l >>> taskTimeout = spm.util.timeout.after(seconds = 10);
3 >>> demo.main(pool = pool.intraAll(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [for up to 30 secs]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
3 >>> demo.main(pool = pool.intraOnePerServer(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [for up to 30 secs]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
(>>> demo.main(pool = pool.inter(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [for up to 30 secs]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
(>>> demo.main(pool = pool.interOnePerServer(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [for up to 30 secs]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
l >>> exit()
l GNU/Linux []

Fig. 13: A typical parallel session of SPM.Python.

The automatic evaluation of our tasks is aided by the typedef used
when initializing stage0 (at the Hub). Specifically, all Spokes
end up executing the pseudo-code:

.
try:
task.spm.stat.returnValue = apply(task.spm.meta.api,

(),
task.spm.meta.apiArgs);

except e:
task.spm.stat.exception = str(e);

return task;

SPM.Python Session

Having reviewed our parallel application, we will conclude by de-
scribing an actual SPM.Python session. We start off by importing
the pool module (l). Next we import our parallel application
demo, and run our application four times before exiting, as
illustrated by 3 and (.

The
first two times (marked 3), we limited ourselves to cores from

the server running the Hub. intraOnePerServer refers to one
unique core on the server.

The
second two times (marked (), we limited our selves to cores

from potentially different servers. interOnePerServer refers
to one unique core from each server.

The
fact that the results produced are identical should not be a

surprise since our code is a function of a handle to a pool, and not
its content. In other words, user code remains unchanged despite
having selected four different sets of resources.

Note that, notwithstanding our rather small script, our solution
is not only fault-tolerant (thanks to closures), self-cleaning (thanks
to robust timeout support), but also robust (thanks to the efficient
manner by which parallel invariants are enforced). So, once we
have tested our solution in a serial-like environment, we can be
sure our solution can be deployed on any cluster. See [8] for a
comprehensive list of problem decomposition using other PMPs
including self contained and equally powerful examples.

Conclusion

In this paper, we reviewed the technical anatomy of SPM.Python,
a scalable parallel version of the serial Python language. We began
with a prologue presenting the acid test for general purpose par-
allel computing. Next, we described the solution to four formerly
open technical problems, namely the decoupling of tracking of
resources from management of resources; the declaration and
definition of parallel closures; the design and architecture of
parallel closures that delineate serial and parallel components;
and fault-tolerant parallel exception handling. We concluded by
illustrating how a parallel problem, once classified in terms of
a Parallel Management Pattern (PMP), can be decomposed and
easily expressed in terms of SPM.Python’s parallel closures.

REFERENCES

[1] Celery, celeryproject.org
[2] Parallel Python, www.parallelpython.com
[3] Disco, discoproject.org
[4] PaPy, code.google.com/p/papy
[5] PyMPI, mpi4py.sourceforge.net
[6] PyPVM, pypvm.sourceforge.net
[7] Minesh B. Amin,. Resource Tracking Method and Apparatus, United

States Patent #: 7,926,058 B2, April 12, 2011.
[8] Parallel Management Patterns, www.mbasciences.com/pmp.html

http://celeryproject.org
http://www.parallelpython.com
http://discoproject.org
http://code.google.com/p/papy
http://mpi4py.sourceforge.net
http://pypvm.sourceforge.net
http://www.mbasciences.com/Patents.html
http://www.mbasciences.com/Patents.html
http://www.mbasciences.com/pmp.html

A TECHNICAL ANATOMY OF SPM.PYTHON, A SCALABLE, PARALLEL VERSION OF PYTHON 9

Appendix A

Figures 14 through 16 highlight the manner by which any mod-
ule can be parallelized using SPM.Python. Specifically, a serial
module that computes number of prime numbers within a given
range (Figure 14) is parallelized by introducing two wrappers
as depicted by Figure 15 (for Spoke), and Figure 16 (for Hub).
Recall that SPM.Python has built-in support for multiple different
and distinct forms of parallelism. However, for our purpose, we
are only interested in the closure that executes a list of tasks in
parallel.

#
Serial module to compute prime numbers
#
def am(n):

#
Came across this algo on the internet.
#
import math
n = abs(n)
i = 2
while i <= math.sqrt(n):

if n % i == 0:
return False

i += 1
return True

def ctRange(nMin, nMax):
if ((nMin % 2) == 0):

nMin = nMin + 1; # Focus on odd numbers (!)

nprimes = 0;
while (nMax > nMin):

if (am(nMin)):
nprimes += 1;

nMin += 2;

return nprimes;

Fig. 14: Spoke: Original ’serial’ module that computes the number of
prime numbers given a range.

#
Compute the number of primes between 3 and 502347 ...
#

@spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amSpoke)
def taskEval(pc):

from serial import ctRange as ctRange;

hdl = pc.stage2.payload.tie();
hdl.spm.stat.returnValue = ctRange(nMin = hdl.nMin,

nMax = hdl.nMax,
);

return (pc.stage2.event.done(),
None,
)[-1];

Fig. 15: Spoke: Wrapper around serial functionality. The wrapper
is automatically invoked by SPM.Python based on the content of the
task’s ’spm’ sub-structure.

@spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def __init():

Create parallel closure (task manager) of the type
we are interested in (coarse grain parallel list manager) ...
return spm.pclosure.macro.pinterp.list.grainCoarse.policyA.defun \

(signature = ’is_prime::main’, # Something unique to module.
stage1Cb = __taskStat,
);

__pc = __init();
__nprimes = 0;

@spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def __taskStat(pc):

Callback for incoming status reports ...
try:

global __nprimes;

hdl = pc.stage1.payload.tie();
__nprimes += hdl.spm.stat.returnValue;
print(’ --> Rolling count of (# of prime numbers) :: %d’ \

% (__nprimes,));
except (SPMTaskDropped,

SPMTaskLoad,
SPMTaskEval,
), (hdl,):

pass;

return (pc.stage1.event.done(), # Explicitly let the backend
know we are done;

None,
)[-1];

#
Compute the number of primes between 3 and 502347
by dividing the range into ’nBuckets’ ...
#
import os;

@spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def main(pool,

nBuckets = 10,
):

Initialize ’stage0’.
global __nprimes;

assert(nBuckets >= 1);
__pc.stage0.init.main(typedef = \

r"""
task<list>::struct {
#
SPM component ...
#
spm::struct {
meta::struct {
label ::scalar<stringSnippet> = deferred;
path ::tuple<string> = deferred;
modulePreload::tuple<string> = deferred;
module ::scalar<stringSnippet> = deferred;
timeout ::scalar<timeout> = deferred;

};

core::struct {
relaunchPre ::scalar<bool> = None;
relaunchPost ::scalar<bool> = None;

};

stat::struct {
exception ::scalar<auto> = None;
returnValue ::scalar<auto> = None;

};
};

#
non-SPM component ...
#
nMin ::scalar<auto> = deferred;
nMax ::scalar<auto> = deferred;

};
""");

__nprimes = 0; # Always reset counter.
hdl = __pc.stage0.payload.tie(); # Handle to the payload.
nMin = 2;
for ct in range(0, nBuckets):

Initialize ’spm’ component so that Spokes know what to
preload ...
hdl.spm.meta.label = ’***’;
hdl.spm.meta.path = \

(os.path.dirname(__pc.meta.module.srcDir),);
hdl.spm.meta.modulePreload = (’is_prime’,);
hdl.spm.meta.module = ’is_prime’;
hdl.spm.meta.timeout = \

spm.util.timeout.after(seconds = 10);
hdl.nMin = nMin; nMin += ((502347) / nBuckets);

if (ct == (nBuckets - 1)):
hdl.nMax = 502347;

else:
hdl.nMax = nMin;

hdl.Push();

#
Invoke the pmanager ...
#
__pc.stage0.event.manage \ (pool = pool,

nSpokesMin = spm.env.const.default,
nSpokesMax = spm.env.const.default,
timeoutWaitForSpokes = spm.util.timeout.after(seconds = 2),
timeoutExecution = spm.util.timeout.after(seconds = 300),
);

return;

Fig. 16: Hub: Creation/population/invocation of parallel (task man-
ager) closure. The backend of the closure, once invoked, would execute
as many tasks in parallel as possible using resources within the pool.

	Prologue
	Introduction
	Related Work
	Tracking of Resources
	Declaration and Definition of Parallel Closures
	Types of Fault-Tolerant Parallel Closures
	Coarse grain
	Fine grain (limited)
	Fine grain (general)
	Types of Fault-Tolerant Parallel Exceptions
	Coarse grain
	Fine grain (limited)
	Fine grain (general)
	Problem Decomposition
	SPM.Python Session
	Conclusion
	References
	Appendix A

