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Abstract

The workflow scheduling problem which is considered difficult on the Grid becomes even more challenging when
multiple scheduling criteria are used for optimization. The existing approaches can address only certain variants of
the multi-criteria workflow scheduling problem, usually considering up to two contradicting criteria being scheduled
in some specific Grid environments. A comprehensive description of the problem can be an important step towards
more general scheduling approaches. Based on the related work and on our own experience, we propose several novel
taxonomies of the multi-criteria workflow scheduling problem, considering five facets which may have a major impact
on the selection of an appropriate scheduling strategy: scheduling process, scheduling criteria, resource model, task
model, and workflow model. We analyze different existing workflow scheduling approaches for the Grid, and classify
them according to the proposed taxonomies, identifying themost common use cases and the areas which have not
been sufficiently explored yet.

1 Introduction

Scheduling of computational tasks on the Grid is a complex optimization problem which may require different schedul-
ing criteria to be considered. Usually, execution time is applied as the most important criterion. In some other cases,
the global efficiency (job throughput) should be maximized by the Grid system. In market models (especially in busi-
ness Grids), economic cost optimization is also considered. Other possible criteria include quality of results, reliability
of service, etc. In a multi-dimensional parameter space, itis in general not possible to find a solution that is “best”
with respect to all the metrics at the same time. There are several existing approaches to the problem of multi-criteria
workflow scheduling on the Grid, most of them addressing two specific criteria (usually execution time and economic
cost), by applying some specific approaches invented for specific cases. Our goal is to analyze the general problem
of Grid workflow scheduling, by discovering regularities and irregularities between different problem variants. We
aim at providing a study which can be used as a basis to move towards a scheduling approach addressing different
problem classes for multiple scheduling criteria. The restof the paper is organized as follows. In Section 2, we
formally describe the problem which we want to address. Section 3 provides our contribution to the state of the art.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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We introduce several taxonomies of the workflow scheduling problem for different aspects, considering both different
problem variants and different approaches used to solve theproblem. At the end of the section, we summarize the
performed case study, by classifying several existing workflow scheduling approaches according to the taxonomies
introduced previously. Finally, Section 4 concludes the paper and provides a short roadmap for the future work.

2 Grid workflow scheduling problem

We define Grid workflow scheduling as the problem of assigningdifferent Grid services to different workflow tasks.
Every workflow is adirected graph(digraph)w ∈ W , w = (V , E) consisting of a set of nodesV and a set of
edgesE , where nodes and edges represent tasksτ ∈ T and data transfersdt ∈ D (as we explain in Section 3.5, the
mapping between the setsV , E , and the setsT , D can differ, depending on the current workflow model). In some
workflow representations applied in the related work cited by us, workflow elements may have special semantics
that defines complex workflow constructs (loops, parallel loops,if/switch conditions). Workflows expressed in
such formalisms (e.g., Petri Nets [26], BPEL [47], AGWL [23]) can be systematically reduced during the runtime
to simple Directed Acyclic Graphs (DAG), for instance by means of loop unrolling and by predicting and evaluating
the conditions [35]. In case of any full-ahead workflow scheduling approach, such conversion has to be performed
globally for the whole workflow each time when the schedulingis triggered. The setS contains all theservicesthat
are available for scheduling in the Grid and that implement different workflow tasks. In order to run a workflow, every
task of the workflow has to be mapped to a service that implements the task. For every taskτi ∈ T , there is a set
Si = {si1, ..., sipi

} ⊂ S of the services which implement the taskτi, wherepi may differ for differenti. A schedule
is defined as a functionschedw : T 7→ S, whereschedw assigns to each taskτi ∈ T a services ∈ Si, creating a
completeschedule(mapping) of the workfloww. SetSC contains all possible schedules for all workflowsw ∈ W .
Thecost modelfor workflows is described byn multiple scheduling criteriaCi, 1 ≤ i ≤ n, n ∈ N

+, for instance by
execution time, economic cost, and quality of results. Thepartial cost functionscosti : S 7→ R, 1 ≤ i ≤ n, defined
for each scheduling criterionCi, assign to each servicesj ∈ S its partial costcj

i (e.g., “execution time of 5 minutes”,
“economic cost of 5$”, “quality of results 100%”). In the remainder of this paper, we will sometimes refer to the cost
of a services ∈ S which is mapped to a taskτ ∈ T (i.e., whereschedw(τ) = s) as thecost of the taskτ . Similarly
to the partial cost functions, thetotal cost functionscosttot

i : W × SC 7→ R, 1 ≤ i ≤ n assign to a workfloww ∈ W
scheduled byschedw ∈ SC its total costsctot

i , calculated based on the partial costs of the services mapped to the
workflow tasks. The optimization goal is to find a scheduleschedw with thebest possibletotal costsctot

i , 1 ≤ i ≤ n.
As we describe in Section 3.2, the total costs can be evaluated in different ways.

3 Taxonomies in workflow Grid scheduling

When analyzing the problem of workflow scheduling, several importantfacets(e.g., resource model, criteria model)
of the problem have to be considered, as they may strongly influence the decision as to which scheduling approach is
most appropriate in the given case. Each facet describes thescheduling problem from a different perspective. In this
section, we will analyze in detail 5 different facets of the problem:

• scheduling process

• scheduling criteria

• resource model

• task model

• workflow model

For every facet, we propose a certaintaxonomywhich classifies different scheduling approaches into different possible
classes. The classes are distinguished either with respect to different variants of the scheduling problem (e.g., multiple
workflows, user-oriented scheduling), or with respect to the way the problem is approached (e.g., full-ahead planning,
advance reservation based). We describe the classes using the RDF notationsubject-predicate-object, which we extend
in some cases to distinguish between differentsub-classesof the problem. The proposed taxonomies can by no means
be considered to be exhaustive, as our attempt is to create a model only for a certain subset of the general workflow
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Figure 1: Taxonomy of workflow scheduling process

scheduling problem (i.e., for the multi-criteria workflow scheduling on the Grid). We illustrate the derived taxonomies
by providing examples of approaches for different classes,which partially come from the related work. Some of those
examples are taken from [20], which provides a more completeanalysis of the scheduling problem on the Grid.

3.1 Taxonomy of scheduling process

Different classes of Grid workflow scheduling can be distinguished with respect to different properties of the schedul-
ing process (see Fig. 1). In this section, we will analyze both the information processed by the scheduler, and the way
in which this information is being processed.

3.1.1 Criteria multiplicity

This classification is essential from the point of view of thecurrent work. Multiple criteria make the scheduling much
more difficult, as they represent multiple and often contradicting optimization goals which require multi-objective
scheduling techniques. From this point of view, the scheduling processes can be divided into two classes:

• Single criterion. The optimization is done for one criterion only (usually, for execution time).

• Multiple criteria. The scheduler tries to optimize multiple scheduling criteria.

There exist several workflow scheduling approaches which consider more than one criterion (e.g., [21, 59, 57, 58, 45,
8, 44]), and many of them consider the trade-off between execution time and economic cost. Vienna Grid Environment
[8, 9] proposes a scheduling approach for multiple criteria(Quality of Service parameters), usually for execution time
and economic cost. It applies a general multi-criteria scheduling approach, by using an optimization technique based
on integer programming [43] to optimize a weighted goal function combining different QoS parameters.

Some other criteria are the main focus for the Grid-wide optimization (see Section 3.2) and for the pipelined
workflows (see Section 3.5). In Instant Grid [27], a simple resource ranking model based on the number of CPUs
and the last known load is created dynamically, in order to optimize the profit of the Grid. In [45], the scheduling of
pipelined workflows is optimized with respect to the throughput and the latency of workflow execution.
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3.1.2 Workflow multiplicity

The optimization process performed by a workflow scheduler usually considers a single workflow only, but it can also
attempt to optimize the execution of multiple workflows at a time. Therefore, we can distinguish the following two
classes of workflow scheduling processes:

• Single workflow. The execution of a single workflow is optimized within a single scheduling process.

• Multiple workflows. The execution of multiple workflows can be optimized withina single scheduling process.

Only few existing scheduling approaches can optimize the execution of more than one workflow at a time. The work
presented in [63] distinguishes three different approaches to the problem, the first one based on a sequential scheduling
of multiple graphs (DAGs), the second one which incorporates also backfilling to fill gaps in the schedule, and the third
one based on an initial merging of multiple DAGs into a singleDAG. The paper concentrates on the third approach,
and distinguishes four different merging schemes. It also proposes an approach to increase fairness of scheduling, by
trying to equalize the slowdown of different DAGs being scheduled (the slowdown is defined as the difference in the
expected execution time for the same DAG when scheduled together with other workflows and when scheduled alone).

3.1.3 Dynamism

Workflow scheduling is a process which prepares workflows foran actual execution, therefore scheduling and execu-
tion should be considered together, and the time relation between them may differ for different scheduling approaches.
In [18], three different types of workflow scheduling are distinguished:full-plan-ahead, in-time local scheduling, and
in-time global scheduling. The first approach is fully static, as it schedules the wholeworkflow before the actual
execution starts. On the other extreme, the second approachcan be considered as dynamic, as tasks are scheduled
dynamically, only when they are going to be executed. The first approach combines the two former approaches by
performing full-ahead planning every time a new schedulingdecision needs to be made. Based on this classification,
we distinguish the following three classes of scheduling processes:

• Just-in-time scheduling(in-time local scheduling). The scheduling decision for anindividual task is postponed
as long as possible, and performed before the task executionstarts (fully dynamic approach).

• Full-ahead planning(full-plan-ahead). The whole workflow is scheduled before its execution starts (fully static
approach).

• Hybrid. The scheduling approach combines the two aforementioned approaches.

Just-in-time scheduling is represented by many simple scheduling heuristics like Min-min, Max-min, Suffrage, and
XSuffrage. These approaches are also applied to schedule parameter sweep workflows on the Grid [13]. Two typical
example approaches which fall into the second class are presented in [42] and [57]. In Vienna Grid Environment
[8], both a full ahead scheduling approach and a just-in-time scheduling approach are applied (referred to asstatic
planninganddynamic planning, respectively). The static planning can be applied only if themeta datafor performance
prediction is known in advance. The hybrid approach proposed in [19] combines the just-in time scheduling and the
full-ahead planning by partitioning the workflow into subworkflows and by performing full-graph scheduling of the
individual subworkflows in a just-in-time manner. Another hybrid approach presented in [60] achieves the same
goal by triggering rescheduling when the state of the Grid changes (i.e., when some resources appear or disappear).
Rescheduling of applications is the most widely used methodto make full-ahead planning more dynamic. To trigger
rescheduling of an application, certain acceptance criteria defined for the application execution are needed, as well
as a monitoring system which can control the fulfillment of these criteria. An example of such acceptance criteria
are theperformance contractsproposed in [52], which define the expectation concerning the execution time of the
applications, and which are applied in the GrADS system [17,6].

3.1.4 Advance reservation

When scheduling a workflow, we should take into consideration the environment in which the workflow will be
executed. Most of the Grid environments are based on local resource managements with standard queuing systems
which can give only a guarantee that a task submitted to the Grid will be executed at some time point. Many of
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the systems (e.g., Pegasus [19]) are based on DAGMan [16] which is a simple workflow processor which processes
workflows and sends workflow tasks to local queuing systems. This simple model can be extended by applying
advance reservation, which is a limited or restricted delegation of a particularresource capability over a certain time
interval to a certain user. If an environment supports advance reservation, then the user can know in advance when
his task may start, not relying on the best-effort policy of the local queuing system. Therefore, we can distinguish the
following two types of scheduling:

• With reservation. Advance reservation is supported and considered by the scheduler.

• Without reservation. Advance reservation is not considered by the scheduler, ornot supported by the environ-
ment.

When considering queuing systems, the Grid scheduler should be aware if the queues on resources have finite or
infinite length (capacity). In case of the finite-length queues, it is possible that queues become full and some jobs
are lost, which may cause the need for their resubmission. Different advance reservation models for workflow Grid
scheduling are proposed in [44, 54, 62]. In [44], different algorithms for resource provisioning are proposed, which
reserve time slots on resources based on the economic cost and the execution time criteria. The approach presented in
[54] proposes a workflow scheduling approach based on so-called progressivereservation. The introduced approach
optimizes the profit both of the user (minimal execution time) and of the environment (best possible resource usage
and fairness) by putting some limitations on the amount of resources reserved for a single user at a time, and shows
some advantage over the approach based on simpleattentivereservations which does not impose any fairness policy.
In [62], an advance reservation model is proposed based on the concept ofApplication Spare Time. The spare time
is assigned to every workflow task, based on the deadline defined by the user for the whole workflow, in order to
guarantee the feasibility of the workflow execution, when the actual task execution times differ to a certain extent from
the predicted times. Two different approaches for spare time allocation are proposed:recursive allocationandCritical
Path based allocation.

3.2 Taxonomy of scheduling criteria

The scheduling criteria may be characterized by various properties (e.g., workflow structure dependence, calculation
method) which determine the optimization goal and the way inwhich the total cost of a workflow is calculated for the
given criterion. When scheduling workflows on the Grid, it isalways important to take into consideration the type of
criteria used as the optimization objectives in the given case. For instance, one scheduling algorithm will be applied
when minimizing the execution time of a workflow, and anotherone will be applied when maximizing the quality
of the results produced by a workflow. The scheduling criteria may also differ with respect to the Grid actor (e.g.,
resource consumer, environment) for whom the optimizationgoal is defined. The proposed taxonomy of scheduling
criteria, considering both the properties of a single criterion and the joint properties of groups of criteria, is depicted
in Fig. 2.

3.2.1 Optimization model

Considering workflow scheduling as an optimization process, we can distinguish two different perspectives from which
the criteria can be defined:

• Workflow-oriented. The optimization criterion is defined for the user who executed the workflow (e.g., execution
time, economic cost).

• Grid-wide. The optimization criterion is defined for the Grid environment (e.g., resource usage, fairness of
execution).

Most of the related work proposes approaches based on the former perspective. The latter perspective is common for
local resource management systems (e.g., PBS [3], Sun Grid Engine [46], LSF [1], Maui [15]), and is also applied for
workflow scheduling, for instance in [63] where fairness of multiple workflow executions is considered as one of the
optimization goals. Dynamic cost models based on Grid Economy and on other negotiation-based strategies, which
are described more in detail later in this section, can be used to equilibrate between the requirements of the user and
of the Grid.Market equilibriumwhich is the goal of any economy-based technique is a desirable state from the point
of view of the Grid environment. Some study is conducted in [31, 33, 32] to compare the influence which different
negotiation strategies have on resource utilization on theGrid.
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Figure 2: Taxonomy of workflow scheduling criteria

3.2.2 Workflow structure dependence

Whereas tasks in a task batch are independent, workflows contain dependencies between tasks which determine a
certainworkflow structure. For some scheduling criteria (e.g., for execution time), the structure has to be considered
when calculating the total cost, while for some others (e.g., for economic cost) the structure can be neglected. This
leads us to two distinct classes of criteria:

• Structure dependent(e.g., execution time).
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Figure 3: Recursive calculation of aggregated costs for a structure dependent criterion

• Structure independent(e.g., economic cost).

Most of the existing workflow scheduling approaches only optimize execution time which is a structure dependent
criterion. Some multi-criteria workflow scheduling approaches (e.g., [21, 59, 57, 58, 8]) also consider economic cost
which is structure independent. Some other scheduling criteria can belong to either of the two classes, depending on
the way the user defines them. Let us denote byquality of resultsany kind of qualitative description (for instance,
expressed in percentage) of the results produced by alternative services (this quality will usually be higher for an
expensive commercial application than for its open-sourceequivalent). To calculate the quality of the final results, the
user can either simply multiply the quality of the results produced by individual workflow tasks, or can also consider
the dependencies between different tasks and the order in which the partial results are produced, defining in this way
a structure dependent function which calculates the quality of results.

Within the class of structure dependent criteria, we can distinguish several sub-classes, depending on the way in
which the partial costs are aggregated in the workflow. Let usconsider as an example the calculation of execution time.
In order to calculate the total execution time, we calculatetheaggregated costs(execution times) for all workflow tasks
τ ∈ T in a workfloww ∈ W , and use the maximum aggregated cost as the total cost (execution time) of the workflow.
A calculation scheme for such a structure dependent criterion is depicted in Fig. 3, where the aggregated cost for the
taskγ is calculated based on the partial cost of the taskγ and on the aggregated costs of the tasksβi, 1 ≤ i ≤ n. The
aggregated costs are calculated recursively, so the same scheme would also apply for the tasksβi, 1 ≤ i ≤ n. The
aggregated cost function will be denotedacost : T ×W×SC 7→ R. In case of execution time, the aggregated costs of
the predecessors are aggregated by finding themaximumcost among them. This type of aggregation function is called
disjunctive function, as it simulates the logicalOR operation and gives outputs no smaller than the largest argument.
For some other criteria (e.g., for quality of results), the aggregation function can calculate the mean (or weighted
mean) over the arguments. Such function is referred to asaveraging function. Many different averaging functions are
proposed in the literature ([51, 36]). For our taxonomy, we chose four averaging functions which seem to be most
relevant from the point of view of workflow scheduling:

• Averaging. Averaging functionsgive outputs which lie between the greatest and the smallestelements of the
input (e.g., mean, weighted mean).

• Conjunctive. Conjunctive functionssimulate the logicalAND and give outputs no greater than the smallest
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element of the input (e.g., minimum).

• Disjunctive. Disjunctive functionssimulate the logicalOR and give outputs no smaller than the largest element
of input (e.g., maximum).

• Mixed. Mixed aggregation functionsexhibit different behavior in different regions of the workflow (e.g., maxi-
mum for the end tasks, average for the other tasks).

This classification shows some similarities to the classification of calculation methods which is introduced in the later
part of this section. However, an aggregation function can only be defined for the structure dependent criteria, and it
applies only to a part of the cost calculation procedure (i.e., to the aggregation of the predecessor costs).

3.2.3 Optimization impact

Scheduling criteria may have different impact on the optimization process. If the goal of the process is to find the
best possible cost for a certain criterion (e.g., to minimize the total cost), then we can say that the criterion has an
optimization objective. If the optimization process is constrained by a constant limit established for a certain criterion
(e.g., by a budget limit or a time deadline), then we can say that there is anoptimization constraintassigned to the
criterion. Obviously, there may exist a constraint (or multiple constraints) defined for a certain criterion which has an
optimization objective. Therefore, the optimization impact of workflow scheduling criteria can be divided into two
classes:

• Objective. An optimization goal to find the best possible cost for the given criterion (e.g., to minimize the
execution time).

• Constraint. A restriction imposed on the results of an optimization process (e.g., a time deadline, a budget limit).

In most of the existing workflow scheduling approaches (e.g., [42, 19, 34, 37]), there is an optimization objective
defined for execution time (time minimization). A common wayto deal with a multi-criteria scheduling [50] is to
define an optimization objective for one criterion, and to establish constraints for all the other criteria. The scheduling
techniques presented in [59, 57, 58, 21] apply this approachto the problem of bi-criteria scheduling, by defining a
constraint for one of the two scheduling criteria (either execution time or economic cost) and by minimizing the other
one.

When considering a criterion for which an optimization objective is defined, we should also consider the optimiza-
tion goal connected with the objective. For instance, when optimizing the execution time of a workflow, the goal is
to minimizethe total time. On the other hand, when optimizing the quality of results or the security and reliability of
execution, the goal is tomaximizethe total cost. We can also imagine that the scheduling criterion is the ratio between
the costs for two contradicting criteria (e.g., between thememory usage and the execution time). In such a case, the
goal will be to obtain a total cost which is possibly close to acertain goal value (i.e., the optimization objective is
focusedon a certain goal cost). We will distinguish three differentvariants of scheduling objectives:

• Maximized. The optimization goal is to maximize the total cost (e.g., for quality of results).

• Minimized. The optimization goal is to minimize the total cost (e.g., for economic cost).

• Focused. The optimization goal is to achieve a certain total cost (e.g., for memory usage/execution time ratio).

Some approaches (e.g., [8]) distinguishglobal constraintsandlocal constraints:

• Global constraint. A constraint defined for the whole workflow.

• Local constraint. A constraint defined for a single workflow task.

3.2.4 Calculation method

Another classification can be done with respect to the operation used for the cost calculation. For instance, addition
is performed to combine the individual economic costs of tasks, when calculating the total workflow cost. The same
operation is used to calculate the total execution time of a workflow, with a difference that the partial costs are added
up taking into consideration also the structure of the workflow (see Fig. 3). There exist a large number of criteria for
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which it is convenient to express costs as real numbers from the range[0, 1] (e.g., quality of results, probability of
failure, availability rate, security). For these criteria, we usually multiply the partial costs of the workflow tasks to
calculate the total cost of the workflow. To make the picture more complete, we also mention the class ofconcave
criteria, proposed in [56]. The total cost of a concave criterion is equal to the minimal cost among all the individual
costs (e.g., bandwidth in pipelined execution or in networks). Therefore, at least three important classes of criteria
should be distinguished:

• Additive(e.g., economic cost, execution time).

• Multiplicative (e.g., quality of results).

• Concave(e.g., bandwidth).

3.2.5 Cost model flexibility

A simple cost model assumes that the partial costs of services are a fixed input for scheduling and cannot be changed.
This model is widely accepted in the Grid, so it is applied in most of the existing Grid workflow systems. However,
there is an increasing interest in moreadaptiveflexible cost models, where the costs can be negotiated or established
through some economy-based mechanisms before the application is executed. From this point of view, we have the
following two cost models for scheduling criteria:

• Fixed. The partial costs of services are given as a fixed input for scheduling.

• Adaptive. The partial costs of services are dynamically adjusted through certain mechanisms (e.g., auctions or
negotiations).

This classification is similar to the classification based onintradependence, which is introduced later in this section.
The difference is that for the intradependent criteria, costs are calculated internally by the scheduler using some
deterministic functions, while in case of the adaptive costmodels discussed here, costs are either determined externally
by a Grid broker or result from negotiations between different actors of the Grid.

Adaptive pricing have been extensively studied in the past (although usually not for workflow scheduling), and
different models have been proposed. An important class of such models originates from human economy, so the
common name to refer to them isGrid Economy. Many Grid Economy models have been enumerated and discussed
in [11, 10], where a Grid architecture realizing them has also been proposed. In thecommodities market model, prices
are established centrally based on the current demand and supply rate, with the goal of achievingmarket equilibrium.
In the tender/contract-net model, the consumer announces its requirements, and the service providers respond with
the their offers. Theauction modelsupports one-to-many negotiation, between a service provider and many con-
sumers. Different auction models (English auction, first-price auction, Vickrey auction, Dutch auction) are known in
the literature. The other economic models mentioned in [11]include theposted price model, thebargaining model,
thebid-based proportional resource sharing model, thecommunity/coalition/bartering/share holders model, and the
monopoly/oligarchy model.

The Grid Economy models are usually applied to determine theeconomic cost of services or resources, where the
cost can either represent real money or be applied just a useful abstraction introduced for instance for the sake of a fair
balance between the demands of different users of the Grid. Different types of resources are treated as individual and
interchangeable commodities [55]. The scheduling approach proposed in [49] uses the commodities market model to
determine the cost of resource usage in context of non-workflow streaming applications. The approches based on a
single market and on multiple markets are compared in this work. The work presented in [55] compares the economic
models based on the commodities market and on the second-price Vickrey auctions, showing the superiority of the
former approach in terms of the economic factors like price stability, market equilibrium, consumer efficiency, and
producer efficiency. The introduced market model called “The First Bank of the G” is an extension of the Scarf’s
algorithm known in economy. A real workflow scheduling approach based on an economic model is introduced in
[14], in which the first-price auction model is applied. Workflows are scheduled in a full-ahead manner, and the
scheduling is performed together with bidding for resources. The distance of individual tasks from the end of the
workflow determines howurgenteach task is; the more urgent tasks are given higher prices during the auction in order
to increase the possibility of meeting the deadline defined for the workflow.
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Other negotiation-based techniques are common foragent systems. The automatic negotiation techniques intro-
duced in such systems are developed especially for computerenvironments rather then originate from human econ-
omy. A good introduction to the problem of automatic negotiation is presented in [28]. According to this work, a
negotiation strategy can be described by thenegotiation protocol, negotiation objects(objectives for which the nego-
tiation is performed), and thedecision making model(the negotiation strategy). Three groups of negotiation strategies
are distinguished: thegame theoretic techniquesbased on the extensively studied strategies known in game theory,
theheuristicsbased on more intuitive techniques which lack solid theoretical grounds, and theargumentation-based
techniquesin which the negotiating parties can exchange between each other any kind offeedbackrather than only
simplecounter-proposals. The work presented in [31, 33, 32] proposes non-workflow scheduling techniques using
heuristic-based negotiation strategies. The heuristics are implemented through specialutility functionswhich deter-
mine the behavior of the negotiating parties. For instance,some utility functions can make a negotiator “tough” (i.e.,
unwilling to change its initial proposals), while some other functions can make it “conceding” (i.e., apt to accept
counter-proposal). The authors examine different scenarios in whichjob usersandresource providersapply differ-
ent negotiation strategies, comparing the ratio of agreements successfully created within a limited time, the achieved
utility value, and the duration of the negotiation process.

3.2.6 Intradependence

The notion of intradependence of scheduling criteria has a major impact on the workflow scheduling. For some criteria,
scheduling decisions made for some workflow tasks may changethe costs of some other tasks. A good example of
such a criterion can be the economic cost in a special progressive price model. A common practice in the market is
to introduce a dependence between the size of an order and theprice for an individual item (usually, the larger the
order, the lower the price). If this is the case, then we can say that the scheduling decisions depend on one another
within a scheduling criterion. Also for execution time, thescheduling decisions made for some tasks may influence
the aggregated costs of some other tasks (because tasks consume resources whose amount is limited). On the other
hand, the scheduling decisions made for criteria like reliability, quality of results, or the economic cost calculatedin
a simple price model does not seem to show any intradependence. From this point of view, we will distinguish two
classes of criteria:

• Intradependent(e.g., economic cost in a progressive price model, execution time).

• Non-intradependent(e.g., quality of results, economic cost in a simple price model).

Within the class of intradependent criteria, which is the most difficult one for scheduling, we can also distinguish two
subclasses. For instance in the aforementioned progressive price economic cost, decisions made for individual work-
flow tasks may influence thepartial costsfor some other tasks. For a change in execution time, a scheduling decision
made for a workflow task does not always change the execution times of other tasks, however it usually influences the
way in which theaggregated costsare calculated. In this way, we can distinguish two types of intradependence:

• Partial cost related. The partial costs of workflow tasks are influenced by the scheduling decisions made for
some other workflow tasks (e.g., economic cost in a progressive price model).

• Aggregated cost related. The aggregated costs of workflow tasks are influenced by the scheduling decisions
made for some other workflow tasks (e.g., execution time).

3.2.7 Interdependence

When considering multiple scheduling criteria, we may observe that some of them strongly depend on others, whilst
some others are mutually independent. For example, when optimizing the execution time of a workflow, also the
availability and the reliability of services should be taken into consideration, as highly unstable resources on which
a service is deployed may provide longer execution times than its more reliable counterparts. On the other hand, the
economic cost of a service usage does not have any influence onthe execution time, so it can be considered irrelevant
from the point of view of this criterion. This observation isof major importance for scheduling, since when considering
a group of criteria where some criteria depend on some other criteria, the multi-criteria optimization problem can
often be reduced to the optimization of a goal function beinga simple product. Therefore, when considering groups
of criteria, we will distinguish the following two disjointclasses:
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• Interdependent(e.g., execution time and availability).

• Non-interdependent(e.g., execution time and economic cost).

A workflow scheduling approach based on the idea of interdependent criteria reduction is proposed in the Instant-Grid
[27]. The two criteria (number of CPUs and the last known load) are used to calculate a specialqualityvalue for each
resource, based on which the scheduler selects the most appropriate mapping for each workflow task (the Grid-wide
optimization perspective applied).

3.3 Taxonomy of Grid resources

Characteristics of the resources on which tasks are executed are especially important from the point of view of
performance-oriented scheduling, in which the scheduling goal is to optimize the amount of useful work compared to
the time and resources used (usually, the execution time or the job throughput optimization). The scheduler has to take
into consideration the type of resources used for execution, and the way in which the resources handle the execution
of tasks. The proposed taxonomy of Grid resources from the point of view of workflow scheduling is shown in Fig. 4.

3.3.1 Diversity

One of the main characteristics of the Grid resources is their heterogeneity. Therefore, most of the existing Grid
environments belong to the second one of the following two classes:

• Homogeneous. Multiple resources have identical static and dynamic characteristics (i.e., same type, same per-
formance, same load, etc.).

• Heterogeneous. Multiple resources have diverse characteristics (i.e., different types, different performance,
different load, etc.).

Heterogeneity can be understood as the existence of diversecharacteristics (e.g., CPU speed, RAM size) within a
group of resources of the same type (e.g., computational resources). At the extreme, we can take into consideration
even the dynamic resource characteristics, and also call the identical resources which have different CPU loads or
different amounts of free memory heterogeneous. On the other hand, heterogeneity can be considered only as the
distinction between different resource types (e.g., computational resources, network resources, storage resources). We
will distinguish two types of heterogeneity:

• Single type. The resources of the same type (e.g., computational resources) differ with respect to their charac-
teristics (e.g., CPU speed, RAM size).

• Multiple types. The resources differ with respect to their types (e.g., computational, storage, and network
resources).
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The existing workflow scheduling approaches we are aware of address the former variant of the problem, although
the characteristics of some types of resources (e.g., network bandwidth, storage size) are sometimes included in the
description of the computational resources (e.g., [25]).

Much effort has been put into addressing multiple types of resources on the Grid. Stork [30] aims at “making
data placement a first class citizen in the Grid”, by handlingdata transfers tasks in a similar way as execution tasks.
The concept of Open Grid Service Architecture (OGSA) [24] has been introduced to describe the Grid as a service-
oriented environment where heterogeneous resources are treated in a uniform way as so-calledGrid Services. The
MetaScheduling-Service (MSS) [53] developed within the VIOLA project aims at co-allocation of different types of
resources (currently, compute resources and network resources) in multiple administrative domains.

3.3.2 Task execution

Resources can be divided into two categories, according to the way they can be used by multiple tasks:

• Non-multiprogrammed. The scheduler can schedule at most a single task to be executed on a resource at the
same time.

• Multiprogrammed. The scheduler can schedule multiple tasks to be executed ona resource at the same time.

The resources from these two classes are sometimes referredto also asdisjunctiveandcumulative, respectively [4].
Most of the existing Grid environments consist of parallel machines being managed by local resource managers which
allow only for disjunctive access to the resources (external load on the resources can always be the case). Therefore,
all the Grid workflow scheduling approaches which we are aware of address the non-multiprogrammed resource
model. In [41], a scheduler called O-OSKAR is proposed, which schedules workflows of general (not necessarily
computational) activities on multiprogrammed resources.The problem is approached as a Meta-CSP (Meta- Constraint
Satisfaction Problem), and solved using an algorithm called ISES [2].

3.4 Taxonomy of workflow tasks

Workflow tasks may differ with respect to their requirementsand characteristics which have to be taken into consider-
ation when scheduling a workflow. The proposed taxonomy of tasks is depicted in Fig. 5.

3.4.1 Resource mapping

In a similar way as a single resource can be used by multiple tasks at a time (see Section 3.3), also a single task may
require multiple resources to be used (e.g., parallel MPI and PVM programs). We can distinguish three classes of
tasks, with respect to its resource mapping requirements:

• Rigid. A task requires a fixed number of resources to be used (usually, one resource).
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• Moldable. A task requires multiple Grid resources to be used, and the number of resources required by the task
is not knowna priori but determined before the execution starts.

• Malleable. A task requires multiple Grid resources to be used which maybe added or withdrawn from a job
according to the current system state.

The processing speed of a task (referred to as theprocessing speed function) is usually a nonlinear function of the
number of processors allocated to the task. Most of the existing workflow scheduling approaches assume that tasks
belong to the first class. The other two classes are much more difficult for scheduling, as a new dimension is added to
the task allocation problem. Many of the existing algorithms for moldable and malleable tasks proceed in two steps
[39]: the first step aims at finding an optimalallocation for each task, and the second step determines aplacement
for the allocated tasks, that is the actual processor set to execute each task that minimizes the total completion time.
Mixed task and data parallel applicationare considered often as cases of moldable and malleable tasks (e.g., [40,
39],[12],[45, 25]).

A typical algorithm which deals with the problem of workflow scheduling of moldable tasks in homogeneous
environments is the Critical Path and Area-based algorithm(CPA) [40]. This algorithm aims at finding the best
compromise between the length of the critical path, and theaverage areaTA which measures the mean processor-
time area required by the application. Formally,TA = 1

R

∑N
i=1

(t(τi, Np(ti)) · Np(ti)), whereR denotes the total
number of resources,N the total number of tasks,τi, 1 ≤ i ≤ N a task,Np(τi) the number of resources allocated to
the taskτi, andt(τi, Np(τi)) the execution time of the taskτi executed onNp(τi) resources. In [39], CPA is extended
to the Heterogeneous Critical Path and Area-based algorithm (HCPA) designed for heterogeneous environments. To
adapt the algorithms to the heterogeneous environments, the following two modifications are introduced: (i) a novel
“virtual” cluster methodology for handling platform heterogeneity is applied in the allocation step, and (ii) a novel
task placement step is introduced, to determine whether theplacement step of heuristics for homogeneous platforms
is adapted to the heterogeneous case.

Another approach to the problem of scheduling of moldable tasks in workflows is proposed in [12]. The authors
show a way in which a typical list scheduling algorithm for heterogeneous environment can be adjusted for moldable
tasks. The authors propose a new M-HEFT algorithm which extends the existing Heterogeneous Earliest Finish Time
(HEFT) algorithm [61] with respect to the way in which thecost values(expected execution times) for different
tasks are calculated. The cost values are used in the algorithm to determine the scheduling order and to find the best
mapping for each task. Since a single task may use different numbers of CPUs of a compound Grid site, the values are
estimated for differentconfigurationsof different Grid sites (e.g., for different numbers of CPUsof a cluster). In the
simplest version of the proposed algorithm (called M-HEFT1), the cost values are estimated for a single 1-processor
configuration of each site. Vienna Grid Environment [8] applies heuristics to determine the number of processors
required to execute an MPI job within the user-specified timeconstraints.

The work presented in [25] addresses the problem of distributed database query scheduling on the Grid. The
authors enumerate three common approaches to the problem based on three different kinds of parallelism:independent,
pipelined, andpartitioned(or intra-operator). In context of the taxonomies proposed by us, the first type of parallelism
assumes that all tasks are rigid, the second type is related to thepipelined workflows(see Section 3.5), and the third
type, which is exploited in the proposed approach, assumes that all tasks are moldable. Distributed queries in the
problem under consideration are defined as tree-like DAGs consisting of different basic tasks (operators), which are
originally described assingle-node plans(wherenoderefers to a computational node), and which are subsequently
converted tomulti-node plans(in which individual operators can be mapped to multiple computational nodes) by
the proposed algorithm. The parallelization of single-node plans is done by incrementally increasing the number of
computational nodes mapped to thecostlies(i.e., most time consuming) parallelizable operators.

The problem of scheduling of malleable tasks in a parallel environment is addressed in [7]. The authors provide a
theoretical analysis of the problem of scheduling of independent tasks, and propose a scheduling algorithm that solves
the problem in linear time when all the processing speed functions are convex, and in polynomial time when the speed
functions are concave. The GrADS projects [6] applies a dynamic performance tuning of malleable tasks by applying
so-calledMPI Swapping. In this approach, the resources are grouped into two sets, theactiveset and theinactiveset,
where only the first set contains resources which can be used by applications. During the execution, the resources are
systematically moved between the sets, depending on the current performance measurements.

The requirement of multiple resources for a task is connected with the concept ofco-allocation, i.e., the simul-
taneous allocation of resources in multiple sites. In the KOALA Grid Scheduler [38], co-allocation is done by the
Co-allocator (CO) which is responsible for finding the execution sites with enough idle processors for the tasks. In the
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MetaScheduling-Service (MSS) [53], developed within the VIOLA project, heterogeneous resources are co-allocated
across multiple administrative domains.

3.4.2 Migration

Dynamic scheduling can be implemented more effectively in environments where preemption and migration are en-
abled. With respect to these properties, we will distinguish two classes of tasks:

• Migrative. Task execution can be checkpointed at a certain resource, preempted, migrated, and resumed on
another resource (assuming that the operating systems on the resources support migration).

• Non-migrative. Task migration is not enabled.

Task migration is rarely applied in the real Grid, due to well-known problems with the implementation of reliable
and effective task migration. All existing implementations are restricted only to specific platforms, and impose strict
prerequisites on the tasks which can be migrated [5]. The only Grid workflow system we are aware of which supports
task migration is GrADS [6].

3.5 Taxonomy of workflow model

The taxonomy depicted in Fig. 6 differentiates workflows with respect to their representation and behavior.

3.5.1 Component model

From the scheduling point of view, workflows may differ with respect to the way computational tasks and data transfers
are represented in them. We can distinguish two classes of workflow models:

• Task oriented. Computational tasks are represented as graph nodes. Data transfers are represented as graph
edges.

• Task and data transfer oriented. Both computational tasks and data transfers are represented as graph tasks.
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The existing Grid workflow scheduling approaches are based predominantly on the former model. There are only
few workflow representations which support the latter model(e.g., Karajan [29] and Stork [30]). In Vienna Grid
Environment [8], the low level workflow representation denotes both tasks and data transfers as workflow nodes.
However, in the high level representation used for requirement specification and scheduling, there are no separate
VGE servicesrepresenting data transfers. The distributed query workflows used in [25] include also special workflow
nodes calledexchange operatorswhich involve communication between other workflow nodes.

3.5.2 Generality

Although the workflow model specified by us in Section 2 is the directed graph (digraph), many existing workflows
have a well-defined structure which can be described by a simpler model being a subset of the general digraph model
(e.g., a master-worker workflow with well-defined parallel sections of identical tasks). For specific workflow models,
there may exist some specialized algorithms which produce better results than any general-purpose digraph scheduling
algorithm. Therefore, we will distinguish the following two workflow models:

• Specific. The workflow structure has certain regularities, so it can be described by a well-defined subset of the
general digraph model (e.g., parameter sweep applications).

• General digraph. The workflow is a general digraph defined in Section 2.

Many existing approaches are based on a specific workflow model. The work presented in [45] considers a pipelined
workflow model based on a sequence of data parallel tasks. Theworkflows used to model distributed database queries
in [25] are based on a special tree-like structure constructed according to certain restricted composition rules. The
regular structure of the workflows considered in [19] allowed to introduce the idea of workflow partioning which
consists in converting the workflow to a sequence of subworkflows. The dynamic scheduling of the parameter sweep
applications considered in [34] is approached by a special prioritization policy which gives higher priority to the tasks
whose so-calledchildren’s ancestorshave already been finished. In [13], several heuristics for dynamic scheduling
of parameter sweep applications (Min-min, Max-min, Suffrage) are compared, and a new heuristic called XSuffrage
is proposed. In the Abstract Grid Workflow Language (AGWL) [23] used in ASKALON [22], the workflows are
expressed by means of hierarchical embedded structures (loops, parallel loop, conditionals, etc.), which is appropriate
for a broad range of scientific workflows. For scheduling purposes, the workflows expressed in AGWL are converted
to the general digraph model [35]. The general digraph modelof workflows is addressed for instance in [42, 63, 37,
21, 59].

3.5.3 Atomic structure dynamism

Apart from task mapping, also changing the basic workflow structure can be considered as a scheduling method.
Workflow nodes (atomic workflow elements) can be added to or removed from a workflow, or can be grouped together
to form new atomic elements, with the aim to increase the profit of the user or of the Grid. We will say that an approach
is designed for workflows with atunableatomic structure, if it may modify the workflow structure (for optimization
purposes) within the scheduling process, in contrast to theapproaches which modify the workflow structure only as
a consequence of a normal workflow execution (e.g., through loop unrolling or user interactions). We also impose
an additional restriction on this group, by assuming that itcontains only those approaches which add/remove/modify
nodes, not those which just add/remove/modify dependencies. The reason for this is to exclude the approaches based
on workflow clustering (i.e., on an auxiliary partition of the workflow to a set of non-atomic subworkflows), which is
a standard scheduling approach. We introduce the followingtwo workflow classes:

• Fixed. The atomic workflow structure is not changed during the scheduling process (some additional dependen-
cies can be added or removed).

• Tunable. Atomic nodes can be added, removed, or modified during the scheduling process.

In K-WfGrid [48], workflows are created on demand and semantically tuned by the components called Workflow
Composition Tool (WCT) and Automatic Application Builder (AAB) before the tasks are mapped to services. Also in
PEGASUS [19], the workflows are first converted from anabstractto aconcreteform. Three different restructuring
techniques are involved in this process. Firstly, data setswhich are produced by workflows running in the Grid can
be reused in the subsequent workflow executions, which makesthe execution of some workflow tasks unnecessary.
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Secondly, thegranularityof a workflow is increased by combining (clustering) severaltasks and treating the result as a
single unit for mapping and scheduling. The third restructuring technique consists in clustering together several tasks
scheduled to multi-processor systems, and running them together as one schedulable unit, possibly in a master/slave
fashion. The last two approaches aim at decreasing the scheduling overheads. In the approaches designed for pipelined
workflows (e.g., [45]), tasks in the original sequence can bereplicated(several instances of the same task may process
different data sets in parallel), in order to increase the overall throughput.

3.5.4 Data processing

This classification distinguishes two different types of workflow processing, which are addressed in different schedul-
ing approaches. When considering the amount of data processed by an individual workflow, we can identify the
following two workflow models:

• Single data set. The workflow is executed once, for a single set of input data.

• Pipelined. The workflow is executed many times, for multiple data sets which are processed by the workflow as
a stream.

Most of the existing Grid approaches address the first of the aforementioned classes. The second class is common in
several application domains, including digital signal processing, image processing, and computer vision. The approach
presented in [45] addresses the problem of scheduling of pipelined computations with the goal of optimizing the
latency and the throughput of execution. The applications consist of a sequence of data parallel tasks which can be
mapped onto a parallel machine in a variety of ways, employing different combinations of task and data parallelism.

In [49], the authors analyze the problem of scheduling of pipelined (streaming) applications, and give several
reasons why the classical scheduling algorithms are not well suited to the problem addressed by them. Although they
define the problem for workflow scheduling, they provide onlya solution for scheduling of single processing units.

3.6 Classification of the existing Grid systems

To summarize the material presented in this section, in Table 1 we show a survey of different existing scheduling
approaches, classified according to the proposed taxonomies. In this survey, we concentrate only on the workflow
scheduling approaches dedicated for the Grid, although theterm “Grid” may not be explicitly mentioned in all of
them. In order to make the comparison more concise, we do not show there the classifications introduced by us for
scheduling criteria (except for optimization model and cost model flexibility). Instead, we just state explicitly whether
the compared approach considers execution time, economic cost, or other kinds of criteria. Several times, groups of
multiple approaches are described in a single table row. It was done when the approaches were proposed by the same
authors and were logically related (e.g., were developed within the same project).

4 Conclusions

The presented study shows that multi-criteria scheduling on the Grid is a complex problem for which multiple variants
can be distinguished based on different possible aspects. Obviously, it is not feasible in general to develop a single
scheduling approach which works efficiently for all classesof the problem. For instance, it is rather unlikely that
a scheduling approach which works well for workflows consisting of rigid tasks running on non-multiprogrammed
resources will work equally good for a pipelined workflow processing a stream of video data, containing moldable
tasks which can share the same resources. Therefore, when developing any general scheduling strategy, the first step
should be to identify the set of problem classes which can be approached in a similar way.

There exist some multi-criteria workflow scheduling approaches, most of them considering execution time as
the most important scheduling criterion. In most of the cases, the scheduling process performed for the criteria is
workflow-oriented. The existing workflow scheduling approaches are usually based on full-ahead planning. Most of
them are designed for task oriented general digraphs and on the data processing model based on a single data input
set. The pipelined workflows, which are characteristic onlyfor some specific areas (e.g., for multimedia systems) have
considerably different behaviors and require different scheduling techniques.

There are almost no workflow scheduling approaches which arebased on an adaptive cost model for criteria. Such
cost models present a very promising research direction, asthey can lead towards scheduling techniques applicable
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in utility Grids with paid access to resources, and which canaddress the challenges like Service Level Agreements
(SLAs). Advance reservation can be applied as a logical extension of such models. There is still a large research
potential for scheduling of malleable tasks, and for the multiprogrammed resource model, although it is not certain
whether the latter problem class has any significant practical meaning (we are not aware of any workflow scheduling
research for the Grid which addresses this problem). Another interesting research area is related with the heterogeneity
model based on multiple resource types. Also workflow tuningand task migration as optimization methods seem to
be underrepresented among the existing scheduling approaches.

The current study shows that the Grid workflow scheduling problem is still not fully addressed by the existing
work. We believe that the presented taxonomies will facilitate development of scheduling approaches capable of
dealing with some of the distinguished problem classes. In the future, we are planning to invent a generic scheduling
approach for two or more criteria, exploring different types of criteria. An economic model provided for multiple
consumers and providers, incorporating price negotiationand advance reservation, seems to be most appropriate for
our goals. Starting from simple cases (bi-criteria scheduling), we will try to move towards more complicated problem
classes, considering different types of intradependence,and different characteristics of tasks and workflows.
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