
Combining Static Analysis and Testing
for Deadlock Detection

Technical Report (including Proofs)

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel

Complutense University of Madrid (UCM), Spain

Abstract. Static deadlock analyzers might be able to verify the absence
of deadlock, but when they detect a potential deadlock cycle, they pro-
vide little (or even none) information on their output. Due to the complex
flow of concurrent programs, the user might not be able to find the source
of the anomalous behaviour from the abstract information computed by
static analysis. This paper proposes the combined use of static analysis
and testing for effective deadlock detection in asynchronous programs.
Our main contributions are: (1) We present an enhanced semantics which
allows an early detection of deadlocks during testing and that can give to
the user a precise description of the deadlock trace. (2) We combine our
testing framework with the abstract descriptions of potential deadlock
cycles computed by an existing static deadlock analyzer. Namely, such
descriptions are used by our enhanced semantics to guide the execution
towards the potential deadlock paths (while other paths are pruned).
When the program features a deadlock, our combined use of static anal-
ysis and testing provides an effective technique to find deadlock traces.
While if the program does not have deadlock, but the analyzer inaccu-
rately spotted it, we might be able to prove deadlock freedom.

1 Introduction

In concurrent programs, deadlock is one of the most common programming errors
and, thus, a main goal of verification and testing tools for concurrent programs
is, respectively, proving deadlock freedom and deadlock detection. We consider an
asynchronous language which allows spawning asynchronous tasks at distributed
locations, and has two operations for blocking and non-blocking synchronization
with the termination of asynchronous tasks. In this setting, in order to detect
deadlocks, all possible interleavings among tasks executing at the distributed
locations must be considered. Basically, each time that the processor can be
released, any of the available tasks can start its execution, and all combinations
among the tasks must be tried, as any of them might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks that
often complement each other and thus it seems quite natural to combine them.
As static analysis examines all possible execution paths and variable values, it
can reveal deadlocks that could not manifest until weeks, months or years after
releasing the application. This aspect of static analysis is especially important

in security assurance, because security attacks try to exercise an application in
unpredictable and untested ways. However, when a deadlock is found, state-of-
the-art analysis tools [11, 12, 9, 17] provide little (and often none) information on
the source of the deadlock. In particular, for deadlocks that are complex (involve
many tasks and locations), it is essential to know the task interleavings that
have occurred and the locations involved in the deadlock, i.e., provide a concrete
deadlock trace that allows the programmer to identify and fix the problem. In
contrast, testing consists in executing the application for concrete input values.
The primary advantage of testing for deadlock detection is that it can provide
the deadlock trace with all information that the user needs in order to fix the
problem. There are two shortcomings though: (1) Since not all inputs can be
tried, there is no guarantee of deadlock freedom. (2) Although recent research
tries to avoid redundant exploration as much as possible [10, 20, 8, 1, 4, 1], the
search space (without redundancies) can be huge. This is a threaten to the
application of testing in concurrent programming.

This paper proposes a seamless combination of static analysis and testing for
effective deadlock detection as follows: an existing static deadlock analysis [11]
is first used to obtain abstract descriptions of potential deadlock cycles which
are then used to guide a testing tool in order to find associated deadlock traces
(or discard them). Technically, the main contributions of the paper are:

1. We extend a standard semantics for asynchronous programs with information
about the task interleavings made, and the status of tasks (i.e., awaiting,
blocked, or finished). The extended semantics will allow us: (1) to provide
deadlock traces when a deadlock is found, (2) an early detection of deadlock
states during execution and (3) its combined use with static analysis.

2. We provide a formal characterization of deadlock state which can be checked
along the execution, and allows us to early detect deadlocks even in complex
situations in which there are one or several locations that keep on executing
(maybe even go into an infinite computation) while, due to blocking call
chains in other locations, the execution will eventually lead to deadlock.

3. We present a new methodology to detect deadlocks which combines testing
and static analysis as follows: the deadlock cycles inferred by static analysis
are used by our extended semantics to guide the testing process towards
paths that might lead to a deadlock cycle and discard deadlock-free paths.

4. The implementation in the aPET system [5], the definition of several deadlock-
based testing criteria, and a thorough experimental evaluation. Our experi-
ments show that we can find deadlock traces for the potential deadlock cycles
with a significant reduction of the required state exploration.

2 Asynchronous Programs: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered buffer
of pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its
own processor’s global storage, each task can post tasks to the buffers of any

2

(mstep) selectLoc(S) = loc(o,⊥, h,Q),Q 6= ∅, selectTask(o) = tsk(tk ,m, l, s),

S � ρ∅
o·tk
;∗ S′ � ρ

S
o·tk−→ S′

(newloc) tk = tsk(tk ,m, l, x = new D; s), fresh(o′), h′ = newheap(D), l′ = l[x→ o′]

loc(o, tk , h,Q∪ {tk}) � ρ0 ; loc(o, tk , h,Q∪ {tsk(tk ,m, l′, s)}) · loc(o′,⊥, h′, {}) � ρ0

(async) tk = tsk(tk ,m, l, y=x!m1(z); s), l(x)=o1, fresh(tk1), l1=buildLocals(z̄,m1, l)

loc(o, tk , h,Q∪ {tk}) · loc(o1, , ,Q′) � ρ0 ; loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)})·
loc(o1, , ,Q′ ∪ {tsk(tk1,m1, l1, body(m1))}) · fut(y, o1, tk1, ini(m1)) � ρ0

(return)
tk = tsk(tk ,m, l, return; s),ρ1 = return

loc(o, tk , h,Q∪ {tk}) � ρ0 ; loc(o,⊥, h,Q∪ {tsk(tk ,m, l, ε)}) � ρ1

(await1)

tk = tsk(tk ,m, l, y.await; s), tsk(tk1, , , s1) ∈ Ob, s1 = ε

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ;

loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1,) � ρ0

(await2)

tk = tsk(tk ,m, l, pp:y.await; s), tsk(tk1, , , s1) ∈ Ob, s1 6= ε,ρ1 = pp : y.await

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ;

loc(o,⊥, h,Q∪ {tk}) · fut(y, , tk1,) � ρ1

(block1)

tk = tsk(tk ,m, l, y.block; s), tsk(tk1, , , s1) ∈ Ob, s1 = ε

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ;

loc(o, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1,) � ρ0

(block2) tk=tsk(tk ,m, l, pp:y.block; s), tsk(tk1, , , s1) ∈ Ob, s1 6= ε,ρ1 = pp:y.block

loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ; loc(o, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ1

Fig. 1. Semantics of Asynchronous Programs

processor, including its own, and synchronize with the termination of tasks. The
language uses future variables to check if the execution of an asynchronous task
has finished. An asynchronous call m(z̄) spawned at location x is associated with
a future variable f as follows f = x ! m(z̄). Instructions f.block and f.await allow,
respectively, blocking and non-blocking synchronization with the termination of
m. When a task completes, or when it is awaiting with a non-blocking await
for a task that has not finished yet, its processor becomes idle again, chooses
the next pending task, and so on. The number of distributed locations need
not be known a priori (e.g., locations may be virtual). Syntactically, a location
will therefore be similar to a concurrent object and can be dynamically cre-
ated using the instruction new. The program consists of a set of methods of
the form M ::=T m(T̄ x̄){s}, where statements s take the form s::=s; s | x=e |
if e then s else s | while e do s | return | b=new | f = x ! m(z̄) | f.await | f.block.
For the sake of generality, the syntax of expressions e and types T is left open.

Fig. 1 presents the semantics of the language. The information about ρ in
bold font is part of the extensions for testing in Sec. 4 and should be ignored by
now. A state or configuration is a set of locations and future variables o0 · · · on ·
fut0 · · · futm. A location is a term loc(o, tk , h,Q) where o is the location identifier,
tk is the identifier of the active task that holds the location’s lock or ⊥ if the
location’s lock is free, h is its local heap, and Q is the set of tasks in the location.
A future variable is a term fut(id, o, tk ,m) where id is a unique future variable

3

identifier, o is the location identifier that executes the task tk awaiting for the
future, and m is the initial program point of tk . A task is a term tsk(tk ,m, l, s)
where tk is a unique task identifier, m is the method name executing in the
task, l is a mapping from local variables to their values, and s is the sequence
of instructions to be executed or ε if the task has terminated. We assume that
the execution starts from a main method without parameters. The initial state
is St={loc(0, 0, ⊥, {tsk(0,main, l, body(main))} with an initial location with
identifier 0 executing task 0. Here, l maps local variables to their initial values
(null in case of reference variables) and ⊥ is the empty heap. body(m) is the
sequence of instructions in method m, and we can know the program point pp
where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
macro-step semantics [19] (defined by means of the transition “−→”) in which
the evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it gets to an await or return instruction. In this case, we
apply rule mstep to select an available task from a location, namely we apply the
function selectLoc(S) to select non-deterministically one active location in the
state (i.e., a location with a non-empty queue) and selectTask(o) to select non-
deterministically one task of o’s queue. The transition ; defines the evaluation
within a given location. newloc creates a new location without tasks, with a
fresh identifier and heap. async spawns a new task (the initial state is created
by buildLocals) with a fresh task identifier tk1, and it adds a new future to the
state. ini(m) refers to the first program point of method m. We assume o 6= o1,
but the case o = o1 is analogous, the new task tk1 is added to Q of o. The
rules for sequential execution are standard and are thus omitted. Await1: If the
future variable we are awaiting for points to a finished task, the await can be
completed. The finished task t1 is only looked up but it does not disappear from
the state as its status may be needed later on. Await2: Otherwise, the task yields
the lock so that any other task of the same location can take it. Return: When
return is executed, the lock is released and will never be taken again by that
task. Consequently, that task is finished (marked by adding the instruction ε).
Block2: A y.block instruction waits for the future variable but without yielding
the lock. Then, when the future is ready, Block1 allows continuing the execution.

In what follows, a derivation or execution E ≡ St0 −→ · · · −→ Stn is a
sequence of macro-steps (applications of rule mstep). The derivation is complete
if St0 is the initial state and @ Stn+1 6= Stn such that Stn−→ Stn+1. Since the
execution is non-deterministic, multiple derivations are possible from a state.
Given a state St, exec(St) denotes the set of all possible derivations starting at
St. We sometimes label transitions with o · tk , the name of the location o and
task tk selected (in rule mstep) or evaluated in the step (in the transition ;).

3 Motivating Example

Our running example is a simple version of the classical sleeping barber problem
where a barber sleeps until a client arrives and takes a chair, and the client wakes
up the barber to get a haircut. Our implementation has a main method showed

4

1 main() {
2 Ba barber = new Ba();
3 Cl client = new Cl();
4 Ch chair = new Ch();
5 client!wakeup(barber,chair);
6 barber!sleeps(client,chair);
7 }
8 class Ba{
9 Unit sleeps(Cl cl, Ch ch){

10 Fut f=ch!taken(cl);
11 f.block;}
12 Unit cuts(){}
13 }

14 class Ch{
15 Unit taken(Cl cl){
16 Fut f=cl!sits();
17 f.await;}
18 Unit isClean(){}
19 }
20 class Cl{
21 Unit wakeup(Ba b, Ch ch){
22 Fut f=b!cuts();
23 ch!isClean();
24 f.block;}
25 Unit sits(){}
26 }

ba.spcl.wk

ch.tkcl.wkba.sp

ch.tk cl.st

ba.cut

cl.wk

62

1

9733

8

5

4

ch.tk

10 11

Fig. 2. Classical Sleeping Barber Problem (left) and Execution Tree (right)

to the left and three classes Ba, Ch and Cl implementing the barber, chair and
client, respectively. The main creates three locations barber, client and chair and
spawns two asynchronous tasks to start the wakeup task in the client and sleeps

in the barber, both tasks can run in parallel. The execution of sleeps spawns an
asynchronous task on the chair to represent the fact that the client takes the
chair, and then blocks at L11 (L11 for short) until the chair is taken. The task
taken first adds the task sits on the client, and then awaits on its termination at
L17 without blocking, so that another task on the location chair can execute. On
the other hand, the execution of wakeup in the client spawns an asynchronous
task cuts on the barber and one on the chair, isClean, to check if the chair is
clean. The execution of the client blocks until cuts has finished. We assume that
all methods have an implicit return at the end.

Fig. 2 summarizes the execution tree of the main by showing some of the
macro-steps taken. Derivations that contain a dotted node are not deadlock,
while those with a gray node are deadlock. A main motivation of our work is
to detect as early as possible that the dotted derivations will not lead us to
deadlock and prune them. Let us see two selected derivations in detail. In the
derivation ending at node 5, the first macro-step executes cl.wakeup and then b.

cuts. Now, it is clear that the location cl will not deadlock, since the block at L24
will succeed and the other two locations will be also able to complete their tasks,
namely the await at L17 of location ch can finish because the client is certainly
not blocked, and also the block at L11 will succeed because the task in taken

will eventually finish as its location is not blocked. However, in the branch of
node 4, we first select wakeup (and block client), then we select sleeps (and block
barber), and then select taken that will remain in the await at L17 and will never
succeed since it is awaiting for the termination of a task of a blocked location.
Thus, we certainly have a deadlock. Let us outline five states of this derivation:

St0 ≡ loc(ini, ..)·loc(cl, .., {tsk(1, wk, ..)})·loc(ba, .., {tsk(2, sp, ..)})·loc(ch, ..)
cl,1−→

St1 ≡ loc(cl, .., {tsk(1, wk, f0.block)})·loc(ba, .., {tsk(3, cut, ..), ..})·fut(f0, ba, 3, 12)·.. ba,2−→
St2 ≡ loc(ba, .., {tsk(2, sp, f1.block)})·loc(ch, .., {tsk(5, tk, ..), ..})·fut(f1, ch, 5, 15)·.. ch,5−→
St3 ≡ loc(ch, .., {tsk(5, tk, f2.await), ..})·loc(cl, .., {tsk(6, st, ..), ..})·fut(f2, cl, 6, 25)·..
ch,4−→ St4 ≡ loc(ch, ..{tsk(4, isClean, return), ..})·..

5

(mstep2)

selectLoc(S) = loc(o,⊥, h,Q),Q 6= ∅, selectTask(o) = tsk(tk ,m, l, pp : s),

checkC(S, table), S � ρ0
o·tk
;∗ S′ � ρ, S 6= S′,not(deadlock(S′))

clock(n), table ′ = table ∪ to,tk,pp 7→ 〈n, ρ〉
(S, table)

o·tk−→ (S′, table ′)

Fig. 3. mstep2 rule for combined testing and analysis

The first state is obtained after executing the main where we have the initial lo-
cation ini, three locations created at L3, L2 and L4, and two tasks at L5 and
L6 added to the queues. Note that each location and task is assigned a unique
identifier (we use numbers as identifiers for tasks and short names as identifiers
for locations). In the next state, the task wakeup has been selected and fully exe-
cuted (we have shortened the name of the methods, e.g., wk for wakeup). Observe
at St1 the addition of the future variable created at L22. In St2 we have exe-
cuted task sleeps in the barber and added a new future term. In St3 we execute
task taken in the chair (this state is already deadlock as we will see in Sec. 4.2),
however location chair can keep on executing an available task isClean. From now
on, we use the location and task names instead of numeric identifiers for clarity.

4 Testing for Deadlock Detection

The goal of this section is to present a framework for early detection of dead-
locks during testing. This is done by enhancing the standard semantics for asyn-
chronous programs with information which allows us to easily detect dependen-
cies among tasks, i.e., when a task is awaiting for the termination of another
one. These dependencies are necessary to detect in a second step deadlock states.

4.1 An Enhanced Semantics for Deadlock Detection

In the following we define the interleavings table whose role is twofold: (1) It
stores all decisions about task interleavings made during the execution. This way,
at the end of a concrete execution, the exact ordering of the performed macro-
steps can be observed. (2) It will be used to detect deadlocks as early as possible,
and, also to detect states from which a deadlock cannot occur, therefore allowing
to prune the execution tree when we are looking for deadlocks. The interleavings
table is a mapping with entries of the form tido,idt,pp 7→ 〈n, ρ〉, where:

– tido,idt,pp is a macro-step identifier, or time identifier, that includes: the iden-
tifiers of the location ido and task idt that have been selected in the macro-
step, and the program point pp of the first instruction that will be executed;

– n is a (non-negative) integer representing the time when the macro-step
starts executing;

– ρ is the status of the task after the macro-step and it can take three values
as it can be seen in Fig. 1: block or await when executing these instructions on
a future variable that is not ready (we also annotate in ρ the information on
the associated future); return that allows us to know that the task finished.

We use a function clock(n) to represent a clock that starts at 0, is increased
by one in every execution of clock, and returns the current value n. The initial

6

entry is t0,0,1 7→ 〈0, ρ0〉, being 0 the identifier for the initial location and task,
and 1 the first program point of main. The clock also assigns the value 0 as the
first element in the tuple and a fresh variable in the the second element ρ0. The
next macro-step will be assigned clock value 1, next 2, and so on. As notation,
we define the relation t ∈ table if there exists an entry t 7→ 〈n, ρ〉 ∈ table, and the
function status(t , table) which returns the status ρt such that t 7→ 〈n, ρt〉 ∈ table.
The semantics is extended by changing rule mstep as in Fig. 3. The function
deadlock will be defined in Thm. 1 to stop derivations as soon as deadlock is
detected. Function checkC should be ignored by now, it will be defined in Sec. 5.2.
Essentially, there are two new aspects: (1) The state is extended with the status
ρ, namely all rules include a status ρ attached to the state using the symbol
�. The status is showed in bold font in Fig. 1 and can get a value in rules
block2, await2 and return. The initial value ρ0 is a fresh variable. (2) The state
for the macrostep is extended with the interleavings table table, and a new entry
to,tk ,pp 7→ 〈n, ρ〉 is added to table in every macrostep if there has been progress
in the execution, i.e., S′ 6= S, being n the current clock time.

Example 1. The interleavings table below (left) is computed for the derivation
in Sec. 3. It has as many entries as macro-steps in the derivation. We can observe
that subsequent time values are assigned to each time identifier so that we can
then know the order of execution. The right column shows the future variables
in the state that store the location and task they are bound to.

St0 tini,main,1 7→ 〈1, return〉 ∅
St1 tcl,wakeup,21 7→ 〈2, 24:f0.block〉 fut(f0, ba, cuts, 12)
St2 tba,sleeps,9 7→ 〈3, 11:f1.block〉 fut(f1, ch, taken, 15)
St3 tch,taken,15 7→ 〈4, 17:f2.await〉 fut(f2, cl, sits, 25)

4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-
tion selectLoc so that only locations that can proceed are selected. If, at a given
state, no location is selected but there is at least a location with a non-empty
queue then there is a deadlock. However, deadlocks can be detected earlier. We
present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other termina-
tion and none of them can make any progress. Note that, from a deadlock state,
there might be tasks that keep on progressing until the deadlock is finally made
explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock
will not be captured using this naive extension. The early detection of deadlocks
is crucial to reduce state exploration as our experiments show in Sec. 6.

We first introduce the auxiliary notion of waiting interval which captures the
period in which a task is waiting for another one to terminate. In particular, it is
defined as a tuple (tstop, tasync, tresume) where tstop is the macro-step at which the
location stops executing a task due to some block/await instruction, tasync is the
macro-step at which the task that is being awaited is selected for execution, and,
tresume is the macro-step at which the task will resume its execution. tstop, tasync
and tresume are time identifiers as defined in Sec. 4.1. tresume will also be written

7

as next(tstop). When the task stops at tstop due to a block instruction, we call it
blocking interval, as the location remains blocked between tstop and next(tstop)
until the awaited task, selected in tasync, has already finished. The execution of
a task can have several points at which macro-steps are performed (e.g., if it
contains several await or block the processor may be lost several times). For this
reason, we define the set of successor macro-steps of the same task from a macro-
step: suc(to,tk ,pp0

, table) = {to,tk ,ppi
: to,tk ,ppi

∈ table, to,tk ,ppi
≥ to,tk ,pp0

}.

Definition 1 (Waiting/Blocking Intervals). Let St = (S, table) be a state,
I = (tstop, tasync, tresume) is a waiting interval of St, written as I ∈ St, iff:

1. ∃ tstop = to,tk0,pp0
∈ table, ρstop = status(tstop) ∈ {pp1 : x.await, pp1:x.block},

2. tresume ≡ to,tk0,pp1 , fut(x, ox, tkx, pp(M)) ∈ S,

3. tasync ≡ tox,tkx,pp(M),@ t ∈ suc(tasync, table) with status(t) = return.

If ρstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at tasync has finished, then
it is not a waiting interval. This is known by checking that this task has not
reached return, i.e., @ t ∈ suc(tasync, table) such that status(t) = return. In
condition 1, we see that in ρstop we have the name of the future we are awaiting
(whose corresponding information is stored in fut, condition 2). In order to
define tresume in condition 2, we search for the same task tk0 and same location
o that executes the task starting at program point pp1 of the await/block, since
this is the point that the macro-step rule uses to define the macro-step identifier
to,tk0,pp1

associated to the resumption of the waiting task.

Example 2. Let us consider again the derivation in Sec. 3. We have the fol-
lowing blocking interval (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24) ∈ St1 with St1 ≡
(S1, table1), since tcl,wakeup,21 ∈ table1, status(tcl,wakeup,21, table1) = [24:f.block],
(f, ba, cuts, 12) ∈ St1 and tba,cuts,12 6∈ table1. This blocking interval captures the
fact that the task at tcl,wakeup,21 is blocked waiting for task cuts to terminate.
Similarly, we have the following two intervals in St4: (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) and (tch,taken,15, tcl,sits,25, tch,taken,17).

The following notion of deadlock chain relies on the waiting/blocking intervals
of Def. 1 in order to characterize chains of calls in which intuitively each task is
waiting for the next one to terminate until the last one which is waiting on the
termination of a task executing on the initial location (that is blocked). Given
a time identifier t, we use loc(t) to obtain its associated location identifier.

Definition 2 (Deadlock Chain). Let St = (S, table) be a state. A chain of
time identifiers t0, ..., tn is a deadlock chain in St, written as dc(t0, ..., tn) iff ∀ti ∈
{t0, ..., tn−1} s.t. (ti, t

′
i+1, next(ti))∈St one of the following conditions holds:

1. ti+1 ∈ suc(t′i+1, table), or

2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking.

and for tn, we have that tn+1 ≡ t0, and condition 2 holds.

8

Let us explain the two conditions in the above definition: In condition (1), we
check that when a task ti is waiting for another task to terminate, the waiting
interval contains the initial time t′i+1 in which the task will be selected. However,
we look for any waiting interval for this task ti+1 (thus we check that ti+1 is a
successor of time t′i+1). As in Def. 2, this is because such task may have started
its execution and then suspended due to a subsequent await/block instruction.
Abusing terminology, we use the time identifier to refer to the task executing. In
condition (2), we capture deadlock chains which occur when a task ti is waiting
on the termination of another task t′i+1 which executes on a location loc(t′i+1)
which is blocked. The fact that is blocked is captured by checking that there is a
blocking interval from a task ti+1 executing on this location. Finally, note that
the circularity of the chain, since we require that tn+1 ≡ t0.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if
and only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations. Cor-
rectness proofs can be found in the Appendix. We prove that our definition of
deadlock is equivalent to the standard definition of deadlock in [11, 9].

Example 3. Following Ex. 1, St4 is a deadlock state since there exists a deadlock
chain dc(tcl,wakeup,21, tba,sleeps,9, tch,taken,15). For the second element in the chain
tba,sleeps,9, condition 1 holds as (tba,sleeps,9, tch,taken,15, tba,sleeps,11) ∈ St4 and
tch,taken,15 ∈ suc(tch,taken,15, table4). For the first element tcl,wakeup,21, condition
2 holds since (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24)∈St4 and (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) is blocking. Condition 2 holds analogously for tch,taken,15.

5 Combining Static Deadlock Analysis and Testing

This section proposes a deadlock detection methodology that combines static
analysis and testing as follows. First, a state-of-the-art deadlock analysis is run,
in particular that of [11], which provides a set of abstractions of potential dead-
lock cycles. If the set is empty, then the program is deadlock-free. Otherwise,
using the inferred set of deadlock cycles, we test the program using our en-
hanced semantics with two goals: (1) finding concrete deadlock traces associated
to the different cycles, and, (2) discarding deadlock cycles, and in case all cycles
are discarded, ensure deadlock freedom for the considered input or, in our case,
for the main method under test.

5.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [11] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. Three kinds of arrows can be distinguished, namely,
task-task (a task is awaiting for the termination of another one), task-location
(a task is awaiting for a location to be idle) and location-task (the location is
blocked due the task). Location-location arrows cannot happen. The abstrac-
tions for tasks and locations can be performed at different levels of accuracy

9

during the analysis: the simple abstraction that we will use for our formalization
abstracts each concrete location o by the program point at which it is created
opp, and each task by the method name executing. They are abstractions since
there could be many locations created at the same program point and many
tasks executing the same method. Both the analysis and the semantics can be
made object-sensitive [3] by keeping the k ancestor abstract locations (where k
is a parameter of the analysis). For the sake of simplicity of the presentation, we
assume k = 0 in the formalization (our implementation uses k = 1).

Example 4. In our working example there are three abstract locations, o2, o3

and o4, corresponding to locations barber, client and chair, created at lines 2, 3
and 4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean. The

following cycle is inferred by the deadlock analysis: o2
11:sleeps−−−−−−→ taken

17:taken−−−−−→
sits

25:sits−−−−→ o3
24:wakeup−−−−−−−→ cuts

12:cuts−−−−→ o2. The first arrow captures that the location
created at L2 is blocked waiting for the termination of task taken because of the
synchronization at L11 of task sleeps. Observe that cycles contain dependencies
also between tasks, like the second arrow, where we capture that taken is waiting
for sits. Also, a dependency between a task (e.g., sits) and a location (e.g., o3)
captures that the task is trying to execute on that (possibly) blocked location.
Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies
arise, and in particular the interleavings scheduled to lead to this situation.

5.2 Guiding Testing towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the
execution towards paths that might contain a representative of that abstract
deadlock cycle, by discarding paths that are guaranteed not to contain such a
representative. The main idea is as follows: (1) From the abstract deadlock cycle,
we generate deadlock-cycle constraints, which must hold in all states of deriva-
tions leading to the given deadlock cycle. (2) We extend the execution semantics
to support deadlock-cycle constraints, with the aim of stopping derivations as
soon as cycle-constraints are not satisfied. Uppercase letters in constraints de-
note variables to allow representing incomplete information.

Definition 3 (Deadlock-cycle constraints). Given a state St = (S, table),
a deadlock-cycle constraint takes one of the following three forms:

1. ∃tO,T,PP 7→ 〈N, ρ〉, which means that there exists or will exist an entry of
this form in table (time constraint)

2. ∃fut(F,O ,Tk , p), which means that there exists or will exist a future variable
of this form in S (fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function φ computes the set of deadlock-cycle constraints associ-
ated to a given abstract deadlock cycle.

10

Definition 4 (Generation of deadlock-cycle constraints). Given an ab-

stract deadlock cycle e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ . . .
pn:tkn−−−−→ e1, and two fresh variables

Oi,Tk i, φ is defined as φ(ei
pi:tki−−−→ ej

pj :tkj−−−−→ . . . ,Oi,Tk i) ={
{∃tOi,Tki, 7→〈 , sync(pi,Fi)〉, ∃fut(Fi,Oj ,Tk j , pj)} ∪ φ(ej

pj :tkj−−−−→ . . . ,Oj ,Tk j) if ej=tk j

{pending(Tk i)} ∪ φ(ej
pj :tkj−−−−→ . . . ,Oi,Tk j) if ej = o

Notation sync(pi, Fi) is a shortcut for pi:Fi.block or pi:Fi.await. Uppercase let-
ters appearing for the first time in the constraints are fresh variables. The first
case handles location-task and task-task arrows (since ej is a task abstraction),
whereas the second case handles task-location arrows (ej is an abstract location).
Let us observe the following: (1) The abstract location and task identifiers of
the abstract cycle are not used to produce the constraints. This is because con-
straints refer to concrete identifiers. Even if the cycle contains the same identifier
on two different nodes or arrows, the corresponding variables in the constraints
cannot be bound (i.e., we cannot use the same variables) since they could refer
to different concrete identifiers. (2) The program points of the cycle (pi and pj)
are used in time and fut constraints. (3) Location and task identifier variables of
fut constraints and subsequent time or pending constraints are bound (i.e., the
same variables are used). This is done using the 2nd and 3rd parameters of func-
tion φ. (4) In the second case, Tk j is a fresh variable since the location executing
Tk i can be blocked due to a (possibly) different task. Intuitively, deadlock-cycle
constraints characterize all possible deadlock chains representing the given cycle.

Example 5. The following deadlock-cycle constraints are computed for the cycle
in Ex. 4: { ∃tO1,Tk1, 7→ 〈 , 11:F1.block〉, ∃ fut(F1,O2,Tk2, 15), ∃tO2,Tk2, 7→〈 ,
17:F2.await〉,∃ fut(F2,O3,Tk3, 25), pending(Tk3), ∃tO3,Tk4, 7→〈 , 24:F3.block〉,
∃fut(F3,O4,Tk5, 12), pending(Tk5)}. They are shown in the order in which they
are computed by φ. The first four constraints require table to contain a concrete
time in which some barber sleeps waiting at L11 for a certain chair to be taken at
L15 and, during another concrete time, this one waits at L17 for a certain client
to sit at L25. The client is not allowed to sit by the 5th constraint. Furthermore,
the last three constraints require a concrete time in which this client waits at
L24 to get a haircut by some barber at L12 and that haircut is never performed.
Note that, in order to preserve completeness, we are not binding the first and
the second barber. If the example is generalized with several clients and barbers,
there could be a deadlock in which a barber waits for a client which waits for
another barber and client, so that the last one waits to get a haircut by the
first one. This deadlock would not be found if the two barbers are bound in the
constraints (i.e., if we use the same variable name). In other words, we have to
account for deadlocks which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle con-
straints for the given cycle, with the aim of stopping derivations at states that
do not satisfy the constraints. The following boolean function checkC checks the
satisfiability of the constraints at a given state.

11

Definition 5. Given a set of deadlock-cycle constraints C, and a state St =
(S, table), check holds, written checkC(St), if ∀tOi,Tki,PP 7→ 〈N, sync(pi, Fi)〉 ∈
C, fut(Fi,Oj ,Tk j , pj) ∈ C, one of the following conditions holds:

1. reachable(tOi,Tki,pi
, S)

2. ∃toi,tki,pp 7→ 〈n, sync(pi, fi)〉 ∈ table ∧ fut(fi, oj , tk j , pj) ∈ S ∧
(pending(Tk j) ∈ C⇒ getTskSeq(tk j , S) 6= ε)

Function reachable checks whether a given task might arise in subsequent states.
We over-approximate it syntactically by computing the transitive call relations
from all tasks in the queues of all locations in S. Precision could be improved us-
ing more advanced analyses. Function getTskSeq gets from the state the sequence
of instructions to be executed by a task (which is ε if the task has terminated).
Intuitively, check does not hold if there is at least a time constraint so that: (i) its
time identifier is not reachable, and, (ii) in the case that the interleavings table
contains entries matching it, for each one, there is an associated future variable
in the state and a pending constraint for its associated task which is violated,
i.e., the associated task has finished. The first condition (i) implies that there
cannot be more representatives of the given abstract cycle in subsequent states,
therefore if there are potential deadlock cycles, the associated time identifiers
must be in the interleavings table. The second condition (ii) implies that, for
each concrete potential cycle in the state, there is no deadlock chain since at
least one of the blocking tasks has finished. This means there cannot be deriva-
tions from this state leading to the given deadlock cycle, therefore this derivation
can be stopped. Function checkC is used in the semantics to prune deadlock-free
derivations as showed in Figure 3.

The following definition presents the notion of deadlock-cycle guided testing.

Definition 6 (Deadlock-cycle guided-testing (DCGT)). Consider an ab-
stract deadlock cycle c, and an initial state St0. Let C = φ(c,Oinit,Tk init) with
Oinit,Tk init fresh variables. We define DCGT, written execc(St0), as the set
{d : d ∈ exec(St0), deadlock(Stn)}, where Stn is the last state in d.

Example 6. Let us consider the DCGT of our working example with the deadlock-
cycle of Ex. 4, and hence with the constraints C of Ex. 5. The interleavings table
at St5 contains the entries tini,main,1 7→〈1, return〉, tcl,wakeup,21 7→〈2, 24:f0.block〉
and tba,cuts,12 7→〈3, return〉}. checkC does not hold since tO1,Tk1,24 is not reach-
able from St5 and constraint pending(Tk5) is violated (task cuts has already
finished at this point). The derivation is hence pruned. Similarly, the rightmost
derivation is stopped at St11. Also, derivations at St4, St8 and St10 are stopped
by function deadlock of Th. 1. Our deadlock guided testing methodology gener-
ates 16 states instead of the 181 generated by the standard exhaustive execution.

Theorem 2 (Soundness). Given a program P, a set of abstract cycles C in P
and an initial state St0, ∀d ∈ exec(St0) if d is a derivation whose last state is
deadlock, then ∃c ∈ C such that d ∈ execc(St0).

12

5.3 Deadlock-based Testing Criteria

In the application of testing for deadlock detection, and in a general setting
where there could arise many potential deadlock cycles, the following practical
questions arise: is a user interested in just finding the first deadlock trace? or do
we rather need to obtain all deadlock traces? For the purpose of the programmer
to identify and fix the sources of the deadlock error(s), it could be more useful to
find a deadlock trace per abstract deadlock cycle. This is the kind of questions
that test adequacy criteria answer. Using our methodology, we are able to provide
the following deadlock-based adequacy criteria:

– first-deadlock, which requires exercising at least one deadlock execution,
– all-deadlocks, which requires exercising all deadlock executions,
– deadlock-per-cycle, which, for each abstract deadlock cycle, requires exercis-

ing at least one deadlock execution representing the given cycle (if exists)

We have developed concrete testing schemes for each criteria above relying on our
DCGT methodology. For first-deadlock, DCGT is called for each abstract dead-
lock cycle until finding the first deadlock. For both all-deadlocks and deadlock-
per-cycle, DCGT is also called for each abstract cycle, but with the difference
that the different DCGTs can be run in parallel since they are completely in-
dependent. In the case of deadlock-per-cycle, each DCGT finishes as soon as
a deadlock representing the corresponding cycle is found. It can also be very
practical to set a time-limit per DCGT to prevent that the state explosion on a
certain DCGT degrades the efficiency of the whole exploration.

6 Experimental Evaluation

We have implemented our approach within the tool aPET [5], a test case gen-
erator for concurrent objects which is available at http://costa.ls.fi.upm.es/apet,
where the benchmarks in this paper can also be found. Concurrent objects com-
municate via asynchronous method calls and use await and block, resp., as instruc-
tions for non-blocking and blocking synchronization. Therefore, the language in
Sec. 2 fully captures their concurrency model. This section summarizes our ex-
perimental results which have been performed using as benchmarks: (i) classical
concurrency patterns containing deadlocks, namely SB is an extension of the
sleeping barber with several clients, UL is a loop that creates asynchronous
tasks and locations, PA the pairing problem, FA is a distributed factorial, WM
making a water molecule, HB the hungry birds problem, and, (ii) deadlock free
versions of some of the above, named fX for the X problem, for which deadlock
analyzers give false positives. We include here a peer-to-peer system P2P.

Table 1 shows the results obtained using three different settings: (1) the first
set of columns Exh corresponds to building the whole search tree, (2) the second
to the first-deadlock criterion, and (3) the third to the deadlock-per-cycle criterion.
For each setting i, we measure the total time taken (column Ti) and the number
of states generated (column Si). Column Ans contains the solutions obtained by
the whole execution tree. Column D/F/C in the third setting shows “number of
deadlock executions”/“number of unfeasible cycles”/“number of abstract cycles”

13

(1) Exh (2) first-deadlock (3) deadlock-per-cycle S-up

Bm. Ans T1 S1 T2 S2 D/F/C T3 TMax S3 SMax Tup Sup

SB 103k ∞ >584k 62 23 1/0/1 59 11 23 23 ∞ ∞
UL 90k ∞ >489k 150 5 1/0/1 133 3 5 5 ∞ ∞
PA 121k ∞ >329k 40 6 2/0/2 42 4 12 6 ∞ ∞
WM 82k ∞ >380k 248 15 1/0/2 ∞ ∞ >258k >258k - -
HB 35k 32k 114k 82 15 2/3/5 44k 15k 103k 34k 2.15 3.33
FA 11k 11k 41k 786 1k 2/1/3 2k 759 3k 2k 15.07 22.19

fFA 5k 7k 25k 5k 11k 0/1/1 5k 5k 11k 11k 1.61 2.35
fP2P 25k 66k 118k 34k 52k 0/1/1 34k 34k 52k 52k 1.96 2.28
fUL 102k ∞ >527k 435 236 0/1/1 410 230 236 236 ∞ ∞
fPA 7k 7k 30k 4k 9k 0/2/2 4k 2k 9k 4k 3.73 6.98

Table 1. Experimental evaluation

found by the analysis. For instance, for HB we have 2/3/5 that shows that the
analysis has found five abstract cycles, but we only found a deadlock execution
for two of them, therefore 3 of them were unfeasible. Since the DCGTs in setting
3 can be performed in parallel, columns Tmax and Smax show the maximum time
and number of states measured among all of them. Columns in S-up show the
gain of setting 3 w.r.t. 1 computed as Tup = T1/Tmax (the gain is ∞ when T1
is ∞ and Tmax is not, or none “−” when Tmax is ∞ too), and analogously for
states. Times are in milliseconds and are obtained on an Intel(R) Core(TM) i7
CPU at 2.3GHz with 8GB of RAM, running Mac OS X 10.8.5. A timeout of
150.000ms (written 150k) is used. When the timeout is reached we write ∞.

When comparing setting 2 w.r.t. 1, we see that, if the program features a
deadlock, our guided-testing is very effective, e.g., by just exploring 6 states in
40ms the deadlock is found in PA. When the program is deadlock free, we need
to explore the whole execution also in setting 2. Although the (spurious) infor-
mation provided by the analysis does not allow much pruning in these cases,
still there is a notable gain (e.g., in fPA we explore about one third of the states
explored in setting 1 and the time is almost halved). Importantly, we are able
to prove deadlock freedom in all examples while exhaustive exploration times
out in fUL. As regards setting 3, we achieve significant gains w.r.t. exhaustive
exploration for deadlock-free examples (e.g., by just exploring 23 states in SB
we found one representative per cycle in 59ms. while setting 1 times out). The
gains are much larger in the examples in which the deadlock analysis does not
give false positives (namely, in SB, UL, PA). For WM, we have failed to find
a representative of a potential cycle within the timeout. This is because ev-
ery abstract cycle produces different constraints, some of them allow important
pruning during testing as they impose very restrictive conditions, whereas others
can hardly guide because most of derivations fulfill the constraints. When this
happens, the number of states explored is slightly smaller than with exhaustive
execution. However, when we consider that each DCGT is computed in parallel
for each cycle (columns S-up), we achieve further gains (in SB, UL, HB and PA
we decrease the time notably) and in WP we perform slightly better than in set-

14

ting 1. Finally, for the examples that are deadlock free, the number of explored
states for settings 2 and 3 is the same. This is because in order to ensure that
a deadlock representative cannot be found, it is necessary to make exhaustive
exploration with every abstract cycle. All in all, we argue that our experiments
show that our methodology is very effective for programs that contain deadlock,
and it is able also to prove deadlock freedom for some cases in which a static
analysis reports false positives.

7 Conclusions and Related Work

There is a large body of work on deadlock detection including both dynamic
and static approaches. Much of the existing work, both for asynchronous pro-
grams [11, 12, 9] and thread-based programs [16, 18], is based on static analysis
techniques. Static analysis can ensure the absence of errors, however it works
on approximations (especially for handling iteration and pointer aliasing) which
might lead to a “don’t know” answer. Our work complements static analysis
techniques and can be used to look for deadlock paths when static analysis is
not able to prove the absence of deadlock. Using our method, if there might
be a deadlock, we try to find it by exploring the paths given by our deadlock
detection algorithm that relies on the static information.

Deadlock detection has been also studied in the context of dynamic testing
and model checking [15, 14, 8, 7], where sometimes has been combined with static
information [13, 2]. As regards combined approaches, the approach in [13] first
performs a transformation of the program into a trace program that only keeps
the instructions that are relevant for deadlock and then dynamic testing is per-
formed on such program. The approach is fundamentally different from ours: in
their case, since model checking is performed on the trace program (that over-
approximates the deadlock behaviour), this method can detect deadlocks that do
not exist in the program, while in our case this is not possible since the testing is
performed on the original program and the analysis information is only used to
drive the execution. In [2], the information inferred from a type system is used to
accelerate the detection of potential cycles. This work shares with our work that
information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for
Java threads captures deadlocks due to the use of locks and cannot handle wait-
notify, while our technique is not developed for specific patterns but rather works
on a general characterization of deadlock of asynchronous programs; their un-
derlying static analysis is a type inference algorithm which infers deadlock types
and the checking algorithm needs to understand these types to take advantage
of them, while we base our method on an analysis which infers descriptions of
chains of tasks and a formal semantics is enriched to interpret them; additional
contributions of our work are the deadlock-based testing criteria.

Finally, although we have presented our technique in the context of dynamic
testing, our approach would be applicable also in static testing where the execu-
tion is performed on constraints variables rather than on concrete values. This
extension will require the use of termination criteria which provide the desired
degree of coverage. This remains as subject for future research.

15

References
1. P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal dynamic partial

order reduction. In Proc. of POPL’14, pages 373–384. ACM, 2014.
2. R. Agarwal, L. Wang, and S. D. Stoller. Detecting Potential Deadlocks with Static

Analysis and Run-Time Monitoring. In Conf. on Hardware and Software Verifica-
tion and Testing, LNCS 3875, pages 191–207. Springer, 2006.

3. E. Albert, P. Arenas, J. Correas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, and
G. Román-Dı́ez. Object-Sensitive Cost Analysis for Concurrent Objects. Software
Testing, Verification and Reliability, 25(3):218–271, 2015.

4. E. Albert, P. Arenas, and M. Gómez-Zamalloa. Actor- and Task-Selection Strate-
gies for Pruning Redundant State-Exploration in Testing. In Proc. FORTE’14,
LNCS 8461, pp. 49-65. Springer, 2014.

5. E. Albert, P. Arenas, M. Gómez-Zamalloa, and P. Y.H. Wong. aPET: A Test Case
Generation Tool for Concurrent Objects. In FSE’13, pp. 595–598. ACM, 2013.

6. E. Albert, M. Gómez-Zamalloa, and M. Isabel. Combining Static Analysis
and Testing for Deadlock Detection. Technical report, 2015. Available at:
http://costa.ls.fi.upm.es/papers/costa/AlbertGI15.pdf.

7. B. D. Bingham, J. D. Bingham, J. Erickson, and M. R. Greenstreet. Distributed
Explicit State Model Checking of Deadlock Freedom. In Proc. of CAV’13, volume
8044 of Lecture Notes in Computer Science, pages 235–241. Springer, 2013.

8. M. Christakis, A. Gotovos, and K. F. Sagonas. Systematic Testing for Detecting
Concurrency Errors in Erlang Programs. In 2013 IEEE Sixth International Conf.
on Software Testing, Verification and Validation, pages 154–163. IEEE, 2013.

9. F. S. de Boer, M. Bravetti, I. Grabe, M. David Lee, M. Steffen, and G. Zavattaro.
A Petri Net based Analysis of Deadlocks for Active Objects and Futures. In Proc.
of FACS 2012, 2012.

10. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Check-
ing Software. In Proc. POPL’05, pp. 110-121. ACM, 2005.

11. A. Flores, E. Albert, and S. Genaim. May-Happen-in-Parallel based Deadlock
Analysis for Concurrent Objects. FORTE’13, LNCS, pp 273–288. Springer, 2013.

12. E. Giachino, C.A. Grazia, C. Laneve, M. Lienhardt, and P. Wong. Deadlock Anal-
ysis of Concurrent Objects – Theory and Practice, 2013.

13. P. Joshi, M. Naik, K. Sen, and Gay D. An effective dynamic analysis for detecting
generalized deadlocks. In Proc. of FSE’10, pages 327–336. ACM, 2010.

14. P. Joshi, C. Park, K. Sen, and M. Naik. A randomized dynamic program analysis
technique for detecting real deadlocks. In PLDI’09, pages 110–120. ACM, 2009.

15. A. Kheradmand, B. Kasikci, and G. Candea. Lockout: Efficient Testing for Dead-
lock Bugs. Technical report http://dslab.epfl.ch/pubs/lockout.pdf, 2013.

16. S. P. Masticola and B. G. Ryder. A Model of Ada Programs for Static Deadlock
Detection in Polynomial Time. In PDD’91, pages 97–107. ACM, 1991.

17. M. Naik, C. Park, K. Sen, and D. Gay. Effective static deadlock detection. In
Proc. of ICSE, pages 386–396. IEEE, 2009.

18. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997.

19. K. Sen and G. Agha. Automated Systematic Testing of Open Distributed Pro-
grams. In Proc. FASE’06, LNCS 3922, pp. 339-356. Springer, 2006.

20. S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha.
TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. FORTE, LNCS 7273, pages 219–234. Springer, 2012.

16

8 Appendix

Proof (Proof of Theorem 1).
Given a program state St = (S, table), its dependency graph GS and its

abstract dependency graph G are formalized in [11]. Let us define the function γ
that transforms a sequence of times that each of them fulfills (1) or (2) in Def. 2
into a path in GS .

Definition 7 (γ). Given a state St=(S, table) and a sequence of times {t0, ..., tn}
in St, satisfying (1) or (2) in Def. 2. The one-to-one function γ({t0, ...tn})=e1→e2
→· · ·→en in GS is defined as follows:

γ({t0, ..., tn})=
{
{loc(t0)→ tsk(t1)} ∪ γtk({t1, ..., tn}) if t0 holds (1)
{loc(t0)→ tsk(t′1)→ loc(t′1)} ∪ γ({t1, ..., tn}) if t0 holds (2)∧¬(1)

where γtk is the following auxiliar function:

γtk({t0, ..., tn})=
{
{tsk(t0)→ tsk(t1)} ∪ γtk({t1, ..., tn}) if t0 holds (1)
{tsk(t0)→ tsk(t′1)→ loc(t′1)} ∪ γ({t1, ..., tn}) if t0 holds (2)∧¬(1)

We need to distinguish between functions γ and γtk, as in [11], a location blocked
in a task could be represented in GS by both the location identifier and the
blocked task identifier, depending on the previous context. The intuition of func-
tion γ (γtk) is: given a sequence of times {t0, ..., tn} ∈ St, we define a path whose
edges are obtained as follows: ∀ti ∈ {t0, .., tn} such that (ti, t

′
i+1, next(ti)) ∈ St.

if (1) is held, then there exists an edge t-t between tsk(ti) and tsk(ti+1) (an edge
edge o-t between loc(ti) and tsk(ti+1)), as tsk(t′i+1) = tsk(ti+1) by definition
of function suc. On the other hand, if 2 and ¬1 are held, then there exist two
edges in GS : an edge t-o between tsk(t′i+1) and loc(t′i+1), as this task belongs
to a location which is blocked and an edge t-t (edge o-t), between tsk(ti) and
tsk(t′i+1), (between loc(ti) and tsk(t′i+1)).

Lemma 1 ([3]). Let S be a reachable state and Gtt
S the dependencies graph

taking only task-task dependencies. If future variables cannot be stored in fields,
Gtt

S is acyclic.

Theorem 3 (equivalence). Let St be a program state,

∃ dc({t0, ..., tn}) ∈ St⇐⇒ ∃ cycle γ({t0, ..., tn}) ∈ GS

Proof.
⇒ . Let dc({t0, ..., tn}) be a deadlock chain, then we could apply the function
γ, as ∀ti ∈ {t0, ..., tn}, ti satisfies (1) or (2). So, we obtain a path in GS and
using the last condition in Def. 2, both γ({tn}) and γtk({tn}) add the edge
tk(t′0)→ loc(t0) causing the path becomes a cycle.
⇐. Given a cycle in GS , by the lemma 1 , this one contains at least one object
node, which is required by the function γ. Now, This case is analogous to the
previous one.

17

The proof of Theorem 2 relies on the soundness of both the points-to and the
deadlock analyses that we state below. We first define an auxiliary operation
that performs the union between to disjunct partial maps:

Definition 8 (l+a). Let l and a be two partial maps such that dom(l)∩dom(a) =
∅:
– (l + a)(x) = l(x) iff x ∈ dom(l)
– (l + a)(x) = a(x) iff x ∈ dom(a)

Definition 9 (points-to soundness [3]). Soundness of the points-to analysis
amounts to requiring the existence a partial map α, that maps location and task
identifiers to corresponding abstract ones, such that for any task tsk(tk ,m, o, l, s),
where o is the object identifier that executes the task tk, and location loc(o, tkh,Q)
in any reachable state S, we have that:

1. α(tk) = α(o).m
2. Let x be an location variable x ∈ dom(l + h), if α((l + h)(x)) = ob then

ob ∈ A(α(o), pp(s), x).
3. Let x be future variable, x∈dom(l+h), (l+h)(x)=tk2 and tsk(tk2,m2, o2, l2, ε(v))∈T

(i.e., x is a variable that points to a finished task). Then, given α(tk2) = tk ,
either the task identifier or the ready task identifier belong to the points-to
result. {tk , tkr} ∩ A(α(o), pp(s), x) 6= ∅.

4. Let x be future variable, x ∈ dom(l+h), (l+h)(x) = tk2, tsk(tk2,m2, o2, l2, s2) ∈
T and s2 6= ε(v) (i.e., the pointed task tk2 is not finished). Then, given
α(tk2)=tk , the task identifier belongs to the points-to result, tk∈A(α(o), pp(s), x).

Let α be the extension of α over the paths in Gs that applies the function α
in every node contained by the path.

Definition 10 (deadlock soundness [3]). Let S be a reachable state. If there

is a cycle γ = e1 → e2 → · · · → e1 in GS, then α(γ) = α(e1)
p1:tk1−−−−→ α(e2)

p2:tk2−−−−→
· · · pn:tkn−−−−→ α(e1) is an abstract cycle of G.

Lemma 2. Given an initial state St0 and an abstract cycle c, ∀d ∈ exec(St0),
d ≡ St0 −→∗ Stn, if ∃ dc({t0, ..., tn}) ∈ Stn such that α◦γ({t0, ..., tn}) ∈ c, then
d ∈ execc(St0).

Proof. By contradiction, let us suppose that ∃d ∈ exec(St0) and d 6∈ execc(St0).
Hence, ∃Sti ∈ d such that checkC(Sti) returns false and, consequently, the deriva-
tion St0 −→∗ Sti stops, where C = φ(c,O ,Tk) and O ,Tk are fresh variables.
Therefore, at Sti ∃{tOi,Tki,PP 7→ 〈N, sync(pi, Fi)〉 ∈ C, fut(Fi,Oj ,Tk j , pj)} ⊂ C
doesn’t hold neither (1) nor (2) in Def. 5. However, this cannot happen, as C
imposes necessary constraints for the existence of some representative of c and
Stn contains a cycle that is representative of c, then (1) or (2) must be fulfilled
in every state of d. As a result, we get a contradiction.

Proof (Proof of Theorem 2). If the last state is deadlock, then ∃dc({t0, ..., tn})∈Stn,
by Th. 1. Using the soundness of deadlock analysis over the cycle γ({t0, ..., tn}),
the existence of c is ensured. Now, by Lemma 2, we obtain the result.

18

