
Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/locate /datak
User-private information retrieval based on a peer-to-peer community q

Josep Domingo-Ferrer *, Maria Bras-Amorós, Qianhong Wu, Jesús Manjón
Universitat Rovira i Virgili, UNESCO Chair in Data Privacy, Department of Computer Engineering and Mathematics, Av. Paı̈sos Catalans 26,
E-43007 Tarragona, Catalonia, Spain
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Privacy in statistical databases
Private information retrieval
Combinatorial designs
Ring signatures
0169-023X/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.datak.2009.06.004

q The authors are with the UNESCO Chair in Data
reflect the position of UNESCO nor commit that orga
paper. This work was partly supported by the Span
CSD2007-00004 ‘‘ARES”, and by the Government o
researcher by the Government of Catalonia.

* Corresponding author.
E-mail addresses: josep.domingo@urv.cat (J. Do

urv.cat (J. Manjón).

Please cite this article in press as: J. Domingo
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.
a b s t r a c t

Private information retrieval (PIR) is normally modeled as a game between two players: a
user and a database. The user wants to retrieve some item from the database without the
latter learning which item is retrieved. Most current PIR protocols are ill-suited to provide
PIR from a search engine or large database: (i) their computational complexity is linear in
the size of the database; (ii) they assume active cooperation by the database server in the
PIR protocol. If the database cannot be assumed to cooperate, a peer-to-peer (P2P) user
community is a natural alternative to achieve some query anonymity: a user gets her que-
ries submitted on her behalf by other users in the P2P community. In this way, the database
still learns which item is being retrieved, but it cannot obtain the real query histories of
users, which become diffused among the peer users. We name this relaxation of PIR
user-private information retrieval (UPIR). A peer-to-peer UPIR system is described in this
paper which relies on an underlying combinatorial structure to reduce the required key
material and increase availability. Extensive simulation results are reported and a distrib-
uted key management version of the system is described.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In private information retrieval (PIR), a user wants to retrieve an item from a database or search engine without the latter
learning which item the user is retrieving. This is often a neglected aspect when designing data access frameworks [17]. PIR
was invented in 1995 by Chor et al. [5,6] with the assumption that there are at least two copies of the same database, which
do not communicate with each other. In the same paper, Chor et al. showed that single-database PIR (that is, with a single
copy) is infeasible in the information-theoretic sense. However, two years later, Kushilevitz and Ostrovsky [16] presented a
method for constructing single-database PIR based on the algebraic properties of the Goldwasser–Micali public-key encryp-
tion scheme [9]. Subsequent developments in PIR are surveyed in [22].

In the PIR literature the database is usually modeled as a vector. The user wishes to retrieve the value of the ith compo-
nent of the vector while keeping the index i hidden from the database. Thus, it is assumed that the user knows the physical
address of the sought item, which might be too strong an assumption in many practical situations. Keyword PIR [4] is a more
. All rights reserved.

Privacy, but they are solely responsible for the views expressed in this paper, which do not necessarily
nization. We are indebted to three anonymous reviewers, whose comments helped us to improve this
ish Government through projects TSI2007-65406-C03-01 ‘‘E-AEGIS” and CONSOLIDER INGENIO 2010
f Catalonia under grant 2009 SGR 1135. The first author is partly supported as an ICREA-Acadèmia

mingo-Ferrer), maria.bras@urv.cat (M. Bras-Amorós), qianhong.wu@urv.cat (Q. Wu), jesus.manjon@

-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004
mailto:josep.domingo@urv.cat
mailto:maria.bras@urv.cat
mailto:qianhong.wu@urv.cat
mailto:jesus.manjon@ urv.cat
mailto:jesus.manjon@ urv.cat
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak
http://dx.doi.org/10.1016/j.datak.2009.06.004

2 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
flexible form of PIR: the user can submit a query consisting of a keyword and no modification in the structure of the database
is needed.

We claim that PIR protocols proposed so far have two fundamental shortcomings which hinder their practical
deployment:

(1) The database is assumed to contain n items and PIR protocols attempt to guarantee maximum privacy, that is, max-
imum server uncertainty on the index i of the record retrieved by the user. Thus, the computational complexity of such
PIR protocols is OðnÞ, as proven in [5,6]. Intuitively, all records in the database must be ‘‘touched”; otherwise, the ser-
ver could rule out some of the records when trying to discover i. For large databases, an OðnÞ computational cost is
unaffordable [2].

(2) It is assumed that the database server cooperates in the PIR protocol. However, it is the user who is interested in her
own privacy, whereas the motivation for the database server is dubious. Actually, PIR is likely to be unattractive to
most companies running queryable databases, as it limits their profiling ability. This probably explains why no real
instances of PIR-enabled databases can be mentioned.

If one wishes to run PIR against a search engine, there is another shortcoming beyond the lack of server cooperation: the
database cannot be modeled as a vector in which the user can be assumed to know the physical location of the keyword
sought. Even keyword PIR does not really fit, as it still assumes a mapping between individual keywords and physical ad-
dresses (in fact, each keyword is used as an alias of a physical address). A search engine allowing only searches of individual
keywords stored in this way would be much more limited than real engines like Google or Yahoo.

In view of the above, relaxations of PIR seem necessary in order to attain practical systems offering some privacy in infor-
mation retrieval. In [8], a system named Goopir is proposed in which a user masks her target query by ORing them with k� 1
fake queries and then submits the resulting masked query to a search engine or large database which does not need to coop-
erate (in fact, it does not even need to know that the user is trying to protect her privacy). Strictly speaking, Goopir does not
achieve PIR as defined above; rather, it provides hðkÞ-private information retrieval, in that it cloaks the target query within a
set of k queries of entropy at least hðkÞ. This system works fine but it assumes that the frequencies of keywords and phrases
that can appear in a query are known and available: for maximum privacy, the frequencies of the target and the fake queries
should be similar, so that the uncertainty hðkÞ of the search engine about the real target query is maximum. TrackMeNot [14]
is another practical system based on a different principle: rather than submitting a single masked query for each actual query
like Goopir, a browser extension installed in the user’s computer hides the user’s actual queries in a cloud of automatic
‘‘ghost” queries submitted to popular search engines at different time intervals. While practical at a small scale, if the use
of TrackMeNot became generalized, the overhead introduced by ghost queries would significantly degrade the performance
of search engines and communications networks. Also, the submission timing of automatic ghost queries may be distin-
guishable from the submission timing of actual queries, which could provide an intruder with clues to identify the latter type
of queries.

1.1. Contribution and plan of this paper

Like [8,14], we propose to relax strict PIR in order to obtain a practical system. However, rather than cloaking a query in a
set of queries in a standalone fashion, we propose here to cloak the user’s query history in a peer-to-peer user community: a
user gets her queries submitted on her behalf by other users in the P2P community. In this way, the database still learns
which item is being retrieved (which deviates from strict PIR), but it cannot obtain the real query histories of users, which
become diffused among the peer users. We name the resulting PIR relaxation user-private information retrieval (UPIR). This
approach certainly requires the availability of peers, not needed in the standalone systems [8,14], but it has some advanta-
ges: unlike [8], it does not require knowledge of the frequencies of all possible keywords and phrases that can be queried;
unlike [14], it avoids the overhead of ghost query submission.

Note that what we offer is different from what can be achieved using anonymization systems based on onion routing, like
Tor [27]. In an onion routing system, the transport of data is protected by bouncing the communication between a user and a
server around a distributed network of volunteer relays, with a view to protecting against traffic analysis. However, such
systems give no end-to-end protection (at the application level). Specifically, as long as a search engine (or a database server)
can link the successive queries submitted by the same user (e.g. by using cookies or some other mechanism), the profiling
and the re-identification capabilities of the search engine are unaffected even if the user is submitting her queries through
Tor: the user still submits all of her queries herself (the relays merely relay them), so her query history is unaltered and a
query history may suffice for re-identification, as illustrated by the AOL query disclosure scandal in August 2006 [1]. What
we propose is to diffuse a user’s query profile among the peers in a peer-to-peer community. However, onion routing sys-
tems can indeed complement our solution and be used for peers to communicate among themselves and hide their identity
from each other at the transport level.

The new scheme uses a type of combinatorial design called configuration to increase service availability and reduce the
number of required keys (see [24,18] for background on designs and configurations). The use of configurations in crypto-
graphic key management is not new (e.g. see [18]), but their use in private information retrieval is.
Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
Section 2 presents two simple peer-to-peer UPIR protocols and uses their shortcomings to motivate the use of configu-
rations. Section 3 gives background on configurations, and then contributes an algorithm to search them and two construc-
tions of larger configurations from smaller ones. Section 4 describes the proposed peer-to-peer UPIR protocol. Section 5
assesses the performance and the privacy offered by the protocol. Section 6 reports simulation results for the protocol. Sec-
tion 7 shows how the protocol can be modified so that no trusted dealer is needed to run the configuration-based key man-
agement. Finally, Section 8 sketches conclusions and future work.

A preliminary and partial version of this work was presented in the conference paper [7]. Beyond extending this intro-
duction and rewriting Section 3.1, the following new work has been added specifically for this journal paper: Section 2 (moti-
vation of the use of configurations for P2P UPIR), Section 3.2 (constructions of larger configurations from smaller ones),
Section 6 (simulation results) and Section 7 (dealer-free extension).

2. Peer-to-peer UPIR and configurations

Consider a peer-to-peer (P2P) community consisting of b users, in which the users submit queries on behalf of other users.
The primary goal is to prevent the database or search engine from obtaining the query profile of a specific user. The second-
ary goal is for each user to preserve as much as possible the privacy of her query profile in front of the rest of users.

In the above setting, users do not need to know each other’s identity. When deciding whether identities are to remain
pseudonymous or not, one should carefully ponder whether the increased mutual trust derived from mutual knowledge
compensates the loss of privacy of users in front of the rest of users in the P2P community. We will henceforth assume user
pseudonymity.

We will next present two basic P2P protocols for UPIR. Their shortcomings will be analyzed, which will motivate the need for
a more sophisticated protocol. The following assumptions are made for both protocols and for those in the rest of this article:

� Memory sectors shared by a group of users are used where the latter can record their queries, read other user’s queries,
record the database answers to queries submitted on behalf of other users and read the database answers to each user’s
own queries1;

� Information is stored by users of a shared memory sector encrypted under an appropriate key of a symmetric cipher (e.g.
see [20]); encryption protects the confidentiality of queries and answers in front of third parties not sharing the symmet-
ric key (e.g. the database server or any user different from the one originating the query or from those who are authorized
to submit it on behalf of the former);

� When a user decrypts a shared memory sector, she can distinguish the decrypted queries and answers to queries from
garbage; some kind of redundancy (e.g a cyclic redundancy check) can be appended to the query or the query answer
to facilitate this distinction.

� Our adversary model considers three types of adversaries to the query privacy of a specific user ui:
– The database, who receives in cleartext the queries of all users, including those of ui;
– The rest of users in the P2P community, who share one or more symmetric keys with ui and who can read the queries

and answers in the corresponding shared memory sectors; we assume that peers sharing keys with ui correctly follow
the protocols but can be curious, that is, we assume they are semi-honest;

– External intruders, who do not fall into the above categories but want to compromise the privacy of users.
2.1. All-to-all protocol

Protocol 1 below uses a single memory sector m shared by all b users in the community, who also share a common
encryption key x.

Protocol 1 (All-to-all P2P UPIR(qi))

(1) In order to submit a query qi to a database or search engine, user ui first reads the shared memory sector m and
decrypts it under x. Five cases can arise depending on the outcome of decryption:
(a) The outcome is garbage, which means that memory sector m is free. In this case, ui encrypts qi under x and records

the encrypted query in sector m.
(b) The outcome is a query qj issued by some other user in the community. In this case, ui submits qj to the database/

search engine and records in sector m the answer obtained after encrypting it under key x. Thereafter, ui waits a
random (short) time and then goes back to Step 1 to obtain assistance in the submission of her own query qi.

(c) The outcome is the answer to a previous query q0j issued by some other user uj and previously submitted by a user
uj0 to the database/search engine on behalf of uj. Since this answer has not yet been read by uj (a user is assumed to
erase the query answer when she reads it), ui waits a random (short) time and then goes back to Step 1 to obtain
assistance in the submission of her own query qi.
1 A simple wiki-like collaborative environment can be used to implement a shared memory sector. One may further assume that users access the wiki using
some kind of onion routing protocol, in order to guard against traffic analysis by other peers or external intruders.

Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

4 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
(d) The outcome is a query q0i previously issued by ui, who expects some other user to submit it on ui’s behalf. Since
there is a previous query pending to be serviced by some other user, ui waits a random (short) time and goes back
to Step 1 to obtain assistance with the submission of her new query qi.

(e) The outcome is the answer to a previous query q0i issued by ui and previously submitted by some other user to the
database/search engine on behalf of ui. In this case, ui reads the answer, then encrypts her new query under key x
and finally records the encrypted query in sector m.
Protocol 1 iterates until ui manages to submit her query qi. The random delay waited by ui before retrying access to the
shared memory sector in Steps b, c and d above increases with the number of failed retries, and it is inspired by the random
backoff period used to handle access collisions in Ethernet-like local area networks (e.g., see [26]); therefore, this mechanism
gives reasonable assurance that ui will eventually be able to submit her query. Also, in order to prevent the shared memory
sector from being indefinitely jammed at Step 1c by a specific user uj not collecting the answer to a previously submitted
query, a timeout can be imposed on how long the shared memory sector must hold a certain query answer before the latter
can be overwritten (by ui or another user). Still, jamming might happen at Step 1d if no other user submits q0i, but this would
imply that ui is the only active user in the system; a countermeasure against such a possibility is to rely on a large commu-
nity, that is, to take a large b.

Once ui has used Protocol 1 to submit her query qi;ui must keep frequently calling the protocol with a garbage query as
argument until she can collect the answer to qi. Note that calling Protocol 1 with a garbage query reduces the protocol to
Steps d and e, and causes Step e to free the shared memory sector m (ui records the garbage query in m).

Let us now examine the privacy properties of Protocol 1:

� Privacy in front of the database. The protocol performs well, because the query profile of a user ui is diffused among all
remaining b� 1 users.

� Privacy in front of the remaining users. All queries being submitted by a user can be read by all users in the P2P community,
although in principle the latter do not know the identity of the former user. However, even if users are pseudonymous, the
availability of side information (like the IP addresses of users accessing the shared memory sector or the very particular
interests of a certain user) could allow linking all queries by the same ui, with the subsequent profiling and re-identifica-
tion risk for ui. E.g. a way to link ui’s queries is through her IP address when ui writes her queries or reads her query
answers (an onion routing system like Tor could help to mitigate this risk, though).

� Privacy in front of external intruders. In principle, external intruders do not know the encryption key x, so they cannot see
the queries submitted by ui. However, since x is shared by all users in the P2P community, leakage of x to external intrud-
ers is more likely than if x was only shared by two users.

2.2. One-to-one protocol

Protocol 2 below uses a different shared memory sector mij and a different shared key xij for each pair of users ðui;ujÞ.

Protocol 2 (One-to-one P2P UPIR)ðqiÞ

(1) In order to submit a query qi to a database or search engine, user ui randomly selects one of the b� 1 remaining users.
Let j be the selected user.

(2) ui reads the memory sector mij corresponding to key xij and decrypts it under xij. Five cases can arise depending on the
outcome of decryption:
(a) The outcome is garbage. In this case, ui encrypts qi using a symmetric cipher keyed by xij and records the encrypted

query in sector mij.
(b) The outcome is a query qj issued by user uj, who expects ui to submit it on her behalf. In this case, ui submits qj to

the database/search engine and records in sector mij the answer obtained after encrypting it under key xij. There-
after, ui goes back to Step 1 to select a new key and obtain assistance in submitting qi to the database/search engine
from some other user.

(c) The outcome is the answer to a previous query q0j issued by uj and previously submitted by ui to the database/
search engine on behalf of uj. Since this answer has not yet been read by uj (a user is assumed to erase the query
answer when she reads it), ui goes back to Step 1 to select a new key and obtain assistance in submitting qi to the
database/search engine from some other user.

(d) The outcome is a query q0i previously issued by ui, who expects uj to submit it on ui’s behalf. Since there is a pre-
vious query pending to be serviced by uj, ui goes back to Step 1 to select a new key and obtain assistance in sub-
mitting qi to the database/search engine from some other user.

(e) The outcome is the answer to a previous query q0i issued by ui and previously submitted by uj to the database/
search engine on behalf of ui. In this case, ui reads the answer, then encrypts her new query under key xij and finally
records the encrypted query in sector mij.
Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 5

ARTICLE IN PRESS
Protocol 2 iterates until ui manages to submit her query. For ui to fail in submitting her query, it should happen that either
she is the only active user (failure at Step 1d above) or that the other active users do not read the answers to the queries
submitted by ui on their behalf (failure at Step 1c above). The likelihood of failure at Step 1d is minimized by choosing a large
P2P community, that is, a large b; failure at Step 1c can be countered by imposing a timeout after which an unread answer
can be overwritten by ui with her own query.

Like in Protocol 1 above, ui must keep frequently calling Protocol 2 with a garbage query and fixed selected user uj until
she can collect the answer to qi.

If we look at the privacy properties of Protocol 2:

� Privacy in front of the database. The protocol is good by this criterion, because the query profile of a user ui is diffused
among all remaining b� 1 users.

� Privacy in front of the remaining users. The protocol has the advantage over Protocol 1 that each remaining user uj other
than ui only sees a fraction 1=ðb� 1Þ of the queries issued by ui. However, there is a disadvantage too, because uj knows
with certainty that those queries were issued by ui. Even if ui is pseudonymous, after uj can link a number of queries issued
by ui, the latter’s identity is likely to be disclosed. This did not happen with Protocol 1, where side information was needed
in order to link the successive queries issued by the same user.

� Privacy in front of external intruders. External intruders do not know the encryption keys xij, so they cannot see the queries
submitted by ui. On the other hand, since each key xij is shared only by ui and one user uj in the P2P community, the prob-
ability of key leakage to external intruders is less than in Protocol 1.

As to the amount of secret key material required, Protocol 2 certainly leaves room for improvement. Indeed, the protocol
requires a high number of shared secret keys, one for each pair of users, that is bðb� 1Þ=2 in all.

A last major drawback of Protocol 2 is its slow performance: after ui records her query qi in the sector mij shared with uj;ui

must wait for uj to read that sector and submit qi. Note that only uj can do that, so it may take quite a long time before uj

happens to read mij.
After having discussed the strengths and weaknesses of Protocols 1 and 2, our goal will be to find a solution minimizing

their weaknesses while retaining as much as possible their attractive features, namely: (i) fast performance (Protocol 1); (ii)
limited visibility to other users of queries issued by ui (Protocol 2); (iii) reduced amount of key material (we will try to use
substantially less than the bðb� 1Þ=2 keys of Protocol 2, although probably more than the single key of Protocol 1); (iv) good
protection in front of external intruders (Protocol 2).

We take combinatorial configurations as a building block for our solution. As explained in Section 3, configurations allow
distributing a number v of keys among b users, with 1 6 v 6 bðb� 1Þ=2, in such a way that each user gets the same number
of keys and each key is shared by the same number of users. Clearly, the closer v to 1, the closer we are to the situation of
Protocol 1, with a single key for all users; on the other hand, the closer v to bðb� 1Þ=2, the closer we are to the situation of
Protocol 2, with a different key for each user pair. We will explore the intermediate situations and their trade-offs in the rest
of this paper.

3. (v;b; r;k)-Configurations: background and construction

We first define a combinatorial design and then a configuration as a special type of design.

Definition 1 (Design). A design is a pair ðX;AÞ, where X is a set of points and A is a finite set of subsets of X, called blocks.
The degree of a point x 2 X is the number of blocks containing x. The rank of ðX;AÞ is the size of the largest block.

A design is said to be regular if all points have the same degree, say r. A design is said to be uniform if all blocks have the
same size, say k (in which case the design is uniform of rank k). In the next definition we used the notations in [24,18].

Definition 2 (ðv; b; r; kÞ-1-design). A ðv; b; r; kÞ-1-design is a regular and uniform design with jXj ¼ v; jAj ¼ b, degree r and
rank k.

A ðv; b; r; kÞ-1-design corresponds to a bipartite semiregular graph with vþ b vertices and degrees r and k. A necessary and
sufficient condition for the existence of a ðv; b; r; kÞ-1-design is that
Please
Know
bk ¼ vr: ð1Þ
Definition 3 (ðv; b; r; kÞ-configuration). A ðv; b; r; kÞ-configuration is a ðv; b; r; kÞ-1-design where any two distinct blocks
intersect in zero or one point.

A ðv; b; r; kÞ-configuration corresponds to a bipartite semiregular graph with vþ b vertices, degrees r and k, and girth
strictly larger than 4. Configurations and their history have largely been studied by Gropp in [10–13].

The following lemma (an adaptation to configurations of a more general result in [18] on ðv; b; r; kÞ-1-designs) quantifies
the ‘‘connectivity” between blocks in a configuration.

Lemma 1. In a ðv; b; r; kÞ-configuration the number of blocks intersecting any specific block is kðr � 1Þ.
cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
l. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

6 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
Proof. Consider a ðv; b; r; kÞ-configuration ðX;AÞ and fix a block Ai 2A. For any x 2 Ai define
Please
Know
Bx ¼ fAj 2A : x 2 Ajg n fAig:
Clearly, jBxj ¼ r � 1 for all x 2 Ai. On the other hand, the sets Bxðx 2 AiÞ are disjoint. Thus, the number of blocks intersecting Ai

can be computed as
[
x2Ai

Bx

�����
����� ¼

X
x2Ai

jBxj ¼ kðr � 1Þ: �
A necessary condition for the existence of a ðv; b; r; kÞ-configuration is v P rðk� 1Þ þ 1 [13]. Yet, this condition may not be
sufficient.

The following is an example of a configuration:
X ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12g
A ¼ ffx1; x2; x3; x4g;

fx1; x5; x6; x7g;
fx1; x8; x9; x10g;
fx2; x5; x8; x11g;
fx2; x6; x9; x12g;
fx3; x5; x10; x12g;
fx3; x7; x9; x11g;
fx4; x6; x10; x11g;
fx4; x7; x8; x12gg:
3.1. A greedy algorithm to find configurations

Finding configurations and even determining whether a configuration with a given set of parameters exists is not trivial.
We propose the next greedy algorithm to find a ðv; b; r; kÞ-configuration if one exists. In what follows we label the points in X
as integers from 1 to v.

We think of A as a list of b blocks, where a block is a list of k positions to which points in X must be assigned. Initially, all
positions in all blocks of A are empty (NULL). For each block, the points in X are tried in sequence (from 1 to v) to fill the k
block positions successively, with the aim of finding an assignment of points to positions which does not violate the config-
uration structure (see below for a description of what a violation is). We use a pair of indices ði; jÞ, where i and j, respectively,
to indicate which block in A and what position in the block we are attempting to fill:

� We start with ði; jÞ ¼ ð1;1Þ, that is, we start by filling the first block at its first position.
� We then proceed by filling the ith block in A at its ðjþ 1Þth position while jþ 1 6 k, or by filling the first position of the
ðiþ 1Þth block otherwise.

It can happen that no point can be found to fill the jth position of the current (ith) block which does not violate the
requirements of a configuration, namely:

Correctness: No pair of points in X should be present in more than one block in A.
Point availability: The candidate point to fill position j in the ith block should not have a label greater than v� kþ j. Since

points are tried in sequence, a candidate with label greater than v� kþ j for position j would imply that
at most k� j points with labels in fv� kþ jþ 1; . . . ; vg would be left to fill the k� jþ 1 remaining posi-
tions fj; . . . ; kg in the block; hence, there would not be enough points left to fill those positions.

As long as the candidate point for the current assignment only violates the correctness requirement, the next point can be
tried. If the point availability requirement is violated as well, then we must backtrack, i.e. reconsider the previous assign-
ment. If the failed current assignment was the first one (that is, j ¼ 1) of the ith block, backtracking means recomputing
the kth assignment of the i� 1th block; if the failed assignment was not the first one (that is, j > 1), backtracking means
recomputing the j� 1th assignment of the ith block.

If no configuration with the given parameters v; b; k parameters exists, the algorithm backtracks until i ¼ 0 (failure). If a
configuration exists, the algorithm will end up filling all b blocks appropriately.

As shown by the above description, the algorithm is correct, because it does nothing else than looking for an assignment
of points to blocks which satisfies the definition of configuration. However, its computational complexity is exponential,
cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
l. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 7

ARTICLE IN PRESS
since backtracking is used to conduct an exhaustive search for a configuration with the required parameters. Thus, the algo-
rithm can only be used to find small configurations. Its pseudocode is given in Algorithm 1.

Algorithm 1. Greedy configurationðv; b; kÞ

Require: Points to be assigned are labeled from 1 to v; b blocks with k positions each must be filled; Ai;j is the point assigned to the jth
position of the ith block; cand denotes the candidate point to fill a position.

Ensure: A ðv; b; r; kÞ-configuration if one exists.
1: ði; jÞ :¼ ð1;1Þ {We start with A1;1}
2: while 0 < i 6 b do

3: cand :¼
1 if Ai;j ¼ NULL and j ¼ 1 fAi;1 point1g
Ai;j�1 þ 1 if Ai;j ¼ NULL and j > 1 fTry Ai;j Ai;j�1 þ 1g
Ai;j þ 1 if Ai;j – NULL fWe come from a backtrack; so try next pointg

8<
:

4: while cand 6 v� kþ j and assigning point cand to position Ai;j violates the configuration correctness do
5: cand :¼ candþ 1 {Keep seeking a right cand}
6: end while
7: if cand ¼ v� kþ jþ 1 then
8: Ai;j :¼ NULL {Not enough points left, so undo and backtrack}

9: ði; jÞ :¼ ði� 1; kÞ if j ¼ 1
ði; j� 1Þ if j > 1

�

10: else
11: Ai;j :¼ cand {Assign cand and proceed}

12: ði; jÞ :¼ ði; jþ 1Þ if j < k
ðiþ 1;1Þ if j ¼ k

�

13: end if
14: end while
15: if i ¼ 0 then
16: output ; {No configuration found}
17: end if
18: if i ¼ bþ 1 then
19: output A {Configuration found}
20: end if
3.2. Building larger configurations from smaller ones

One problem when using configurations is the limited number of known configurations. We refer the reader to [13] for
tables of parameters for which it is known that configurations exist and for which it is known that they do not exist. A con-
sequence is that Algorithm 1 may fail to find a configuration with the required parameters. Worse yet, due to its greedy nat-
ure, the algorithm may take a very long time before it can decide whether the configuration exists or not.

On the good side, the projective planes over finite fields give us examples of ðd2 � dþ 1; d2 � dþ 1; d; dÞ-configurations for
any integer d such that d� 1 is a power of a prime. See [25] for a very simple construction to actually find those configura-
tions when d� 1 is a prime. Additionally, given configurations (taken from the literature, obtained with the construction in
[25], or found with Algorithm 1 if they are small), we show below how to easily construct larger configurations. Those new
constructions are helpful to reduce the need for Algorithm 1.

3.2.1. Combining two not necessarily equal configurations
Suppose we have a ðv; b; r; kÞ-configuration ðX ¼ fx1; . . . ; xvg;AÞ and a ðv0; b0; r; kÞ-configuration ðY ¼ fy1; . . . ; yvg;BÞ, with

X and Y being two disjoint sets.
Then we can swap one element in one block of A for one element in one block of B to obtain a ðvþ v0; bþ b0; r; kÞ con-

figuration. It is trivial to check that this is indeed a configuration. By iterating this method, several configurations can be
combined so as to obtain configurations with v and b as large as desired, once r and k are fixed.

The next example illustrates this construction:
Please
Know
X ¼ fx1; x2; . . . ; x4g;

A ¼ ffx1; x2g; fx1; x3g; fx1; x4g; fx2; x3g; fx2; x4g; fx3; x4gg;

Y ¼ fy1; y2; . . . ; y8g;

B ¼ ffy1; y2g; fy1; y3g; fy1; y4g; fy2; y5g; fy2; y6g; fy3; y7g;

fy3; y8g; fy4; y5g; fy4; y6g; fy5; y7g; fy6; y8g; fy7; y8gg:
cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
l. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

8 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
We now can build the following configuration:
2 Som
the actu

Please
Know
Z ¼ X [Y ¼ fx1; . . . ; x4; y1; . . . ; y8g;
C ¼ ffx1; x2g; fx1; x3g; fx1; x4g; fx2; y7g; fx2; x4g; fx3; x4g;

fy1; y2g; fy1; y3g; fy1; y4g; fy2; y5g; fy2; y6g; fy3; y7g;
fy3; y8g; fy4; y5g; fy4; y6g; fy5; y7g; fy6; y8g; fx3; y8gg;
where we have swapped x3 in the block fx2; x3g of A for y7 in the block fy7; y8g of B to obtain the new blocks fx2; y7g and
fx3; y8g of C. The shortcoming of this construction is that in general we cannot swap more than once. Indeed, if in the pre-
vious example we swap block elements again, we could end up with something that is not a configuration. Assume we now
swap y7 in block fy5; y7g of C for x1 in block fx1; x2g of C, to obtain the new blocks fy7; x2g and fy5; x1g, we get
Z ¼ X [Y ¼ fx1; . . . ; x4; y1; . . . ; y8g;
D ¼ ffy7; x2g; fx1; x3g; fx1; x4g; fx2; y7g; fx2; x4g; fx3; x4g;

fy1; y2g; fy1; y3g; fy1; y4g; fy2; y5g; fy2; y6g; fy3; y7g;
fy3; y8g; fy4; y5g; fy4; y6g; fy5; x1g; fy6; y8g; fx3; y8gg:
The above is not a configuration, because there are two blocks in D which share both of their points: fy7; x2g and fx2; y7g.

3.2.2. Combining several copies of the same configuration
If two copies of the same ðv; b; r; kÞ-configuration ðX;AÞ are to be combined then we can swap as many block elements as

vr � 1 whenever xi in the first copy is swapped for the corresponding x0i in the corresponding block in the second copy. In this
way we obtain a ð2v;2b; r; kÞ-configuration.

Analogously we can combine n copies of the same configuration and obtain a ðnv;nb; r; kÞ-configuration. Again it is
straightforward to prove that what we obtain is a configuration.

The next example illustrates a combination of three copies of the same configuration:
X ¼ fx1; x2; x3; x4g;
A ¼ ffx1; x2g; fx1; x3g; fx1; x4g; fx2; x3g; fx2; x4g; fx3; x4gg;
X 0 ¼ fx01; x02; x03; x04g;
A0 ¼ ffx01; x02g; fx01; x03g; fx01; x04g; fx02; x03g; fx02; x04g; fx03; x04gg;
X 00 ¼ fx001; x002; x003; x004g;
A00 ¼ ffx001; x002g; fx001; x003g; fx001; x004g; fx002; x003g; fx002; x004g; fx003; x004gg;
with X;X0 and X00 being pairwise disjoint sets. The resulting configuration is
X [X 0 [X 00 ¼ fx1; x2; x3; x4; x01; x
0
2; x

0
3; x

0
4; x

00
1; x

00
2; x

00
3; x

00
4g;

B ¼ ffx1; x02g; fx001; x3g; fx1; x4g; fx2; x003g; fx02; x4g; fx3; x4g;
fx01; x2g; fx01; x03g; fx001; x04g; fx02; x03g; fx2; x04g; fx03; x004g;
fx001; x002g; fx1; x003g; fx01; x004g; fx002; x3g; fx002; x004g; fx003; x04gg:
3.2.3. Comparison of the two constructions
A good point of the construction in Section 3.2.1 is that it allows combining two configurations that can be different. How-

ever, the resulting configuration connects the two original configurations only weakly, because only two points can be
swapped. To illustrate why this is a limitation, consider the application of configurations in the rest of this article: points
represent keys and blocks represent users (a user holds the set of keys in her corresponding block). Now, if the two users
who have mixed blocks (containing keys from both initial configurations) go off-line, the connection between the sets of
users in the two original configurations disappears.

On the other hand, the construction in Section 3.2.2 can only be used to combine copies of the same configuration, but it
can combine any number of copies and it allows any number of swaps, so that the resulting configuration can be strongly
connected.

4. A peer-to-peer UPIR protocol based on configurations

Consider a peer-to-peer (P2P) community consisting of b users. Assume a dealer who creates a key pool in the following way:

(1) The dealer creates v keys and distributes them into b blocks of size k each according to a ðv; b; r; kÞ-configuration.2

(2) The dealer confidentially sends one block of k keys to each user (no two users get the same block). E.g., if each user has
got a public–private key pair, confidentiality can be achieved by sending the block of keys encrypted under the user’s
public key. Let Ai be the block assigned to user ui, for i ¼ 1 to b.
e flexibility in the choice of parameters is affordable in order to facilitate finding a ðv; b; r; kÞ-configuration. If necessary, b can be somewhat larger than
al number of users and v; r; k can be chosen appropriately.

cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
l. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
(3) The dealer erases the v keys from its storage. If a trusted device such as a smart card is used as a dealer, it can be
assumed that keys are forgotten by the dealer after distribution.

Note that Protocols 1 and 2 above use very specific configurations. Protocol 1 uses a ð1; b; b;1Þ-configuration and Protocol
2 a ðbðb� 1Þ=2; b;2; b� 1Þ-configuration.

A variant of the above initialization process is to allow the users to send to the dealer their preferences about which other
users they would like to share keys with. The dealer could take this input into account to the extent possible when assigning
blocks of keys to users.

At the end of the process, by Lemma 1 the block of keys of each user intersects kðr � 1Þ other users’ blocks. Consider now a
storage pool consisting of v memory sectors, each corresponding to one key in the key pool. A protocol for peer-to-peer UPIR
among the b users is specified next.

Protocol 3 (Configuration-based P2P UPIR)ðqiÞ

(1) In order to submit a query qi to a database or search engine, user ui randomly selects one of the k keys in her block. Let
xij be the selected key and Ui

j ¼ fui
j1; . . . ;ui

jðr�1Þg be the set of r � 1 users with whom ui shares xij according to the con-
figuration used for key distribution. (Note that the sets Ui

1; � � � ;U
i
k are disjoint due to the configuration structure.)

(2) ui reads the memory sector mij corresponding to key xij and decrypts it under xij. Five cases can arise depending on the
outcome of decryption:
(a) The outcome is garbage. In this case, ui encrypts qi using a symmetric cipher keyed by xij and records the encrypted

query in sector mij.
(b) The outcome is a query qj issued by some user in Ui

j, who expects some other user in Ui
j to submit it on her behalf. In

this case, ui submits qj to the database/search engine and records in sector mij the answer obtained after encrypting
it under key xij. Thereafter, ui goes back to Step 1 to select a new key and obtain assistance in submitting qi to the
database/search engine from someone in the group of r � 1 users sharing the new key with ui.

(c) The outcome is the answer to a previous query q0j issued by some user in Ui
j and previously submitted by some

other user in Ui
j to the database/search engine on behalf of that user. Since this answer has not yet been read

by the user in Ui
j (a user is assumed to erase the query answer when she reads it), ui goes back to Step 1 to select

a new key and obtain assistance in the submission of her own query qi.
(d) The outcome is a query q0i previously issued by ui, who expects some user in Ui

j to submit it on ui’s behalf. Since
there is a previous query pending to be serviced by some user in Ui

j;ui goes back to Step 1 to select a new key
and obtain assistance with the submission of her new query qi.

(e) The outcome is the answer to a previous query q0i issued by ui and previously submitted by some user in Ui
j to the

database/search engine on behalf of ui. In this case, ui reads the answer, then encrypts her new query under key xij

and finally records the encrypted query in sector mij.
It can be seen that Protocol 3 will iterate until ui can have her query submitted to the database/search engine by some
other user. Similarly to what happened in Protocol 2, jamming at Step 2c above can be thwarted by imposing a timeout
on how long a shared memory sector must hold a certain query answer before the latter can be overwritten. Jamming at Step
2d is prevented by requiring all users to check their shared memory sectors as discussed below.3

Like for Protocols 1 and 2 above, once user ui has managed to submit her query qi;ui must keep frequently calling the
protocol with a garbage query and fixed selected user uj until she can collect the answer to qi.

If a user does not have queries to submit and never runs Protocol 3, she does not contact the database; if the number of
users contacting the database is very small (e.g. only two) there are problems: (i) the database may infer who is submitting
what query, and (ii) the delay until a query answer can be collected can be too long. To prevent this, we require that all users
ui do the following at regular time intervals: scan in a random order the memory sectors mij shared with other users uj until
either all sectors have been read or a sector containing a query is found, in which case the query is submitted and the cor-
responding answer is recorded in that sector.

5. Performance and privacy

We examine in this section the influence of the configuration parameters k and r on performance and privacy. The other
two parameters do not need discussion: b is the (fixed) number of users in the P2P community and v is the number of keys
and depends on k, r and b according to Eq. (1).
3 The probability of jamming at Step 2c is mitigated by choosing a configuration with a large r (i.e. each memory sector mij is shared by a large set Ui
j); by Eq.

(1), for a fixed number of users b and number k of keys given to each user, increasing r can be done by decreasing the number of keys v (thus tending to Protocol
2); for fixed b and v, increasing r implies increasing k.

Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

10 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
5.1. Performance

First we deal with performance in terms of required keys and required storage. The proposed set-up process based on a
ðv; b; r; kÞ-configuration is compared with the situation of Protocol 2 in which every user shares a different key with every
other user (complete connection graph). It turns out that performance improvement is controlled by parameter r.

Lemma 2. If r > 2 it holds that:

� the number of keys and memory sectors required using a ðv; b; r; kÞ-configuration is less than the number of keys and memory
sectors required in the case of a complete graph;

� the overall number of keys stored by the users with a ðv; b; r; kÞ-configuration is less than in the case of a complete graph.

Proof. With a complete graph among the b users, the number of required keys and memory sectors is bðb� 1Þ=2. Each user
stores b� 1 keys, so that the overall number of keys stored by the users is bðb� 1Þ.

With configurations, the number of required keys and memory sectors is v ¼ bk=r (Eq. (1)). The overall number of keys
stored by the users is bk. Now, from Lemma 1 it follows that kðr � 1Þ 6 b� 1 (the number of blocks intersecting a specific
block cannot be greater than b� 1); thus
Please
Know
bk
r
6

bðb� 1Þ
rðr � 1Þ :
So for r > 2 there is a reduction in the number of required keys and memory sectors with respect to the complete graph case.
Similarly, since bk 6 bðb� 1Þ=ðr � 1Þ, for r > 2 there is a reduction in the overall number of keys stored by the users. h

In addition to storage, another performance metric is how long does it take for ui to get her query submitted and an-
swered. Clearly, the greater the number r with whom ui shares the selected key xij, the shorter is the expected waiting time.

Therefore, performance improves as r increases.

5.2. Privacy

If a good symmetric cipher is used for encryption, the encrypted contents stored in any memory sector are indistinguish-
able from garbage (see [20] for a review of the properties of the output of a symmetric cipher). Thus, to an external intruder
not in fuig [Ui

j the content of sector mij is indistinguishable from garbage; therefore, such an intruder does not gain any
information on the queries submitted nor the query answers received by users in fuig [Ui

j. As to leakage possibilities of
xij to external intruders, they increase with the size r � 1 of Ui

j. Therefore, privacy against external intruders degrades as r
increases.

Within Ui
j, the r � 1 users do not know in principle to which other user in fuig [Ui

j do the queries and query answers cor-
respond. From this remark and those in the performance section above, one might be tempted to take r as large as possible,
that is, a single key shared by all b users (r ¼ b and k ¼ v ¼ 1), which yields Protocol 1. However, we have argued that Pro-
tocol 1 does not provide very good privacy in front of other users nor external intruders.

It seems better for ui to limit (pseudonymous) visibility of her query and its answer to those parties strictly needed: the
database/search engine and a set of users just large enough so that the expected waiting time to get the query answer is not
too long. Indeed, if ui can select xij among k > 1 different keys at Step 1 of Protocol 3, where each key is shared by a disjoint
set of users (see proof of Lemma 1), users in Ui

j only see on average 1 out of k queries issued by ui (and 1 out of k query an-
swers received by ui). Therefore, the risk that a user in Ui

j can profile and thereby re-identify ui decreases as k increases.
Finally, let us examine the privacy of user ui in front of the database or search engine. The queries issued by ui are sub-

mitted by the kðr � 1Þ users with whom ui shares keys. In fact, each uj in that group of kðr � 1Þ users submits on average a
fraction 1=ðkðr � 1ÞÞ of the queries issued by ui. But uj may also submit other queries corresponding to other users different
from ui with whom uj shares a key. Therefore the query profile of ui is diffused among the kðr � 1Þ users with whom ui shares
a key and confused among the other queries submitted by those users.

In summary, the greater r, the better is performance; the smaller r, the better is privacy in front of external intruders; the
greater k, the better is privacy in front of the other users; the greater kðr � 1Þ, the greater is privacy in front of the database/
search engine. From Lemma 1, it follows that kðr � 1Þ 6 b� 1, so the optimal situation is kðr � 1Þ ¼ b� 1; the construction
[25] yields configurations which are optimal in that sense.
6. Simulation results

After showing the potential of configurations to reduce the amount of cryptographic material while preserving a good
privacy level in front of the database/search engine and the rest of users, it remains to evaluate the impact of Protocol 3
on the response time, that is, how long does it take since a user submits a query using the protocol until the user gets
the query answer. The protocol should not introduce too much overhead, that is, the overall response time using Protocol
cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
l. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
3 should not be much longer than the response time incurred when directly submitting the query to the search engine/data-
base (with no UPIR).

In order to assess this overhead, we have carried out two-hour simulations with a realistic parameter choice:

� For a first small simulation we took the (34,34,6,6)-configuration listed in [13], that is, a configuration consisting of 34
peer users, 34 keys and with each user sharing 6 keys with 6 different users;

� In order to test the protocol for a large community of peers we considered a (993,993,32,32) configuration obtained using
the construction in [25]. In this case the system consists of 993 peer users, 993 keys and with each user sharing 32 keys
with 32 different users.

� The query behavior of users has been modeled by assuming that the time between two successive queries by the same
user is a random variable following an exponential distribution with parameter k, which gives an expected time 1=k
between queries.

� Different load conditions have been tried by taking several values for the expected time 1=k between successive queries:
1200, 900, 600, 300, 120, 90, 60 and 30 s.

� For each time between queries, two options have been tried:
Table 1
For 34 peer users, average response time overhead as a function of the expected time between successive queries by a user when users do nothing unless they
have a query to submit (no regular scanning of shared memory sectors).

1200 900 600 300 120 90 60 30

1165.20 872.97 615.26 355.79 156.44 115.06 77.28 44.03

Table 2
For 34 peer users, average response time overhead as a function of the expected time between successive queries by a user and the time interval for regular
scanning of shared memory sectors by every user.

Time btw. queries Scan interval

15 30 45 60 120 240 300

1200 5.95 8.63 11.26 15.28 26.54 55.22 71.34
900 5.86 8.38 11.34 14.43 26.36 53.98 67.72
600 5.84 8.30 11.02 13.74 25.71 55.16 72.68
300 5.92 8.43 11.36 14.29 28.08 67.07 90.01
120 5.97 8.79 12.04 16.34 37.86 80.30 96.72
90 6.02 9.01 12.46 17.75 42.64 74.47 83.54
60 6.17 9.67 14.46 20.44 43.82 59.96 66.09
30 6.65 11.71 18.36 23.61 31.34 36.85 38.49

12
00

90
0

60
0

30
0

12
0

90 60 30

15

45

120

300

0

30

60

90

120

150

Avg. Response
Time Overhead

Time Between
Queries

Scanning
Interval

Fig. 1. For 34 peer users, average response time overhead as a function of the expected time between successive queries by a user and the time interval for
regular scanning of shared memory sectors by every user.

Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

12 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
– Users do nothing unless they have a query to submit;
– All users do as described in the last paragraph of Section 4, that is, they scan and process the memory sectors shared

with other users at regular time intervals. Regular intervals of 15, 30, 45, 60, 120, 240 and 300 s have been considered.

� For each parameter combination, 10 simulations have been conducted and the average time overhead added by Protocol 3
to the query response time has been computed (that is, the time increase with respect to direct query submission without
UPIR). The results for the smaller configuration can be seen in Tables 1 and 2, and Fig. 1. On the other hand, the results for
the larger configuration are shown in Tables 3 and 4, and Fig. 2.

One can see that the (993,993,32,32)-configuration yields a shorter response time overhead than the (34,34,6,6)-config-
uration. The reason is that the larger configuration is optimal in the sense described at the end of Section 5.2, that is, it sat-
isfies kðr � 1Þ ¼ 32 � 31 ¼ 992 ¼ b� 1; hence, with the larger configuration a user has more chances to get her queries
submitted by other users.
Table 3
For 993 users, average response time overhead as a function of the expected time between successive queries by a user when users do nothing unless they have
a query to submit (no regular scanning of shared memory sectors).

1200 900 600 300 120 90 60 30

963.19 811.81 563.44 295.43 124.40 95.33 64.17 33.51

Table 4
For 993 users, average response time overhead as a function of the expected time between successive queries by a user and the time interval for regular
scanning of shared memory sectors by every user.

Time btw. queries Scan interval

15 30 45 60 120 240 300

1200 5.13 5.40 5.98 6.92 11.40 21.47 26.96
900 5.13 5.35 5.90 6.59 10.59 20.25 25.94
600 5.18 5.28 5.66 6.26 9.75 18.90 24.37
300 5.12 5.22 5.53 6.04 9.25 20.75 32.75
120 5.13 5.21 5.57 6.20 13.8 65.00 78.60
90 5.13 5.22 5.68 6.57 27.42 61.70 68.55
60 5.14 5.27 6.07 8.50 34.74 50.12 52.70
30 5.14 6.29 13.72 18.75 26.25 30.28 30.74

12
00

90
0

60
0

30
0

12
0

90 60 30

15

45
30

240
120
60

300

0

30

60

90

120

150

Avg. Response
Time Overhead

Time Between
Queries

Scanning
Interval

Fig. 2. For 993 users, average response time overhead as a function of the expected time between successive queries by a user and the time interval for
regular scanning of shared memory sectors by every user.

Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 13

ARTICLE IN PRESS
As it can be seen in Tables 1 and 3, if users do nothing unless they have a query of their own to submit, the shorter the
expected time between two successive queries by the same user, the shorter the average response time overhead. This is
explained by the design of Protocol 3, in which users must take care of other users’ queries before submitting their own.
However, the reported response time overheads are much too long to be acceptable. This justifies the requirement that every
user should scan her shared memory sectors at regular intervals and submit the first query from some other user found in
those sectors.

Tables 2 and 4 and Figs. 1 and 2 show the average response time overhead when regular scanning is implemented. It can
be seen that, even with a rather long scanning interval, an acceptable overhead is obtained. Note that, when scanning inter-
vals are very short, the overhead increases slightly as the time between queries decreases: the reason is that, with a short
scanning interval and a short time between queries, the shared memory sectors get filled with uncollected query answers, so
that submitting a new query becomes increasingly difficult.

If we take 30 s as the cut-off value for an acceptable overhead, the region of acceptable overhead is depicted in light grey
in Figs. 1 and 2.

A possible improvement would be to dynamically update the scanning interval as a function of the time between user
queries and the current overhead response time. The aim of the updating strategy would be to determine the scanning inter-
val that is needed to guarantee that the overhead stays below a target value.

7. A dealer-free extension of the protocol

In the peer-to-peer UPIR protocol proposed in Section 4, a dealer is required to confidentially distribute secret keys to
each group member. In some cases, it may be difficult to find such a trusted dealer in a peer-to-peer scenario. Hence, the
practicality of the protocol can be improved if we can remove the trusted dealer in the proposed UPIR protocol. We begin
with some cryptographic notions that will be useful for removing the dealer in the proposed UPIR protocol.

7.1. Burmester–Desmedt group key agreement

A group key agreement (GKA) protocol is a cryptographic primitive allowing two or more members to establish a com-
mon secret via open networks. After execution of a GKA protocol, only the group members can compute the shared secret
key. Attackers can obtain no information about the shared key by monitoring the communication of the group members.
Many efficient GKA protocols have been proposed and, among them, the Burmester–Desmedt protocol [3] is the most effi-
cient one in communication and computation for more than three group members.

The Burmester–Desmedt protocol is a two-round n-party protocol. It assumes a finite cyclic group4 generated by a gen-
erator g of prime order p. Here, g and p are system parameters. In the first round, each user Ui chooses a random di 2 Z�p and
broadcasts zi ¼ gdi . In the second round, each user Ui broadcasts Xi ¼ ðziþ1=zi�1Þdi . Finally, any user Ui can compute the common
secret key
4 In t
be paid

Please
Know
K ¼ zndi
i�1 � X

n�1
i � Xn�2

iþ1 � � �Xi�2 ¼ gd1d2þd2d3þ���þdnd1 ;
where the subscripts are computed modulo n. The Burmester–Desmedt protocol was proven secure in 2003 [15]. That is,
given that an attacker can only monitor the communication among the group members, the attacker cannot distinguish
the shared key K from a random element in the finite cyclic group generated by g.

7.2. Linkable ring signatures

Ring signatures introduced in [23] can achieve anonymity for ad hoc groups without any trusted manager. They are used
to convince any third party that at least one member in an ad hoc group has indeed issued the signature on behalf of the
group. Ring signatures are very suitable for anonymity applications in P2P scenarios due to their attractive properties. Ring
signatures are set-up free. Ring signatures require no managers to initialize the system. All signers publish their public keys to
form a public-key list and any player wishing to generate a ring signature later appends her own public key to the list and
can generate a valid ring signature. Ring signatures are cooperation-free. This refers to the capability of having a ring member
produce a ring signature for any message independently. Hence, a ring signature requires no interactions or cooperations
among ring members provided that all the members’ public keys are known. Ring signatures can guarantee identity privacy.
This means that the signer is anonymous and no one can identify the author of a given ring signature. Since there is no
trusted manager in ring signatures, the anonymity of ring signatures is perfect and cannot be revoked.

Linkable ring signatures [19] allow anyone to determine whether two signatures are signed by the same anonymous
member (linkability property). If a user signs only once on behalf of a group, the user still enjoys anonymity similar to the
one offered by conventional ring signatures.
his section, the term ‘‘group” may mean an algebraic system or a set of users. As the precise meaning is clear from the context, no further attention will
to this distinction.

cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
l. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

14 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
7.3. Basic ideas

After the set-up process previous to Protocol 3 and due to the ðv; b; r; kÞ-configuration structure, the group members have
v keys where each key is shared by r users and each user has k keys. As assumed throughout this article, users may not know
each other’s identity even when they share a key, that is, users can share keys with identity privacy. The expected features of
our extension can be summarized as follows:

� The set-up process should not require a dealer.
� The keys should be shared by the group members according to a ðv; b; r; kÞ-configuration structure.
� The group members sharing any key are anonymous.

Before going into details, let us sketch the basic ideas of our dealer-free extension. We want the group members to jointly
simulate the dealer in a distributive manner. Note that each block of the configuration corresponds to a user and each key is
shared by a sub-group consisting of r users. Hence we can let each sub-group run a group key agreement protocol to share a
common secret key following the ðv; b; r; kÞ-configuration structure. For identity privacy, we exploit linkable ring signatures
to achieve anonymity.

7.4. Extended set-up process without a dealer

Consider the same scenario as at the beginning of Section 4. Assume a P2P community consisting of b users who agree on
the parameters of a ðv; b; r; kÞ-configuration. Each user has a registered public key, for instance, a PKI-based public key,
known by other users. Also, assume that all users share a linkable ring signature scheme, for instance, the scheme in [19].
The b users create a key pool in the following way without a dealer:

(1) Each user generates a linkable ring signature and sends it to other users. Then each user holds b linkable ring signa-
tures. Each signature corresponds to an anonymous member of the b users. Let these ring signatures be ordered in
some order. After ordering them, denote these signatures by 1;2; . . . ; b, where each number corresponds to an anon-
ymous user. Hence, without loss of generality, we simply use i for i ¼ 1; . . . ; b to represent a certain anonymous user.

(2) Each user runs the greedy algorithm or one of the constructions in Section 3 to find a ðv; b; r; kÞ-configuration. If none
can be found, then the users should agree on a different set of parameters until a configuration can be found for those
parameters. Note that the users generate the same configuration, because they run exactly the same procedures. The b
blocks are viewed as b users and the ith block corresponds to the anonymous user encoded as i. Each user is in k sub-
groups and each sub-group consists of r users. There are in total v sub-groups but different sub-groups may intersect.

(3) For each sub-group, the users in the sub-group run the Burmester–Desmedt group key agreement protocol to share a
common secret key. Messages produced during the protocol execution are all signed by the users with the shared link-
able ring signature scheme. Let G be a finite cyclic group generated by a generator g of prime order p. For a sub-group
consisting of users i1; . . . ; ir , they establish a shared secret key as follows:
j j p j

linkable ring signature of zj using the shared linkable ring signature scheme. Then any user can verify whether zj
� In the first round, for j ¼ 1; . . . ; r, each user i chooses a random d 2 Z� and broadcasts to the sub-group z ¼ gdj and a

comes from the anonymous user ij due to the linkability of the underlying linkable ring signature scheme. If all ver-
ifications of the users pass, the users enter the second round of the group key agreement protocol.
� In the second round, each user ij broadcasts Xj ¼ ðzjþ1=zj�1Þdj and a linkable ring signature of Xj using the shared link-

able ring signature scheme. Then any user can verify whether Xj comes from the anonymous user ij due to the link-
ability of the underlying linkable ring signature scheme. If all verifications of the users pass, the users of the sub-
group proceed to the final step below.
� Finally, any user ij can compute the common secret key K ¼ z

rdj

j�1 � X
r�1
j � Xr�2

jþ1 � � �Xj�2 = gd1d2þd2d3þ���þdrd1 , where the sub-
scripts are computed modulo r.

After the above initialization process, each sub-group consisting of r users have a common secret key. Each user has k
secret keys as each user is in k sub-groups. Since there are totally v sub-groups, v secret keys are established and each
key is shared by r users. Also, the users do not know the identities of other users sharing the same secret key in their
sub-group due to the anonymity of the underlying ring signatures. Hence, the above set-up process without a dealer per-
fectly simulates the dealer-based initialization process in Section 4.

7.5. Complexity assessment

We next analyze the complexity of the above dealer-free extension. In Section 6, we have given figures for the response
time of the protocol with a trusted dealer; thus, to avoid repetition, we just investigate here the additional time delay intro-
duced by the cryptographic operations for each user due to the lack of a dealer.

In Step 1 of the set-up process described in Section 7.4 (form a peer-to-peer group), the additional operation for each user
is to generate one linkable ring signature and verify ðb� 1Þ signatures (each user holds b linkable ring signatures but one of
Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 15

ARTICLE IN PRESS
them is the user’s own signature) from other b� 1 users. According to [19], generating one ring signature requires 2bþ 1
modular (multi-base) exponentiations (we do not differentiate a multi-base exponentiation from a single-base exponentia-
tion as both have a similar computation cost) and b hash operations. For verification, each linkable ring signature requires 2b
exponentiations and b hash operations. Hence, the total additional cost in that Step 1 is 2bðb� 1Þ þ 2bþ 1 ¼ 2b2 þ 1 expon-
entiations and b2 hashes. Since, for existing cryptographic hash functions in use, the computation cost of a hash operation is
much less than that of an exponentiation, the main additional overhead is 2b2 þ 1 exponentiations.

Step 2 of the set-up process described in Section 7.4 does not count as additional delay, because a configuration is needed
anyway even if a dealer is used.

Finally, in Step 3 of the set-up process the main additional cost is 2� ð2r2 þ 1Þ exponentiations to generate two ring sig-
natures and verify 2ðr � 1Þ ones, plus 2 more exponentiations needed by the Burmester–Desmedt protocol [3].

According to the measurement of the cryptographic library MIRACL [21] in a PC environment, the time to compute an
exponentiation is about 0.1ms. At Step 1, for a middle-sized group of b ¼ 100 users, the additional delay incurred is about
two seconds. At Step 3, if one takes r < 50 (r is typically much smaller than b), the additional delay incurred is less than one
second. Hence, the overhead caused by doing without a trusted dealer is affordable in practice.

8. Conclusion

Relaxing PIR seems a pragmatic approach to obtain working systems offering some degree of query privacy against unco-
operative search engines or databases. Practical relaxations proposed in the literature are standalone and rely on a single
user cloaking her queries by either submitting them masked with fake keywords with similar frequency or submitting them
unaltered but camouflaged in a cloud of ghost queries. We have introduced an alternative relaxation named user-private
information retrieval, in which the user query history rather than the query is cloaked; indeed, the user seeks assistance from
a P2P community who submit queries on her behalf. In this way, any query can be submitted without caring for keyword
frequencies nor swamping search engines with ghost queries. The level of privacy achieved is proportional to the connectiv-
ity kðr � 1Þ of the P2P community. Furthermore, we have given simulation results which show the practicality of the pro-
posed protocol and we have described a protocol extension where no dealer is needed.

From the combinatorial point of view, we have also contributed some constructions of configurations (the structure used
for key and storage management).

References

[1] AOL Search Data Scandal, August 2006. <http://en.wikipedia.org/wiki/AOL_search_data_scandal>.
[2] A. Beimel, Y. Ishai, T. Malkin, Reducing the servers’ computation in private information retrieval: PIR with preprocessing, Journal of Cryptology 17

(2004) 125–151.
[3] M. Burmester, Y. Desmedt, A secure and efficient conference key distribution system, in: Eurocrypt’94, LNCS 950, Springer-Verlag, 1994, pp. 275–286.
[4] B. Chor, N. Gilboa, M. Naor, Private information retrieval by keywords, Technical Report TR CS0917, Department of Computer Science, Technion, 1997.
[5] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, Private information retrieval, in: IEEE Symposium on Foundations of Computer Science (FOCS), 1995, pp.

41–50.
[6] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, Private information retrieval, Journal of the ACM 45 (1998) 965–981.
[7] J. Domingo-Ferrer, M. Bras-Amorós, Peer-to-peer private information retrieval, in: Privacy in Statistical Databases-PSD 2008, LNCS 5262, Springer-

Verlag, 2008, pp. 315–323.
[8] J. Domingo-Ferrer, A. Solanas, J. Castellà-Roca. hðkÞ-Private information retrieval from privacy-uncooperative queryable databases, Online Information

Review, 3 (4) (2009). Goopir software downloadable from: <http://unescoprivacychair.urv.cat/goopir>.
[9] S. Goldwasser, S. Micali, Probabilistic encryption, Journal of Computer and Systems Science 28 (1) (1984) 270–299.

[10] H. Gropp, On the history of configurations, in: International Symposium on Structures in Mathematical Theories, Bilbo, 1990, Euskal Herriko
Unibertsitatea, pp. 263–268

[11] H. Gropp, Configurations between geometry and combinatorics, Discrete Applied Mathematics 138 (1-2) (2004) 79–88. Optimal discrete structures
and algorithms (ODSA 2000).

[12] H. Gropp, Existence and enumeration of configurations, Bayreuther Mathematische Schriften 74 (2005) 123–129.
[13] H. Gropp, Configurations, in: C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 353–355.
[14] D.C. Howe, H. Nissenbaum, TrackMeNot: resisting surveillance in web search, in: I. Kerr, C. Lucock, V. Steeves (Eds.), Lessons from the Identity Trail:

Privacy, Anonymity and Identity in a Networked Society, Oxford University Press, Oxford UK, 2009, pp. 409–428. Software downloadable from: http://
www.mrl.nyu.edu/~dhowe/trackmenot/.

[15] J. Katz, M. Yung, Scalable protocols for authenticated group key exchange, in: Crypto’03, LNCS 2729, Springer-Verlag, 2003, pp. 110–125.
[16] E. Kushilevitz, R. Ostrovsky, Replication is not needed: single database, computationally-private information retrieval, in: Proceedings of the 38th

Annual IEEE Symposium on Foundations of Computer Science, 1997, pp. 364–373.
[17] J. Lane, P. Heus, T. Mulcahy, Data access in a cyber world: making use of cyberinfrastructure, Transactions on Data Privacy 1 (1) (2008) 2–16.
[18] J. Lee, D.R. Stinson, A combinatorial approach to key predistribution for distributed sensor networks, in: Wireless Communications and Networking

Conference-WCNC 2005, vol. 2, 2005, pp. 1200–1205.
[19] J.K. Liu, V.K. Wei, D.S. Wong, Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract), in: ACISP’04, LNCS 3108,

Springer-Verlag, 2004, pp. 325–335.
[20] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone (Eds.), Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997.
[21] Multiprecision Integer and Rational Arithmetic C/C++ Library (MIR-ACL). <http://www.shamus.ie/>.
[22] R. Ostrovsky, W.E. Skeith III, A survey of single-database PIR: techniques and applications, in: Public Key Cryptography-PKC 2007, Lecture Notes in

Computer Science, vol. 4450, Berlin Heidelberg, 2007, pp. 393–411.
[23] R.L. Rivest, A. Shamir, Y. Tauman, How to leak a secret, in: Proceedings of the Asiacrypt’01, LNCS 2248, Springer-Verlag, 2001, pp. 552–565.
[24] D.R. Stinson, Combinatorial Designs: Constructions and Analysis, Springer-Verlag, New York, 2003.
[25] K. Stokes, M. Bras-Amorós, Optimal configurations for peer-to-peer private information retrieval, manuscript, 2008.
[26] A.S. Tanenbaum, Computer Networks, fourth ed., Prentice Hall, Upper Saddle River, NJ, 2002.
[27] The Tor Project, Inc. ‘‘Tor: Overview”. <http://torproject.org/overview.html.en>.
Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://en.wikipedia.org/wiki/AOL_search_data_scandal
http://unescoprivacychair.urv.cat/goopir
http://www.mrl.nyu.edu/~dhowe/trackmenot
http://www.mrl.nyu.edu/~dhowe/trackmenot
http://www.shamus.ie
http://torproject.org/overview.html.en
http://dx.doi.org/10.1016/j.datak.2009.06.004

ARTICLE IN PRESS
Josep Domingo-Ferrer is a Full Professor of Computer Science and an ICREA-Acadèmia Researcher at Universitat Rovira i Virgili,
Tarragona, Catalonia, where he holds the UNESCO Chair in Data Privacy. He received with honors his M.Sc. and Ph.D. degrees in
Computer Science from the Universitat Autònoma de Barcelona in 1988 and 1991, respectively (Outstanding Graduation
Award). He also holds a M.Sc. in Mathematics. His fields of activity are data privacy, data security and cryptographic protocols.
He has received three research awards and four entrepreneurship awards, among which the ICREA Acadèmia Research Prize
from the Government of Catalonia. He has authored 3 patents and over 220 publications, one of which became an ISI highly-
cited paper in early 2005. He has been the co-ordinator of EU FP5 project CO-ORTHOGONAL and of several Spanish funded and
US funded research projects. He currently co-ordinates the CONSOLIDER ‘‘ARES” team on security and privacy, one of Spain’s 34
strongest research teams. He has chaired or co-chaired nine international conferences and has served in the program committee
of over 70 conferences on privacy and security. He is a co-Editor-in-Chief of ‘‘Transactions on Data Privacy” and an Associate
Editor of three international journals. In 2004, he was a Visiting Fellow at Princeton University.

16 J. Domingo-Ferrer et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx
Maria Bras-Amorós is a Tenured Associate Professor at Universitat Rovira i Virgili in Tarragona. She received the Ph.D. degree in
applied mathematics from the Universitat Politècnica de Catalunya in 2003. Part of her doctoral and postdoctoral work was
developed at San Diego State University, California. She has been with the Universitat Politècnica de Catalunya and the Uni-
versitat Autònoma de Barcelona, and is currently with the Universitat Rovira i Virgili in Tarragona. Her main research interests
are in the area of coding theory and discrete mathematics.
Qianhong Wu is a senior researcher with the UNESCO Chair in Data Privacy, Department of Computer Science and Mathematics,
Universitat Rovira i Virgili (URV), Tarragona, Catalonia. He received his M.Sc. in Applied Mathematics from Sichuan University in
2001. He got his Ph.D. degree in Cryptography from Xidian University in 2004. He has been a postdoctoral researcher with
Wollongong University in Australia and Wuhan University in China. His research interests include public key cryptography, e-
commerce security, security and privacy in networks, and private information retrieval. He has been a principal investigator or
co-investigator of several Chinese-funded and Australian-funded projects. He has coauthored over 40 publications and has been
a reviewer for several international journals.
Jesús Manjón is a computer engineer with the UNESCO Chair in Data privacy and the CRISES Research Group in the Department
of Computer Science and Maths at Universitat Rovira i Virgili of Tarragona, Catalonia. He got his M.Sc. in Computer Engineering
in 2004 and an M.Sc. in Computer Security in 2008.
Please cite this article in press as: J. Domingo-Ferrer et al., User-private information retrieval based on a peer-to-peer community, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.06.004

http://dx.doi.org/10.1016/j.datak.2009.06.004

	User-private information retrieval based on a peer-to-peer community
	Introduction
	Contribution and plan of this paper

	Peer-to-peer UPIR and configurations
	All-to-all protocol
	One-to-one protocol

	(v,b,r,k)-Configurations: background and construction
	A greedy algorithm to find configurations
	Building larger configurations from smaller ones
	Combining two not necessarily equal configurations
	Combining several copies of the same configuration
	Comparison of the two constructions

	A peer-to-peer UPIR protocol based on configurations
	Performance and privacy
	Performance
	Privacy

	Simulation results
	A dealer-free extension of the protocol
	Burmester–Desmedt group key agreement
	Linkable ring signatures
	Basic ideas
	Extended set-up process without a dealer
	Complexity assessment

	Conclusion
	References

