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Abstract

In this paper we introduce a family of filter kernels - tBeay-Code Kernels (GCKand demonstrate
their use in image analysis. Filtering an image with a sequence of Gray-Code Kernels is highly efficient
and requires only2 operations per pixefor each filter kernel, independent of the size or dimension
of the kernel. We show that the family of kernels is large and includes the Walsh-Hadamard kernels
amongst others. The GCK can be used to approximate any desired kernel and as such forms a complete
representation. The efficiency of computation using a sequence of GCK filters can be exploited for
various real-time applications, such as, pattern detection, feature extraction, texture analysis, texture

synthesis, and more.

Index Terms

Image Filtering, Filters, Filter Kernels, Convolution, Walsh-Hadamard, Pattern Matching, Block

Matching, Pattern Detection.

I. INTRODUCTION

Many image processing and vision applications require filtering of images with a successive
set of filter kernels; pattern classification, texture analysis, image de-noising, pattern detection
are a few examples. In many such applications, however, applying a large set of filter kernels
is prohibited due to time limitations. This limitation is even more severe when dealing with
video data in which spatio-temporal filtering is required. Even when exploiting the convolution
theorem and the Fast Fourier Transform (FFT) algorithm, the complexity remains high. A possible
approach to increase efficiency is to design a set of specific kernels which are efficient to apply.
Studies that took this course of action include the integral image [1], summed-area tables [2],
and a generalized version of these called boxlets [3]. The main drawback of these approaches
are that they allow only a limited set of filter kernels to be computed efficiently.

In this paper we aim to improve run-time and approach real-time performance for image
filtering. Our work is motivated by a previous study [4], [5] in which the authors have shown
that real-time pattern matching can be achieved using successive image filtering with a set of
carefully chosen filter kernels.

The goal of this paper is to form a set of filter kernels that can be applied efficiently in various
real-time applications. Towards this end, the suggested kernels should have the following desired

characteristics:
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. Informative: The kernels should be “informative” with respect to the relevant task.

. Efficiency: The kernels should be efficient to apply enabling real-time performance.

» Variety: The kernel set should consist of a large variety of kernels so that it can be used
in various applications. It is advantageous to have a kernel set that forms a complete basis,

enabling approximations ainy desired kernel.

In this paper, we introduce a family of filter kernels such that successive convolution of an
image with a set of such filters is highly efficient and requires @byperations per pixdior each
filter kernel, regardless of the size or dimension of the filter. Moreover, the memory required is
at most 2 times the size of the original image. This family which we na@ey-Code Kernels
(GCK) consists of a very large set of filter kernels, including the Walsh-Hadamard basis kernels,
which can be used in a wide variety of applications. A specific application, demonstrating the

method’s efficiency, is presented in Section VI.

Il. PREVIOUSWORK

Image filtering is a very common operation in image processing, yet its computational com-
plexity poses severe limitations in many applications. Numerous techniques have been proposed
to expedite this operation (e.qg. [6], [7], [8], [9], [10], [3]). These techniques can be categorized
into three main classes of approaches: 1) Computational speed up of the filtering process
independent of the kernel used. 2) Design of special families of kernels for which each kernel
can be applied efficiently. 3) Design of special families of kernels for which a sequence of filters
can be applied efficiently in a cascade manner.

The first class deals with reducing run time of the filtering operation which can be applied to
any given filter kernel. The most common approach in this category is to exploit the convolution
theorem and apply filtering in the frequency domain using the Fast Fourier Transform (FFT)
[11]. In spite of the versatility of this approach, the scheme is efficient only for kernels with wide
support, due to the overhead calculations of the FFT. Its performance in real-time applications
is still inadequate (see e.g. [5]). Another approach in this class is to apply the filtering process
in the Wavelets domain while ignoring high frequency coefficients and exploiting the energy
compactization of the image in this domain [7]. Here too, in addition to the lossy results, the

overhead of the Wavelet transform limits the profitability of this scheme in real-time applications.
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The second class of approaches suggest fast image-filtering with filter kernels of specially
defined families of kernels. These families of kernels have special characteristics that are ex-
ploited to reduce filtering complexity. Studies that took this course of action include the integral
image [1], summed-area tables [2] and a generalized version of these called boxlets [3]. Another
example are kernels that belong to known function spaces that are fast to apply [6]. These
techniques are restricted to the specially defined families of kernels and do not generalize to
allow filtering with any given kernel.

The third class includes techniques for fast filtering with a cascade of kernels. In such cases,
efficiency of computation is achieved by exploiting relationships between the applied kernels. One
approach in this direction is to find a reduced subspace in which the kernel set is approximately or
exactly embedded. Filtering is performed with a small number of kernels that span this subspace.
Then, due to linearity of the filtering process, the original kernel filtering results are computed
as linear combinations of these few filtering results. The steerable filters technique [10], [12],
deformable kernels [9], and the SVD filtering [8] follow this scheme.

This paper introduces a novel technique that belongs to the third class of approaches. A
preliminary study was presented in [13]. Our work is motivated by a previous study [4], [5]
where a fast filtering scheme for the Walsh-Hadamard (WH) kernel set was used for pattern
detection. In this earlier study, the computational cost of convolving an image with each WH
kernel is between 1 ops/pixel and up to at m@isiyk ops/pixel for kernels of sizé x k. This
performance is achieved by exploiting the recursive structure of the WH kernels. This previous
approach, however, is constrained by several limitations:

« The method applies only to the Walsh-Hadamard Kernels.

. Filtering with each kernel requirg3(1)-O(d logk) operations per pixeld being the kernel

dimension and: its width).

« The fast filtering approach is limited to filtering in a fixed order of kernels (defined by the

linear scanning of the leaves of the Walsh-Hadamard tree. See [5] for more details).

« Filtering is restricted to dyadic sized kernels.

« The method requires maintainingylogk images in memory. This requirement might be

prohibitive when dealing with 3D or higher-dimensional images.

In this paper we introduce the Gray-Code Kernels (GCK) and demonstrate their advantages:
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. The GCK family of kernels enables filtering in O(1) operations per pixel per kernel,
independent of the kernel size and dimension!

« The GCK family consists of a very large set of kernels.

« The GCK set includes non-dyadic kernels.

« The GCK method requires maintaining only 2 images in memory.

The GCK filters can be exploited in real-time applications, including, pattern detection, feature

extraction, texture analysis, texture synthesis, and more.

1. THE GRAY-CODE KERNELS(GCK) - 1D CAsE

Consider first the 1D case where signal and kernels are 1 dimensional vectors. Dehgfe by

a set of 1D filter kernels expanded recursively from an initial seed vecasr follows:

Definition 3.1:
VO =s
VE = {vE D vV} st v e VI,
ar € {+1,—-1}
where o, v indicates the multiplication of kernat by the valueq, and|...] denotes concate-
nation.

The set of kernels and the recursive definition can be visualized as a binary tree ofkdepth
An example is shown in Figure 1 fdr= 3. The nodes of the binary tree at levalepresent the
kernels of V). The leaves of the tree represent thkernels of/(®). The branches are marked
with the values ofv used to create the kernels (wher¢— indicates+1/ — 1).

Denote|s| = ¢ the length ofs. It is easily shown that(*) is an orthogonal set af* kernels
of length 2¥t. Furthermore, given an orthogonal set of seed vedtors .s,, it can be shown
that the union se¥,® U...U V™ is orthogonal with2"n vectors of lengtte*t. If n = ¢ the set
forms a basis.

Figure 1 also demonstrates the fact that the values, . «;, along the tree branches, uniquely

define a kernel if/(*).

Definition 3.2: The sequencex = «;...qx, «; € {+1,-1} that uniquely defines a kernel

veV# is called thea-index of v.
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Fig. 1. The set of kernels and the recursive definition can be visualized as a binary tree. In this example the tree is of depth
k = 3 and createg@® = 8 kernels of lengtt8. Arrows indicate pairs of kernels that arerelated.

We now define the notion ak-relation between two filter kernels:

Definition 3.3: Two kernelsv;,v; € V%) are a-related iff the hamming distance of their

a-indexis one.

Without loss of generality, the-indices of twoa-related kernels arexf ... a,_1,+1, ... ax)
and (;...a,_1,—1,...a;). We denote the corresponding kernelsvasand v_ respectively.
Sinceq; . .. a,_; uniquely define a kernel i~V two a-related kernels always share the same
prefix vector of lengtl2"—!t = A. The arrows of Figure 1 indicate examplescefelated kernels
in the binary tree of deptlh = 3. Note that not all possible pairs of kernels areelated. Of

special interest are sequences of kernels that are consecutivelgted.
Definition 3.4: An ordered set of kernels, ... v,,cV,*) that are consecutively-related form

a sequence oGray Code Kernels (GCK). The sequence is called @Gray Code Sequence
(GCS).

May 14, 2006 DRAFT



The term Gray Code relates to the fact that the series-wfdices associated with a GCS

forms a Gray Code [14], [15], [16]. The kernels at the leaves of the tree in Figure 3 in a left to

right scan, are in fact consecutivelyrelated, and form a Gray Code Sequence. Note, however

that this sequence is not unique and that there are many possible ways of reordering the kernels

to form a Gray Code Sequence.
The main idea of this paper relies on the fact that twoelated kernels share a special
relationship: Given twax-related kernels7,,v_ € V® their sumv, and their differencev,,

are defined as follows:

Definition 3.5:

vV, =Vi+V_

Theorem 3.6:Given two a-related kernelsy,, v_ € V*) with a common prefix vector of

length A, the following relation holds:

[0A V] = [vin 04]

where0, denotes a vector with\ zeros.
Proof is given in Appendix I. For example, consider the twoelated kernels from Figure 1
whosea-indices are[+ + +] and [+ — +] respectively :
vy = [s s s s s s s s
v. = [s s —s —s s s —s —s]
They share a common prefix of length = 2¢. Then
v, = [2s 25 0 0 2s 25 0 O
Ve = [ 0 0 25 25 0 0 2s 2]
and Theorem 3.6 holds with:

02 vp] =10 0 25 25 0 0 2s 25 0 O] =[v,, Oy

For simplicity of explanation, we now expand € V¥ to an infinite sequence such that

v(i) = 0 for i <0 and fori >2%¢. Using this convention, the relatiddx v,] = [v,, 0a] can
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Fig. 2. Givenb_, the convolution of a signal with the filter kernel_, the convolution resulb can be computed using 2

ops/pixel regardless of kernel size.

be rewritten in a new notation:

Vp(i = A) = vin(i)
With the new notation, Theorem 3.6 gives rise to the following Corollary:

Corollary 3.7:

Corollary 3.7 is the core principle behind the efficient filtering scheme introduced in this paper.
Let b, andb_ be the signals resulting from convolving a sigsaWith filter kernelsv, and

v_ respectively:
b, (i) = >;x(j)v(i—J)
b_(i) = X;x(j)v-(i —j)
Then, by linearity of the convolution operation and Corollary 3.7 we have the following:
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Fig. 3. Using initial vectors = [1] and depthk = 2 a binary tree creates the Walsh-Hadamard basis set of ér@snsecutive
kernels aren-related, as shown by the arrows.

This forms the basis of an efficient scheme for convolving a signal with a set of GCK kernels.
Given the result of convolving the signal with the filter kerrel (v..), convolving with the filter

kernelv_, (v_) requiresonly 2 operations per pixeindependent of the kernel size (Figure 2).

Example - The 1D Walsh-Hadamard Kernels

Following is a specific example for the above definitions and discussions.

Considering Definition 3.1, and setting the prefix stringste [1], we obtain that/[*) is the
Walsh-Hadamard basis set of ord¥r A binary tree can be designed such that its leaves are
the Walsh-Hadamard kernels ordered in dyadically increasing sequency and they form a Gray
Code sequence (i.e. are consecutivelyelated). Such a tree and a discussion of its efficiency
in pattern detection is described in [4], [5]. An example fo& 2 is shown in Figure 3 where
every two consecutive kernels atierelated. For example, the first two kernels are:

vo = [1 1 1 1]
vi = [1 1 -1 -]

They share the prefix string 1], thus A = 2. Their sum and difference are respectively

=[220 0]andv,, =[0 0 2 2] and Theorem 3.6 holds with:

V(i —2) = V(i)
which yields:
vi(i) = —vi(i —2) 4+ vo(i) — vo(i — 2)
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Thus, given the result of filtering an image with the first Walsh-Hadamard kernel, filtering
with the second kernel requires only 2 operations (additions/subtractions) per pixel.

Subsequently, by ordering the Walsh-Hadamard kernels to form a Gray-Code Sequence, the
windowed Walsh-Hadamard transform can be performed using only 2 operations per pixel per

kernel regardless of signal and kernel size.

IV. EXTENSION OFGCK TO HIGHER DIMENSIONS

The previous sections can be generalized to higher dimensions. The most common use would
be in 2D where input signals and filter kernels are 2D images. Thus, in this section we present
only the 2-dimensional extension. However, the advantages of the approach are even more
significant in 3D and higher dimensions. Extension to higher dimensions and proofs can be
found in the Appendix.

In the previous sections, it was shown that successive filtering avitblated kernels can be
applied efficiently using at most 2 operations per pixel. We now define the conditions under
which higher dimensional filter kernels can be applied efficiently in a similar manner. We show

that computation cost remains at 2 operations per pixel per kernel regardless of the dimension.

Definition 4.1: Two filter kernelsv, andvy, are considereeéfficiently computableif given
an image filtered with one of the kernels, filtering the image with the second kernel is possible

using two operations per pixel.

The following Lemma forms the basis of the Gray Code Kernel results for 2-dimensions:

Lemma 4.2:Assumevy, (i1, i2), Vo (i1, i) are two filter kernels in 2 dimensiongy; andv,
are efficiently computable if both kernels are separable and can be factored into 1D kernels:
Vo1 = Vg X Vg andVOQ = Vg X Vg O vg1 = V1 X Vv andV02 = Vo X Vq, such thatv1 andV2 are

a-related.

The symbol k" denotes the outer produclvy x v|(i1,i2) = vo(i1)v(iz). Proof is given in
Appendix Il.

As an example, consider the following two filter kernels:
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10 10 —-10 -10 10 10 10 10

5 5 =5 =5 5 5 5 b
Vo1 = Vo2 =
5 5 -5 —=5H 5 5 5 5
10 10 —-10 -10 10 10 10 10
These kernels are separable:
10
Vo1 - 5 V] = [1 1 -1 —1]
Vo = X
Voo 5 Vo = []_ 1 1 ]_]
10
If s =[1], the a-indices ofvy, v, are:
aq = [+7 _]
Qg = ["’7 +]

and therefore, by Definition 3.3, the kernels areelated.
Given the filtering resulb; = I % vy; of the 2-dimensional imagé with kernel vy, the

filtering by = I % v can be calculated using 2 operations per pixel:
bg(’il, 22) - bg(’il, i2 — 2) + bl(il,ig) + bl(ila ig - 2)

The operations in this example are along the 2nd dimension.

A. Separable Gray Code Kernels

Considering sets of 2-dimensional separable kernels, a set that spans a 2-dimensional image
window is often required. Of special interest are separable kernels of thevformv,; x v,
wherev, andv, are each from a one dimensional set of Gray Code Kernels. The 2-dimensional

version of V(¥ is defined as:
VIR = {vi x vy | vi € V) (1)
That is forv € V.*15) v(iy,i5) = vi(i1)va(ia). For examplejf[ﬁﬁ)] is the set of2® 2-

dimensional kernels of sizé x 8. The setv[giﬁ)] is shown in Figure 4 and forms thex 4

Walsh-Hadamard kernels.
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Fig. 4. The outer product of two sets of one-dimensional Gray Code Kernels forms the set of 2-dimensional kernels. In this
case, the Walsh-Hadamard kernels of size 4 are obtained.
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Since the 2-dimensional kernel is separable, and can be defined byne-dimensional

kernels, the associateda2indices uniquely define. Thus the following definition is consistent
with the one dimensional case (Definition 3.2):

Definition 4.3: For v € V**2) such thatv = v, x v,, with associatedv-indicesa; anda,

the sequencex = [, az] uniquely definess and is called thex-index of v.

The set of kernels can then be computed using a binary tree of deptht, such thatk,
levels of the tree operate on the first dimension &ndn the second (see Figure 5).

Accordingly, the notion ofx-relation between two 2-dimensional kernels is defined:

Definition 4.4: Two kernelsv;,v; € V*1%2) are a-related iff the hamming distance of their

S1,82

a-indices is one.
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K, levels: )
operations along 1t dim

K, levels: )
operations along 25t dim

Fig. 5. The set of 2D kernels’s(l'flsfz) can be computed using a binary tree of deptht k2 such thatk; levels of the tree

operate on the first dimension akd on the second.

For example, in Figure 4, every pair of horizontally or vertically neighboring kernels are
a-related.

The notion of aGray Code Sequenasf kernels can be extended to 2-dimensions:
Definition 4.5: An ordered set of 2-dimensional kernels,. . . v,, such that every consecutive
pair area-related, is called &ray Code Sequenceof kernels.

From Lemma 4.2 and Definition 4.5 we have the following corollary:

Corollary 4.6: Every two consecutive 2D kernels in a Gray Code Sequenceflogently

computable

The GCK definitions extend naturally to higher dimensions. The d-dimensional version of

V*) is defined as:
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VIEh) = fv) x L ox v | v € V)Y 2)

51,5--,5d

and the d-dimensional kernele V*1--*4) is defined asv(ii, ..., iq) = vi(i1)va(iz) . .. va(ia)
wherev,; are one dimensional Gray Code kernels.

The d a-indices associated with; uniquely definev:

Definition 4.7: Forv = v; X ... x vy, such thatv; € Vs(ffi) with associatedv-index «;, the
sequencex = [a;...aq4] uniquely definess and is thea-index of v.

These kernels can be computed using a binary tree of dgpth... + k; similar to the tree
of Figure 5.

If s, =sy=...=ss=sandk; =k, = ... = kg = k then the set is denoted®" and
contains d-dimensional square kernels.

Definitions and Lemmas for the separable d-dimensional GCKs are similar to the 2D case
and are given in Appendix lIl.

Thus, 2 consecutive kernels in a GCS are efficiently computable, requiring only 2 ops/pixel,
even in higher dimensions. Consequently, the use of GCK in higher dimensions is even more
advantageous.

In summary, successive convolution of a signal with kernels of a GCS requires only 2
ops/pixel/kernel regardless of the kernel size or dimension. Furthermore, the successive con-
volution scheme requires maintaining in memory only the results of the previous convolution,
thus only memory space the size of 2 times the original signal size is required throughout the

process.

V. SEQUENCING THEGRAY-CODE KERNELS

In previous sections we presented the GCK as a set of filter kernels. It was shown that
successive filtering witkx-related kernels of this set can be applied efficiently using 2 operations
per pixel per kernel. However, the efficiency of using the GCK in a particular application is
determined not only by the computational complexity of applying each kernel, but also by the
total number of kernels taking part in the process. This, in turn, depends upon the order in which
the kernels are applied. In this section we discuss the issue of ordering kernels into sequences

of Gray Code Kernels.
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Consider the seitg(k)d of d-dimensional separable kernels of s¥¢ (as defined in Section IV-
A). The kernels in this set are uniquely representedvipdices of lengthkd (Definition 4.3).
A Gray Code Sequence is then equivalent to an ordering of these bidargctors. As demon-
strated above, many such sequences are possible. In this case, the question arises as to how
many GCS are possible and how is the optimal GCS for a particular application chosen.

It is easily shown that the ség(’“)d is isomorphic to &d-dimensional hypercube graph 2
vertices; every kernel € VS("?)d is associated with a vertex whose coordinates are equal to the
a-index of v. Edges in this hypercube connect vertices associated avitlated kernels. An
example is shown in Figure 6a where the 2 x 2 kernels oﬂ/'s(l)3 are represented by vertices
of the 3-dimensional hypercube. The vertices are marked by:thmelex associated with the
kernel ¢, — are represented here Iyl respectively). Pairs of vertices connected by an edge
representy-related kernels.

A Gray Code Sequence is a sequencevatlated kernels thus it is isomorphic to a path in
the hypercube graph. A GCS containing all the kerneli;(;@l’d is isomorphic to a Hamiltonian
path in thekd-dimensional hypercube [14], [15]. For example, in Figure 6b, a Hamiltonian path
is marked on the graph and represents a complete sequence of Gray Code Kernels. Given this
relationship between Gray Code sequencing and Hamiltonian paths in graphs, it is evident that
the number of possible Gray Code Sequences containing all kernels of tﬁré’“glets equal
to the number of Hamiltonian paths in fal-dimensional hypercube2, 8,144,91392, ... for
kd=1,2,3,4,...[17], [15].

Hamiltonian paths are isomorphic to linear GCS in which a filter kernel appears only once.
However, other variations may be considered as well, including allowing multiple appearances
of a kernel (see Backtracking in [18]) and sequences that are isomorphic to a spanning tree on
the hypercubic graph (see Increasing Memory Allowance in [18]) In this paper we concentrate
on linear GCS.

In typical situations where filtering with GCKSs is used, only a subset of filters from the filter
seﬂ/s(’“)d are required to complete the process. In such case©ptienal Gray Code Sequence
should be chosen from amongst the numerous possible GCS. To do so, a priority value is
assigned to each kernel, representing its contribution in achieving the goal of the process. The
priority value strongly depends on the application and possibly the input data. For example,

using the projected values as features in a classification process, the priority value may reflect
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Fig. 6. a. The sei/s(”3 represented by a 3-dimensional hypercubic graph. The vertices are marked doynithex associated
with the kernel (for simplicity, 0 and 1 replace + and - respectively). Every paiti-oélated kernels share an edge in the

hypercubic graph. b. A Hamiltonian Path is marked on the graph, representing a GCS.

the discrimination power of each kernel, i.e. the ability of classifying examples based on the
projection values of the specific kernel. A detailed example is given in Section VI.

Assigning a priority value to each kernel is analogous to associating a weight with every node
in the isomorphic hypercube graph. Given the priority values, the optimal Gray Code Sequence
and accordingly the chosen path in the hypercube graph can be determined. In this paper we
determined the optimal GCS of a given length as that which maximizes the accumulated priority
values. This definition of optimality is appropriate for applications with limited run time that
allow only a fixed predefined number of filter kernels to be applied. Note that the order of the
kernels within the sequence is insignificant. This is analogous to finding the maximally weighted
path of a given length in a hypercube graph. It can be shown that this problem is a special case of
the Travelling Salesman’s Subtour Problem [19] and the Orienteering Problem (OP) [20] shown
to be NP-hard. Approximation algorithms for this problem have been suggested [21], [22].

In order to demonstrate the advantage of the optimal GCS over other orderings of the Gray
Code Kernels, we compared three types of Gray Code sequencing:

. Greedy - This algorithm orders the kernels in decreasing priority value. This order max-
imizes the accumulated priority value for any given length of sequence, however, the
sequence produced is not necessarily a Gray Code Sequence since consecutive kernels are
not necessarilyy-related. In terms of computation, filtering with eakh< k kernel of the

sequence, naively requir@sogk ops/pixel (e.g. by computing projection onto each kernel
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along a branch of the Walsh-Hadamard tree as explained in [5]).

« Sequency- This algorithm creates a GCS of Walsh-Hadamard kernels ordered with increas-
ing sequency (the number of sign changes along each dimension of the kernel - analogous to
frequency). For the 2D Walsh-Hadamard kernels, the 'snake’ order as depicted in Figure 7 is
used. In Section IV-A, we have shown that neighboring kernels in the 2D Walsh-Hadamard
array area-related. Thus the Walsh-Hadamard kernels, ordered in this manner form a
Gray Code Sequence and the computation cost for each kernel reduces to 2 ops/pixel. The
Sequency order is known to perform well on natural images due to energy compactization
in the low order sequencies [23], [24], [5]. Note that, in contrast to the Greedy ordering,
this computation scheme does not depend on the priority values of the kernels.

. Optimal - Given a priority value associated with each kernel, this algorithm returns a GCS
of a given length with maximum accumulated priority values. This, in theory is an NP-
hard problem, however for short sequences (length 10) an exhaustive search can be
implemented in reasonable time. For longer sequences {0), we implemented a pseudo-
optimal GCS which is created by concatenating several (n/10) optimal GCS of short length
with an additional constraint that requires the last kernel in each short sequencevto be
related to the first kernel in the following short sequence. Recurrent kernels are allowed,
thus kernels may appear more than once in the Optimal GCS, however their priority value

is accumulated only once.

VI. EXPERIMENTAL RESULTS

The most attractive property of the GCK framework is that it enables filtering with each
kernel using only 2 ops/pixel. However, this can only be achieved if the kernels are used
in an order which forms one of the many possible Gray-Code Sequences. This section tests
the implications of this requirement on the GCK efficiency in a specific application: Pattern-
Matching, where a given pattern is sought in an image. We follow the scheme suggested in
[4], [5] where a framework for real-time pattern matching was introduced. In this section we
compare performance of filtering using the 2D Walsh-Hadamard kernels as projection vectors
when ordered as GCS and when ordered otherwise. We also compare performance with another

known fast filtering scheme, namely, the Integral Image kernels as used in [1].

May 14, 2006 DRAFT



18

n
)

0

h

)

/

MWD
Ml

e =
R EE S

g =
i R i o e e

Fig. 7. An array of Walsh-Hadamard kernels of ordet= 8 ordered with increasing sequency in each column and row. White
represents the value 1, and black represents the value -1. A 'snake’ ordering of these kernels is shown by the overlayed arrows.

This ordering of kernels forms a GCS of Walsh-Hadamard kernels ordered with pseudo-increasing sequency.

A. Projection-Based Pattern Matching

Finding a given pattern in an image is typically performed by scanning the entire image, and
evaluating the similarity between the pattern and a local 2D window about each pixel. In our
experiments, we assume the most common measure of similarity - the Euclidean distance.

Assume ak x k patternp is to be sought within a given image. Pattgrns matched against
a similarly sized windoww at every location in the image. Referring to the pattprand the

window w as vectors ifR*”, the Euclidean distance between them is given as:

dp(p,w) = |lp — w|? 3)

The smaller the distance value, the more similar wrand p. If the distance is found to
be below a given threshold, then it is concluded that windews similar to the pattermp.
Now, assume thab andw are not given, but only the values of their projectioff p and v w
onto a particular projection vectar;, where|[v || = 1. Since the Euclidean distance is a norm,
it follows from the Cauchy-Schwartz inequality, that a lower bound on the actual Euclidean

distance can be inferred from the projection values [5]:

dp(p,w) > di(vip,viw) (4)
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If an additional projection vectov, is given along with the projection values: p andviw,
it is possible to tighten the lower bound on the distance. Define the distance dectev — p,

and assume that the projection valuesdodnto » orthonormal projection vectors are given:
M'd=b

where M = [v; vy ---v,] is @ matrix composed of the orthonormal projection vectors, and
b = [b; by ---b,] is a vector of projection valuds = vd = vl w — vIp. It is straightforward

to verify that the lower-bound on the distance is:
d%(p,w) =d’d > b’b

A similar expression can be obtained whenare not orthonormal [5].

Note, that as the number of projection vectors increases, the lower bound on the distance
dr(p,w) becomes tighter. In the extreme case where k? and the projection vectors are
linearly independent, the lower bound reaches the actual Euclidean distance.

The above implies that a lower bound on the distance between a window and the pattern
can be estimated from the projections. Thus, complexity and run time of the pattern matching
process can be significantly reduced by rejecting windows with lower bounds exceeding a given

threshold value. This can be utilized within the following process:

1) The sought patterp is projected onto a set af normalized projection vectorév;},
resulting inn values:p® = vIp, fori=1...n.

2) All signal windows{w;} are projected onto the first projection vectar. w]l =viw;

3) This projection sets a lower bound on the true distance between each windewd the
pattern: LB; = (w; — p')*. According to the lower bound values, any window j whose
LB} value is greater than the given threshold can be rejected.

4) The windows of the image that have not been rejected, are projected onto the second
projection vectorv,: w]2 = vi w;. This produces updated lower bounds:

LB? = LB} + (@? — p*)*.
5) Steps 3 and 4 are repeated for the subsequent projection vector.
6) The process terminates after allkernels have been processed or until the number of

non-rejected image windows reaches a predefined percentage.
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Former experiments (e.g. see [4], [5]) showed that for reasonable threshold values, almost all
non-matching windows in the image are rejected when the lower bauBg) (freaches 80% of
the true Euclidean distance for each window.

The main advantage using this framework is that by carefully choosing the appropriate pro-
jection vectors, this lower bound can be reached using a small number of projections. Note, that
projecting all image windows onto a projection vector can be implemented using convolution.
Thus an efficient scheme for convolving an image with a sequence of projection vectors is
advantageous within this pattern matching framework. In this section we show the advantage of
using the Gray Code Kernels as projection vectors for pattern matching. For detailed description

of the rejection framework the reader is referred to [4], [5].

B. Experimental Results | - General Pattern Case

The efficiency of the pattern matching process is measured by the total number of operations
required to find pattern appearances in the image. Using the above described rejection framework,
the total number of operations is dependent on two factors: the number of projection vectors
required to reject the non-matching windows and the cost of computing the projections onto
each of the projection vectors. In turn, the number of required projection vectors is dependent
on the order of the vectors used in the process. Thus, fewer vectors would be needed if the
kernels with strong rejection power are applied early in the process.

In the first experiment we tested the rejection power of different orders of kernels. The
experimental setting assumes an unknown pattern and an unknown window, both sampled from
natural scenes. This setting represents applications where image windows are given online and
no specific knowledge on the patterns is known apriori, (e.g. match-based texture synthesis [25],
or video coding [26]). Thus, over 3000 pattern-window pairs of 8ize&8 were randomly chosen
from a collection of images and the Euclidean distance between them were computefl xBach
Walsh-Hadamard kernei;, was assigned a priority value which indicates the percentage of the

distance between the pattern-window pairs captured by the given kernel:

(v (pj —w;))*
0y = Ei{~—————=} (5)
(py - wy)?
Here the expectation is calculated over all randomly chosen pattern-window pairs. Given the
priority values, the Walsh-Hadamard kernels were ordered according to the three methods de-

scribed in Section V: Greedy, Sequency, and Optimal. We compared the rejection power of these
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orders include: Greedy, Sequency and Optimal GCS. a. The lower bound as a function of the number of kernel projections. b.

Filtering by projection using WH kernels in 3 different Sequences and using Integral Image Kernels. The three WH

The lower bound as a function of the number of operations per pixel required to compute the lower bound. The lower bound
is given as the average percentage of the actual distance between pattern and window. All values are the average over 3000

pattern-window pairs sampled randomly from natural scenes.

three sequences by evaluating the lower bound calculated from the kernels in the sequence. The
tighter the lower bound, the greater the rejection power of the sequence and accordingly the
expected performance in a pattern matching application.

Figure 8 compares filtering performance and run times of the three Sequences of Walsh-
Hadamrd kernels. Figure 8a shows the lower bound (given as the percentage of the actual distance
between pattern and window) as a function of the number of kernel projections. Values are the
average over the 3000 pattern-window pairs. The Greedy order of Walsh-Hadamard kernels
creates tight lower bounds with fewer kernels than the Optimal and Sequency GCS. These
results, however, do not exhibit the run times required to obtain the lower bounds. Figure 8b
shows the lower bound (given as the average percentage of the actual distance between pattern
and window) as a function of the number of operations per pixel required to compute the lower
bound. The Optimal GCS outperforms the Sequency and Greedy sequences. The Sequency GCS
performs relatively well as expected for pattern-window pairs chosen randomly from natural

images.
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C. Experimental Results Il - Specific Pattern Case

In this experiment , the performance of the three computation schemes (Greedey, Sequency,
and Optimal) were compared over four pattern-image scenarios. Two images 6 3ize>12
(figure 9.a) were chosen, representing a ’'natural’ and a ’texture’ image2 A 32 window
(figure 9.b) was chosen randomly from each image and these served as the patterns, denoted
as 'natural pattern’ and ’texture pattern’. Each case of pattern and image pair was tested both
with and without the DC kernel (to eliminate illumination effects). Our main interest is the
comparison of the total number of operations required per pixel by each of the computation
schemes. Comparison was based on the ability to reach the 80% lower bound on the average
Euclidean distance between the pattern and image windows as described in Section VI-A.

Figure 10 presents the number of kernels required by each computation scheme in order to
reach the30% goal. This number is dictated by the order of the kernels. As expected, the Greedy
sequence required the least number of kernels and the Sequency order required the most. Since
the Optimal Sequence imposes constraints on the Greedy order, it requires a few more kernels
than the Greedy sequence. For the case of natural pattern - natural image, the Sequency order
of kernels performs equally well as the optimal GCS as expected. This is not true for the other
three cases.

Figure 11 shows the total number of ops/pixel required by the 3 computation schemes for
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the 4 pattern-image cases with and without the DC value. It can be seen that the Optimal GCS
scheme always required fewer ops/pixel than the other two orderings even though the actual
number of kernels used is greater. The Greedy scheme always required more ops/pixel even

though it used the fewest number of kernels.
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Figure 10.
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The comparison of the three schemes is graphically displayed in Figure 12 where each of
the three schemes is positioned in a plot of the number of kernels required vs. the number of
ops/kernel (log-log scale). The dashed lines represent lines of equal total number of operations.
Thus, although the Greedy scheme requires fewer kernels, the cost per kernel causes this scheme
to be expensive in terms of total number of operations. The Optimal GCS scheme requires more
kernels but since the computation cost per kernel is very low, the total number of operations
required is minimal.

Details of the experimental procedure, and analysis can be found in [18].

D. Experimental Results Il - Comparison with the Integral Image Kernels

The idea of choosing projection kernels that are fast to apply was also suggested in [1], [27]
in the context of classification. Although similar in spirit, we emphasize the distinction between
our approach and that of Viola et. al. [1]. Whereas Viola et. al. perform efficient classification
using rapidly computed projection kernels, our suggested approach performs efficient filtering
that can be exploited in block matching in general. Thus, classification approaches are impractical
when patterns are given online e.g. in the case of texture synthesis and video coding (see GCK
implementation for video coding in [26]). Nevertheless, the use of the Integral Image Kernels

themselves, can be considered in the rejection based Pattern Matching application. Kernels of
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this set are efficient to compute when they are of low sequency (computational complexity of
these kernels increases exponentially with sequency). Moreover, the non-orthogonality of the
kernels adds additional computational costs due to the redundancy in feature content captured
by the kernels. This tendency is shown in the following experimental results.

We compared the performance of the GCK filtering of Walsh-Hadamard kernels with that of
the Integral Image kernels used in [1]. A priority value as defined in Equation 5 was assigned
to a set of Integral Image kernels. The kernels of the set that are the most efficient to apply
are the first order kernels which sum a single rectangular region within the window. Assuming
the integral image is given, these kernels require 3 ops per pixel to apply. We consider the set
of all possible first order integral image kernels of sie& 8. These kernels were ordered in
decreasing priority order. Since these kernels are not orthogonal, we considered the contribution
of each kernel to the lower bound (this is achieved using the Grahm-Schmidt orthogonalization
method in which the kernels are iteratively projected onto the subspace spanned by the already
sorted kernels. See Appendix 3 in [5]). Filtering performance with these filters were compared
with those obtained by the three sequences of Walsh-Hadamard kernels described above. Results
for the Integral image kernels are also shown in Figure 8. The lower bound as a function of the
number of Integral Image kernels applied is identical to that of the Greedy sequence (the lines
overlap perfectly in Figure 8a). This is due to the fact that both the Walsh-Hadamard kernels and
the first order Integral Image kernels span &e 8 pattern-window space and a non-restricted
ordereing of both kernel sets produce the tightest possible lower bounds for any given number of
kernels. In terms of run-time, however, all three orders of Walsh-Hadamard kernels outperform
the Integral Image kernels in the number of operations per pixel as shown in Figure 8b. This
is due to the fact that computation of the lower bound for the non-orthogonal Integral Image
kernels requires significantly more computation than for the orthogonal Walsh-Hadamard kernels

(see Appendix 3 in [5]).

VIl. CONCLUSIONS

In this paper we introduced a family of filter kernels called the Gray Code Kernels (GCK).
A special relationship between pairs of such kernels allow filtering of images with a cascade of
such kernels to be performed very fast. The GCK framework is a highly-efficient computational

scheme mainly due to the following advantages:
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« The ability of filtering an image using only 2 operations per pixel per kernel.

« The computation cost is independent of the kernel size and kernel dimension.

« The computations are performed using only integer additions and subtractions (if the seed
s is integer).

. Only a single image (the filtering results with a preceding kernel) needs to be maintained
in memory in addition to that currently being computed.

« A wide variety of kernels can be used within this framework.

« The kernels can be computed in a variety of different orders.

« The kernel set forms an orthogonal basis.
We note the following limitations of the GCK:

. The filtering with each kernel depends on the filtering result of a preceding kernel. Thus
when a single kernel computation is required, the advantages of this framework can not be
exploited. This also poses a limitation on the order in which the kernels can be computed.

. The framework offers efficient filtering for a group of image windows. Computing the
projection of a single image window might require more than 2 ops/pixel.

We note that it is possible to extend the family of GCKs even further by allowingtimelex

to be of any integer value (rather than orly-1, —1}). This, however, incurs an additional 1
ops/pixel. Details can be found in [18].

The unique properties of the GCK framework makes it an attractive choice for many ap-

plications requiring a cascade of kernel computation scheme such as feature extraction, block

matching for motion detection (e.g. [26]), texture analysis and synthesis, classification and more.
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APPENDIX I

PROOF OFTHEOREM 3.6

We prove the following Theorem.
Theorem 3.6Given two a-related kernelsy,, v_ € V*) with a common prefix vector of

length A = 2"~'t, wheret = |s|, the following relation holds:
[0a Vp] = [Vin 04]

where0, denotes a vector withh zeros.

Proof:

Denote byv") the prefix of vectow of length2't. Sincev, andv_ area-related there exists
an entryr, 1 <r <k, for which their twoa-indices differ. We prove that the following holds
forall, r<Il<k:

04 v =[v]) 04]

Proof is by induction: fori = » we have by definitions 3.1 and 3.5 that

=
v = [V(_T_l) —V(_T_l)] :[vﬁf‘” —VST_I)]
thus
V](f) = VS:)+V(,T):[2V(+T71) N
v = VS:) —v = [0A QVS_T_I)]
and we have
0a V0] =[0a 2v07" 0a] = [v) 04]

By induction, we assume true fér- 1 > r and prove forl (note thato, is identical for both
a-indices):
0a v = [0a [V +vU]]
= 05 [V a4 Y e
_ [OA [Vz()l_l) Oélvi(;l_l)]]

= [[0a Vl(f_l)] ozlvl(f_l)]
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from the induction assumption:
(V& 0a] v

= v 04 o)™

m

= [V(lfl) o [0a Vélfl)]]

m

and again from the induction assumption:
= [V alvi ™ 04

= [vi " v ] 04

= vl 04]

APPENDIX I

EFFICIENTLY COMPUTABLE FILTER KERNELS IN D-DIMENSIONS

We now prove the efficiency of computation with d-dimensional GCKs. To simplify the
notations we define a short notation for a sequence of indices. A comptiieensional kernel
is defined as:
v(i) = v(in, iz, i)

and a(d—1)-dimensional kernel, lacking the dimensien as:

V({sz}) = V(ilv U 7im—17 im+17 e 7id>

Recall that two kernels can be regardedefficiently computablé their computation cost is
2 ops/pixel.

Lemma 2.1:Assumevy, (i1, i2), Vo (i1, i2) are two filter kernels in d dimensiongy; andv,
areefficiently computableif both kernels can be factored interelated kernelsyvy, = vg x vy
andvg, = vy x vy, Wherevy is (d—1)-dimensionaly; andv, are 1-dimensionat-related kernels

and x denotes the outer product along theth dimension, i.e[vy x v](i) = vo({~im})Vv(im)-

Proof:
Assumevy; and v, are two such filters. Since;, v, are a-related, they share a common

prefix vector of lengthA = 2"~!t and Corollary 3.7 holds. Thus w.l.o.g. we assume:
vo(i) = +va(i — A) + vi(i) + v1(i — A)
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Then we have

v (i) = vo{~im})va(im) (6)
= vo({~im}) (Valim = A) + Vi(im) + Vi (im — A))
= vo({~im})va(im — A) + vo({~im})Vi(im) + vo({~in})vi(im — A)
= Voality- o (im = A), - yia) + Vor (1) + Voi(ins ., (i — A), i)

Given ad-dimensional signas, denote byb,, b, the d-dimensional convolution of with v,

andvg, respectively. From Equation 6 and linearity of the convolution we have:
bo(i) = balit, oo (i — A)s..ia) + ba(i) = bi(in,..., (i — A),..ig)

Therefore, giverb,, b, can be calculated in scan order using 2 operations per pixel, and thus,

vo1 andvg, areefficiently computable

APPENDIXIII

SEPARABLE GCK IN D-DIMENSIONS

As in the 2-dimensional case, a special class of d-dimensional kernels are of interest (Equa-
tion 2 in Section IV):

v (k1yka) — {vix...xvg|v; € Vg(lkZ)}

Thus the d-dimensional kernele Vs(ff.l.’.}l;;kd) is defined as/ (i1, . . ., iq) = vi(i1)va(iz) ... va(ia)
wherev; are one dimensional Gray Code kernels.

Since the d-dimensional kernel is separable, and can be defined dyne dimensional
kernels, the associatetla-indices uniquely define. Thus the following definition is consistent
with the one and two dimensional cases, Definitions 3.2 and 4.3):

Definition 3.1: For v € V*1---ka) such thatv = vi x ... x v4, with associatedr-indices
ag,. .., 04, the sequencer = [ay, . .., a4) uniquely definess and is called thex-index of v.

Similar to the 2D case, the notion ofrelation between two d-dimensional kernels is defined:

Definition 3.2: Two kernelsv;,v; < Vs(l’“_{;;’“d) are a-related iff the hamming distance of the
signs of theira-index is one.

The notion ofGray Code Sequenad kernels can be extended to d-dimensions:

Definition 3.3: An ordered set of d-dimensional kernels,. . . v,, such that every consecutive

pair area-related, are called &ray Code Sequenceof d-dimensional kernels.
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From Lemma 2.1 and Definition 3.3 we have the following corollary:
Corollary 3.4: Every two consecutive d-dimensional kernels in a Gray Code Sequence are

efficiently computable
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