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Abstract

We show that coinductive predicates expressing behavioural properties of infinite objects can
be themselves expressed as final coalgebras in a category of relations. The well-known case of
bisimulation will simply be a special case of such final predicates. We will show how some useful
pointwise and mixed properties of streams can be modelled in this way.

1 Introduction

Bisimulation is a widely used tool for proving the equivalent behaviour of infinite objects such as in-
put/output systems and labelled transition systems. Although its original formulation was in the theory of
processes and automata, later it was shown that maximal bisimulation — or bisimilarity— is tantamount
to equality on the elements of final coalgebra. This leads to the coinduction proof principle: in order to
prove that two elements of final coalgebra are equal, find a bisimulation between them. Furthermore, it
was shown that for a certain class of functors, given any two coalgebras the set of all of bisimulation
relations between them forms a complete lattice [[14, Corollary 5.6]. It follows that bisimilarity is a post
fixed point in the sense of Knaster-Tarski semantics.

Many have already observed that apart from equality there are other interesting binary relations on
infinite objects which lead to other type of coinduction principles. Such principles are usually presented
using Knaster-Tarski semantics. In this work we try to study this situation coalgebraically. Our starting
point will be the well-known observation that bisimilarity itself is a final coalgebra for a different functor
either in the same category (in the case of categorical models of dependent type theory [9, 8]) or in a
different category (in the case of endofunctors on Set [[10]). We will present variants of this observation:
maximal bisimulation on different coalgebras i.e., not necessarily the final ones; and more generally
arbitrary relations on elements of coalgebras.

The motivation for this work is the use of coinductive predicates in theorem proving. Already in
the short history of coinductive theorem proving it has become clear that most interesting behavioural
properties usually need relatively complex coinductive predicates. Evidence can be found in the attempts
to verify protocols [7], modalities [5] or even basic metric predicates on streams [3}, 4]]. This indicates
that bisimilarity alone is not powerful enough for proving many properties of infinite objects. There
are tools for the automatic generation of bisimulation [12]]. Usually in such tools all other behavioural
properties (e.g. the examples in Section [3) will be translated into equational problems so that they can
be tackled using bisimulations. Depending on the problem domain, these translations might be costly or
cumbersome; our aim is to make such tools applicable to automatic proofs for a larger class of properties
without having to reduce each such property to an equational problem. To be more precise we would
like to generalise the well-known hidden-algebraic fact ‘Behavioural equivalence is bisimilarity’ [[13, 6]
to a larger class of relations.

We restrict ourselves to a class of endofunctors on Set. However this work can be read in two
different ways, in a categorical model of dependent type theory or in Set and relations on them.
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2 Relation Lifting
A very general coalgebraic method for defining bisimulation is using relation lifting [11, Ch. 3]. Let

Rel be the category of binary relations and relation-preserving maps, i.e., maps that make the leftmost
diagram below commute (here f X f> on top is the obvious restriction of the bottom one).

i Rel(F)(R

PR, )(®)
\[ Jixfa J F /<F7T1:F”2>\\
(®)

XixY ——=Xo X1 FX x FY

Let F: Set — Set be a functor. Then Rel(F): Rel — Rel, the relation lifting of F, is the functor taking
a binary relation (), m): R C X x Y to the image of (Fm,Fm,): FR — FX x FY (see the rightmost
diagram above). Given f] X f2: R — S this Rel-functor is defined on morphisms as Rel(F)(f1 X f2) :=
F(f1) X F(f2). Itis a well-known fact that relation lifting preserves equality, and thus it is geared towards
proving equalities by constructing bisimulations. This make it unsuitable for working with arbitrary
coinductive predicates. We consider a generalisation of relation lifting that can be used for a larger class
of predicates.

Fix two sets X and Y. We denote by Relyy the lattice of subsets of X x Y considered as a subcategory
of Rel, i.e., the objects are binary relations between X and Y and the morphisms are inclusion maps.

Let rel(F): Relyy — Relyy be a monotonic functor such that for R C X x Y we have rel(F)(R) C
F(X) x F(Y). While the standard relation lifting takes R to a canonical subset Rel(F)(R) C F(X) x F(Y),
in our setting we deal with an arbitrary monotonic functor rel(F') taking relations on X x Y to relations
on F(X) x F(Y). The reason is that the standard construction of bisimulations can, in a more generic
way, be carried over to rel(F).

Note further that Rel(F) is an endofunctor on Rel while rel(F) is parametrised by X,Y and need
not be defined globally. Obviously the theory we develop works for a rel(F) that is defined uniformly
across Rel, so this is not a restriction. However, the local character of rel(F) allows the expression of
finer properties. The examples in Section [3|demonstrate a globally defined rel(F) while in Section {4 we
show examples where the local structure of rel(F) is needed.

For F-coalgebras oy : X — FX and oy : Y — FY, let Fxy : Relyy — Relyy be the functor de-
fined on objects as the inverse image of rel(F) alongside ax x ay i.e.,

Foyoy (R) = {(x,y) | (ox (x), v (v)) € rel(F)(R)}

We usually drop the subscripts if they are understood from the context. As rel(F') is monotonic, so
is F. In other words, F is well-defined on the morphisms of Relyy.

Note that in general we need not have R C F(R) as this depends on the dynamics of oty and oy. But
if R C F(R) then R with the inclusion map constitutes a F-coalgebra. Using Knaster-Tarski’s fixed-point
theorem, we can prove the following proposition.

Proposition 2.1. The final coalgebra of F exists in Relyy.

We denote the final F-coalgebras by vE. The final F-coalgebras correspond to coinductive predi-
cates. This is because finality entails the equality

F(VF)=VF | (1)

which means
(x,y) € VF & (ax(x),ay(y)) € rel(F)(VEF) .
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If one was to consider the above as the ‘definition’ of predicate VF then the recursive occurrence of
vF as argument of rel(F) would supply the circularity evident in the coinductive predicates. Hence, by
suitably choosing rel(F), oy and ay, one can recover coinductive predicates as final F -coalgebras.

2.1 Bisimulation and Coinduction

Perhaps the most common example of a coinductive predicate is bisimulation between infinite objects.
Any bisimulation between oy and oy is a Rel(F)-coalgebra (R, ax X Qy ) in Rely, o, . Note that if we take
rel(F) := Rel(F) then R C F(R) if and only if R is a bisimulation between oty and oy [11]. This means
that bisimulations are F-coalgebras with inclusion as transition map. Since F is a monotonic functor it
has a post fixed-point by Knaster-Tarski theorem, which is the maximal bisimulation [14]. The following
proposition is then a reformulation of Proposition [2.1]

Proposition 2.2. The final coalgebra of Fxy exists in Rely, o, ; its carrier is isomorphic with the maximal
bisimulation between oy and oy and its structure map is the identity inclusion map.

Since equality includes any bisimulation relation on the carrier of an observable coalgebra (known
also as a simple coalgebra) [14, Theorem 8.1] we have the following corollary.

Corollary 2.3 (Coinduction).
i) Let (Q°, 0q°) be an observable F-coalgebra. If (x,y) € VFgy.aq. then x =Y.
ii) Let (Q,00) = VF in Set. If (x,y) € VFy o, then x = y.

Part (1) of the corollary above is the basis for type theoretic coinduction that is used is systems such
as Coqﬂ There, instead of the usual bisimulation-building technique, one shows that (x,y) is an element
of the final coalgebra by constructing x = y as a canonical element of the final coalgebra. This is possible
because of the isomorphism in (1)) which allows one to construct canonical elements using sufficiently
guarded specifications.

3 Pointwise Coinductive Predicates on Streams

In this section we present some examples on streams to demonstrate that generalising the definition of
Rel(F) to rel(F) indeed enables us to define more predicates.

In [L1, § 3.1] an alternative inductive definition is given for relation lifting of polynomial functors
which coincides with the aforesaid definition for Rel(F). Based on that inductive definition constant
functors are lifted to the equality on their range, i.e., Rel(AX.A)(R) = A4. Compared with the work
in [[11]] this is what we modify: we replace equality by x C A X A, an arbitrary binary relation on A.

Let F(X):=2x X and VF = (2?,(hd,t1)) be the set of binary streams as a final coalgebra. Now
assume a relation * C 2 x 2 and define for any sets X,Y and RC X x Y

Rel, (F)(R) = {{{b1,x), (b2, ) | (b1,b2) €  AxRy} .

Since Rel, is monotonic, by taking rel(F) := Rel,(F) we can define the corresponding F from Section|[2]
and apply Proposition[2.1]to get its final coalgebra. Clearly the description of this final coalgebra depends
on the relation x. For the case where the underlying coalgebras oy, ay are the final coalgebra of streams

In Cog and other intensional type theories this does not entail x = y inside the system, but this issue is beyond the present
paper.
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this has a simple solution. The answer is given in the proposition below, for which we need some
definitions. Define the binary relation ® on streams as

®:={(0,7) | Vn,(hd(t1"(0)),hd(t1"(1))) € +} ,
i.e., two streams o, T belong to ® if and only if they are pointwise in relation x. Note that

F&={(c,7)
={{o,7)

Note that ®C F ®; hence we can define g : ®— F ® as the inclusion map. We have the following
proposition.

((hd,t1)(0), (hd,t1)(7)) € Rel.(F)(®)}
(hd(0),hd(7)) € xA (t1l(0),t1(7)) e®}

Proposition 3.1. vF = (®,0).

The proof is a straightforward induction and resembles the proof of finality of the set of streams
in [1]].

If R C F(R) we shall call R a x-simulation. Clearly ® is a x-simulation on 2¢. Note that if R is
*-simulation and (o, ) in R, then (t1"(c),t1"(7)) € R for all n. From this fact we can obtain the
following principle.

Proposition 3.2 (x-Coinduction). Relation ® is the maximal %-simulation relation on 2°. Le., in order
to prove two streams are in ® it suffices if we find a x-simulation between them.

Example 3.3.

1) Taking x := A, we can recover relation lifting of [[11], as well as bisimilarity and the coinduction
proof principle.

ii) Taking * to be # i.e., x := {(0,1),(1,0)} we get the pointwise inequality between streams as a
coinductive predicate. Le., the ®:=2 where ¢ % 7 if and only if hd(t1"(0)) # hd(t1"(0o)) for all
n. Assume constant streams zeros, ones to be defined as

hd(zeros):=0, tl(zeros):=zeros ;

hd(ones):=1, tl(ones):=ones .

Then since R := {(0:: zeros, 1:: ones)} is a #-simulation by Proposition [3.2] we have zeros
ones.

iii) Similar to above, by taking x := {(0,1)} (resp. * := {(0,0),(0,1),(1,1)}) we get < the pointwise
less than (resp. < less or equal) relation between streams as a coinductive predicate. Again one can
show by Proposition[3.2]

Zeros < ones , Zeros x ones , Zeros < zeros .

Note that the relations in the example above are not the same as simulations in the sense of [10].
Simulation (and /ax relation lifting), albeit itself a greatest fixed point [10, Lemma 5.1], is based on an
order on the functor while in our pointwise comparison we use an arbitrary binary relation on data which
is not necessarily an order relation.

Proposition[3.2]is useful in that it mimics the ordinary coinduction proof principle. However, one can
also directly use the finality of ® to construct its elements in their canonical form. This leads to another
instance of type theoretic coinduction.
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We conclude this section by pointing out that the above lifting of pointwise relations to the stream
level can be done for relations with different arity. In fact it is straightforward to obtain the coun-
terpart of Proposition [3.2] for n-ary relations. For example one can consider a ternary relation x3 :=
{{(0,0,0),(0,1,1),(1,0,1),(1,1,1) } that leads to the relation Y corresponding to the pointwise disjunc-
tion of streams. This is specially useful in proving properties in stream calculus [15], because there we
deal with causal functions and examining the components pointwise will usually suffice.

4 Mixed Coinductive Predicates on Streams

The pointwise coinductive predicates, though useful in many cases, have a rather restricted shape that
limits their expressiveness. While our Proposition [2.1] is quite general, it is not always easy to find
a simple description of the elements of the final coalgebra as in Proposition In this section, still
working with binary streams, we show some more intricate coinductive predicates that are useful in
practise. In particular we show two examples from [2] which are used in a coinductive timed stream
semantics of channel-based coordination?]

Fix nonempty relations *;,*, C 2 x 2. Assume (X, 0 ) and (Y, ay) are F-coalgebras. Let

Rel,, ., (F)(R) ={((b1,x), (b2,y)) | (b1,b2) € %1 ATt € 0 (ba,y), (x,1) €R} U
{<<b1>x>a<b27y>> | <b17b2> E*ZAHI € (X;l<b1,x>, <I7Y> ER} .

Then Rel,,, (F) is a monotonic endofunctor on Relyy. Again the corresponding £ and its final coalgebra
can be formed according to Section 2] but this general form is too complex to be useful. The special case
where oy = oy = (hd, t1) leads to some simplification. In that case,

F(R) ={(0,7) | (hd(0),hd(7)) € *x; A(tl(0),T) ER} U
{{(o,7) | (hd(0),hd(7)) € 2 A(0,t1(T)) €ER} .

Instantiating with «; = {(0,1)}, % = {(1,0)} one can observe that the final coalgebra VF consists of
the set of binary streams that satisfy the < relation as defined in [2]. In short, if o > T and if both ¢
and 7 are interpreted as time streams corresponding to events on the two ports of a channel, then o and
7 are completely asynchronous. Again we call relation R a ><-simulation if R C F(R) and we will have a
counterpart of Proposition 3.2} I.e., in order to prove that two time streams are asynchronous it suffices
to find a b<-simulation between them.

Next example concerns the merge connective in [2], which captures the behaviour of a merger chan-
nel with two inputs and one output, and merges its two input streams to form the output. Here we work
with ternary relations.

Relerge (F)(R) ={((b1,x), (b2,¥), (b3,2)) | (b1,b2) € x1 A (b1,b3) € %2 ATt€0y ' (b2,y), (x,1,2) €R} U
{<<b1,x>, <b2,y>,<b3,z>> | <b],b2> SR XTA <b2,b3> € *4/\3t€a;1<b1,x>, <t,y,z> GR} .

Assuming ¢ ’s are all the structure map of the final coalgebra of streams we have

F(R) ={(01,02,7) | (hd(01),hd(02)) € *1 A (hd(07),hd(7)) € 2 A (t1(07),02,t1(T)) ER} U
{<61,GQ,T> | <hd(6]),hd(02)> € *x3 A <hd(62),hd(f)> S WA <Gl,tl(62),tl(f)> GR} .

2Timed data streams in [2] have a data component as well. For brevity, here we do not tackle the data and only deal with
the time. Another simplification is that we use binary time but one could repeat this for F(X) = R™ x X.
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Instantiating with x; = {(0,1) }, x3 = {(1,0) }, ¥, = %4 = A, we obtain a coinductive predicate describing
the behaviour of the merger channel. Furthermore we obtain a notion of merge-simulation and a corre-
sponding coinduction principle. This enables us to prove, by finding a merge-simulation, that three time
streams correspond to events on the ports of a merger.

Our last example illustrates a predicate < on binary streams such that (denoting hd(t1" (o)) by o,):

0 =X T: =100, < Topt1 S Omg2 A Ton < Oopi1 < Topsd -

Hence 0 < Tmeansthatop:: 71:: 0>:: 73--- and Tp:: O1:: Tp:: O3 --- are both non-decreasing streams.
Compared to the previous examples the predicate < examines larger initial segments of the streams and
hence our candidate for rel(F') should observe deeper iterations of coalgebra. Let

Rel(F)(R) = {{{b1,x), (b2,y)) | 0o (x) = (b,x') Ao (x) = (b],x") A
ar(y) = (b3.) Aay(y) = (b3.y") =
by <by<by AN by<by<by N (X"Y')eR} .
Then Rel- (F) is monotonic and we can form F and its final coalgebra. Assuming ay = oy = (hd, t1)
we obtain
FR)={(c,7)|co <1< A <01 < A (t1%(0),t1%(7)) €R} .
Then (0,7) € VF < ¢ = 7 and in order to prove that o < T we should find a relation R such that
R C F(R) and that (0, 1) € R. As an example let the streams zos, ozs be defined as
hd(zos):=0 , hd(tl(zos)): =1, t1%(zos):=zos ;
hd(ozs):=1, hd(tl(ozs)): =0, t1%(ozs):=ozs .
Then taking R := {(zos, 0zs), (0zs,zos) }, and considering that by ordinary coinduction
zos=0::0zs, ozs=1::zos ,

we obtain F(R-) = R—. Hence zos < ozs.

5 Conclusion & Further Work

The fact that we can describe such predicates as final coalgebras in Rel has more usage. By having
a final model in hand coinductive proofs will essentially turn into finding functions between various
final coalgebras. Hence we can use several type of coinductive definition schemes (e.g. coiteration,
corecursion and their generalisations) for more complicated proofs. For example using the examples
developed in Sections [3H4] one can prove

VoT,0<T = O #%7
Vo102, merge(Gy,0,2,T) = O1 X0y .

The first implication is in fact a function between final coalgebras ® . — ®. that can be defined using
the ordinary coiteration scheme.

In the future, we plan to work on automating the generation of various types of x-simulation rela-
tions in the tools that are used for automatic generation of bisimulations [[12]. This requires a thorough
reformulation of hidden-algebraic machinery of behavioural equivalence in a more general way. Recall
that two streams are behaviourally equivalent if and only if hd(t1"(c)) = hd(t1"(o)) for all n; and
that this implies bisimilarity. Looking back at the definition of ® we observe that it captures a notion
of ‘behaviourally being in relation x* which then will imply *-similarity. Our aim is to make this more
precise by working in the categorical models of hidden-algebra [6]].
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