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Abstract

It is well known that one can use an adaptation of the inverse-limit construction to solve recursive
equations in the category of complete ultrametric spaces. We show that this construction generalizes
to a large class of categories with metric-space structure on each set of morphisms: the exact nature of
the objects is less important. In particular, the construction immediately applies to categories where
the objects are ultrametric spaces with ‘extra structure’, and where the morphisms preserve this extra
structure. The generalization is inspired by classical domain-theoretic work by Smyth and Plotkin.
Our primary motivation for solving generalized recursive metric-space equations comes from recent
and ongoing work on Kripke-style models in which the sets of worlds must be recursively defined.

For many of the categories we consider, there is a natural subcategory in which each set of
morphisms is required to be a compact metric space. Our setting allows for a proof that such a
subcategory always inherits solutions of recursive equations from the full category.

As another application, we present a construction that relates solutions of generalized domain
equations in the sense of Smyth and Plotkin to solutions of equations in our class of categories.

1 Introduction

Smyth and Plotkin [17] showed that in the classical inverse-limit construction of solutions to recursive
domain equations, what matters is not that the objects of the category under consideration are domains,
but that the sets of morphisms between objects are domains. In this work we show that, in the case
of ultrametric spaces, the standard construction of solutions to recursive metric-space equations [5, 10]
can be similarly generalized to a large class of categories with metric-space structure on each set of
morphisms.

The generalization in particular allows one to solve recursive equations in categories where the ob-
jects are ultrametric spaces with some form of additional structure, and where the morphisms preserve
this additional structure. Our main motivation for solving equations in such categories comes from recent
and ongoing work in denotational semantics by the authors and others [7, 15]. There, solutions to such
equations are used in order to construct Kripke models over recursively defined worlds: a novel approach
that allows one to give semantic models of predicates and relations over languages with dynamically al-
located, higher-order store. See [8] for examples of such applications.

For many of the categories we consider, there is a natural variant, indeed a subcategory, in which
each set of morphisms is required to be a compact metric space [2, 9]. Our setting allows for a general
proof that such a subcategory inherits solutions of recursive equations from the full category. Other-
wise put, the problem of solving recursive equations in such a ‘locally compact’ subcategory is, in a
certain sense, reduced to the similar problem for the full category. The fact that one can solve recursive
equations in a category of compact ultrametric spaces [9] arises as a particular instance. (For various
applications of compact metric spaces in semantics, see the references in the introduction to van Breugel
and Warmerdam [9].)

∗See the full article for proofs and further details [8].
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As another application, we present a construction that relates solutions of generalized domain equa-
tions in the sense of Smyth and Plotkin to solutions of equations in our class of categories. This con-
struction generalizes and improves an earlier one due to Baier and Majster-Cederbaum [6].

The key to achieving the right level of generality in the results lies in inspiration from enriched cate-
gory theory. We shall not refer to general enriched category theory below, but rather present the necessary
definitions in terms of metric spaces. The basic idea is, however, that given a cartesian category V (or
more generally, a monoidal category), one considers so-called V -categories, in which the ‘hom-sets’ are
in fact objects of V instead of sets, and where the ‘composition functions’ are morphisms in V .

Other related work. The idea of considering categories with metric spaces as hom-sets has been used
in earlier work [14, 9]. Rutten and Turi [14] show existence and uniqueness of fixed points in a particular
category of (not necessarily ultrametric) metric spaces, but with a proof where parts are more general. In
other work, van Breugel and Warmerdam [9] show uniqueness for a more general notion of categories
than ours, again not requiring ultrametricity. Neither of these articles contain a theorem about existence
of fixed points for a general class of ‘metric-enriched’ categories (as in our Theorem 3.1), nor a general
theorem about fixed points in locally compact subcategories (Theorem 4.1.)

Alessi et al. [3] consider solutions to non-functorial recursive equations in certain categories of met-
ric spaces, i.e., recursive equations whose solutions cannot necessarily be described as fixed-points of
functors. In contrast, we only consider functorial recursive equations in this work.

Wagner [18] gives a comprehensive account of a generalized inverse limit construction that in par-
ticular works for categories of metric spaces and categories of domains. Another such construction has
recently been given by Kostanek and Waszkiewicz [11]. Our generalization is in a different direction,
namely to categories where the hom-sets are metric spaces. We do not know whether there is a common
generalization of our work and Wagner’s work; in this work we do not aim for maximal generality, but
rather for a level of generality that seems right for our applications [8].

2 Ultrametric Spaces

We first recall some basic definitions and properties about metric spaces [13, 16]. A metric space (X ,d)
is 1-bounded if d(x,y)≤ 1 for all x and y in X . We shall only work with 1-bounded metric spaces. One
advantage of doing so is that one can define coproducts and general products of such spaces; alternatively,
one could have allowed infinite distances.

An ultrametric space is a metric space (X ,d) that satisfies the ‘ultrametric inequality’ d(x,z) ≤
max(d(x,y),d(y,z)) and not just the weaker triangle inequality (where one has + instead of max on the
right-hand side). It might be helpful to think of the function d of an ultrametric space (X ,d) not as a
measure of (euclidean) distance between elements, but rather as a measure of the degree of similarity
between elements.

Let CBUlt be the category with complete, 1-bounded ultrametric spaces as objects and non-expansive
(i.e., non-distance-increasing) functions as morphisms [5]. This category is cartesian closed [16]; here
one needs the ultrametric inequality. The terminal object is the one-point space. Binary products are
defined in the natural way: the distance between two pairs of elements is the maximum of the two
pointwise distances. The exponential A → B, sometimes written BA, has the set of non-expansive func-
tions from A to B as the underlying set, and the ‘sup’-metric dA→B as distance function: dA→B( f ,g) =
sup{dB( f (x),g(x)) | x ∈ A}. For both products and exponentials, limits are pointwise. It follows from
the cartesian closed structure that the function CB ×BA → CA given by composition is non-expansive;
this fact is needed in several places below.
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2.1 M-Categories

The basic idea of this work is to generalize a theorem about a particular category of metric spaces to a
theorem about more general categories where each hom-set is an ultrametric space. In analogy with the
O-categories of Smyth and Plotkin (O for ‘order’ or ‘ordered’) we call such categories M-categories.

Definition 2.1. An M-category is a category C where each hom-set C (A,B) is equipped with a distance
function turning it into a non-empty, complete, 1-bounded ultrametric space, and where each composition
function ◦ : C (B,C)×C (A,B) → C (A,C) is non-expansive with respect to these metrics. (Here the
domain of such a composition function is given the product metric.)

Notice that the hom-sets of an M-category are required to be non-empty metric spaces. This restric-
tion allows us to avoid tedious special cases in the results below since the proofs depend on Banach’s
fixed-point theorem.

The simplest example of an M-category is the category CBUltne of non-empty, 1-bounded, complete
ultrametric spaces and non-expansive maps. Here the distance function on each hom-set CBUltne(A,B)
is given by d( f ,g) = sup{dB( f (x),g(x)) | x ∈ A}. The category CBUltne is cartesian closed since CBUlt
is: it suffices to verify that CBUlt-products of non-empty metric spaces are non-empty, and similarly for
exponentials.

Let C be an M-category. A functor F : C op×C → C is locally contractive if there exists some c < 1
such that d(F( f ,g),F( f ′,g′)) ≤ c ·max(d( f , f ′),d(g,g′)) for all f , f ′, g, and g′. Notice that the same c
must work for all hom-sets of C .

3 Solving Recursive Equations

Let C be an M-category. We consider mixed-variance functors F : C op ×C → C on C and recursive
equations of the form X ∼= F(X ,X). In other words, given such an F we seek a fixed point of F up to
isomorphism.

Covariant endofunctors on C are a special case of mixed-variance functors. It would in some sense
suffice to study covariant functors: if C is an M-category, then so are C op (with the same metric on
each hom-set as in C ) and C op ×C (with the product metric on each hom-set), and it is well-known
how to construct a ‘symmetric’ endofunctor on C op×C from a functor such as F above. We explicitly
study mixed-variance functors since the proof of the existence theorem below would in any case involve
an M-category of the form C op ×C . As a benefit we directly obtain theorems of the form useful in
applications. For example, for the existence theorem we are interested in completeness conditions on C ,
not on C op×C .

3.1 Uniqueness of Solutions

Our results below depend on the assumption that the given functor F on C is locally contractive. One
easy consequence of this assumption is that, unlike in the domain-theoretic setting [17], there is at most
one fixed point of F up to isomorphism.

Theorem 3.1. Let F : C op×C → C be a locally contractive functor on an M-category C , and assume
that i : F(A,A) → A is an isomorphism. Then the pair (i, i−1) is a bifree algebra for F in the following
sense: for all objects B of C and all morphisms f : F(B,B) → B and g : B → F(B,B), there exists a
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unique pair of morphisms (k : B → A, h : A → B) such that h◦ i = f ◦F(k,h) and i−1 ◦ k = F(h,k)◦g:

F(A,A)
F(k,h) //

i

��

F(B,B)

f

��

F(h,k)
oo

A
h //_______

i−1

OO

B
k

oo_ _ _ _ _ _ _

g

OO

In particular, A is the unique fixed point of F up to isomorphism.

3.2 Existence of Solutions

In the existence theorem for fixed points of contractive functors, the M-category C will be assumed
to satisfy a certain completeness condition involving limits of ωop-chains. Since there are different
M-categories satisfying more or less general variants of this condition, it is convenient to present the
existence theorem in a form that lists a number of successively weaker conditions.

An increasing Cauchy tower is a diagram

A0

f0 // A1
g0

oo
f1 // . . .
g1

oo
fn−1 // An
gn−1

oo
fn // . . .
gn

oo

where gn ◦ fn = idAn for all n, and where limn→∞ d( fn ◦ gn, idAn+1) = 0. Notice that this definition only
makes sense for M-categories. The M-category C has inverse limits of increasing Cauchy towers if for
every such diagram, the sub-diagram containing only the arrows gn has a limit. (This subdiagram is,
incidentally, an ωop-chain of morphisms that are split epi, i.e., have a left inverse.)

Theorem 3.2. Assume that the M-category C satisfies any of the following (successively weaker) condi-
tions:

1. C is complete.

2. C has a terminal object and limits of ωop-chains.

3. C has a terminal object and limits of ωop-chains of split epis.

4. C has a terminal object and inverse limits of increasing Cauchy towers.

Then every locally contractive functor F : C op×C →C on C has a unique fixed point up to isomorphism.

4 Locally Compact Subcategories of M-Categories

The condition in Theorem 3.2 that involves Cauchy towers is included in order to accommodate cate-
gories where the hom-sets are compact ultrametric spaces [2, 9]: one example is the full subcategory
KBUltne of compact, non-empty, 1-bounded ultrametric spaces. This subcategory is merely the simplest
example of a full, ‘locally compact’ subcategory of an M-category. Such a subcategory always inherits
fixed points of functors from the full category:

Theorem 4.1. Assume that C is an M-category with a terminal object and limits of ωop-chains of split
epis. Let I be an arbitrary object of C , and let D be the full subcategory of C consisting of those
objects A such that the metric space C (I,A) is compact. D is an M-category with limits of increasing
Cauchy towers, and hence every locally contractive functor F : Dop×D → D has a unique fixed point
up to isomorphism.
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For a monoidal closed C , the tensor unit is an appropriate choice of I. In particular, taking C to be
CBUltne and I to be one-point metric space, one obtains:

Corollary 4.2 ([9]). Every locally contractive functor F : KBUltne
op×KBUltne →KBUltne has a unique

fixed point up to isomorphism.

5 Domain Equations: from O-Categories to M-Categories

As another illustration of M-categories, we present a general construction that gives for every O-category
C (see below) a derived M-category D . In addition, the construction gives for every locally continuous
mixed-variance functor F on C a locally contractive mixed-variance functor G on D such that a fixed
point of G (necessarily unique, by Theorem 3.1) is the same as a fixed point of F that furthermore
satisfies a ‘minimal invariance’ condition [12]. Thus, generalized domain equations can be solved in
M-categories.

The construction generalizes an earlier one [6] which is for the particular category of pointed cpos
and strict, continuous functions (or full subcategories thereof) and only works for a restricted class of
functors that does not include general function spaces.

Rank-ordered cpos [6], independently discovered under the name ‘uniform cpos’ [7], arise from a
particular instance of an M-category obtained from this construction. The extra metric information in
that category (as compared with the underlying O-category) is useful in realizability models [4, 1].

An O-category [17] is a category C where each hom-set C (A,B) is equipped with an ω-complete
partial order, usually written v, and where each composition function is continuous with respect to these
orders. A functor F : C op×C → C is locally continuous if each function on hom-sets that it induces is
continuous.

Assume now that C is an O-category such that each hom-set C (A,B) contains a least element ⊥A,B

and such that the composition functions of C are strict: f ◦⊥A,B = ⊥A,C = ⊥B,C ◦g for all f and g. We
construct an M-category D of ‘rank-ordered C -objects’ as follows. An object (A,(πn)n∈ω) of D is a
pair consisting of an object A of C and a family of endomorphisms πn : A → A in C that satisfies the
following requirements:

(1) π0 =⊥A,A.

(2) πm v πn for all m ≤ n.

(3) πm ◦πn = πn ◦πm = πmin(m,n) for all m and n.

(4)
⊔

n∈ω πn = idA.

Then, a morphism from (A,(πn)n∈ω) to (A′,(π ′
n)n∈ω) in D is a morphism f from A to A′ in C sat-

isfying that π ′
n ◦ f = f ◦ πn for all n. Composition and identities in D are the same as in C . Fi-

nally, the distance function on a hom-set D((A,(πn)n∈ω), (A′,(π ′
n)n∈ω)) is defined as follows: d( f ,g) =

2−max{n∈ω|π ′n◦ f =π ′n◦g} if f 6= g, and d( f ,g) = 0 otherwise. (One can show using conditions (1)-(4) above
that this function is in fact well-defined.)

Proposition 5.1. D is an M-category.

Now let F : C op×C → C be a locally continuous functor. We construct a locally contractive functor
G : Dop×D →D from F . On objects, G is given by

G((A,(πA
n )n∈ω), (B,(πB

n )n∈ω)) = (F(A,B),(πA,B
n )n∈ω)

where π
A,B
0 = ⊥ and π

A,B
n+1 = F(πA

n ,πB
n ) for all n. On morphisms, G is the same as F , i.e., G( f ,g) =

F( f ,g). One can verify that G is well-defined and furthermore locally contractive with factor 1/2.
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Proposition 5.2. Let A be an object of C . The following two conditions are equivalent. (1) There exists
an isomorphism i : F(A,A)→ A such that idA = fix(λeC (A,A). i◦F(e,e)◦ i−1). (Here fix is the least-fixed-
point operator.) (2) There exists a family of morphisms (πn)n∈ω such that A = (A,(πn)n∈ω) is the unique
fixed-point of G up to isomorphism.

It remains to discuss how completeness properties of C transfer to D . One can show that the forgetful
functor from D to C creates terminal objects and limits of ωop-chains of split epis. Alternatively, by
imposing an additional requirement on C one can show that the forgetful functor creates all limits: for a
given limit in C , the induced bijection between cones and mediating morphisms must be an isomorphism
in the category of cpos (where cones are ordered pointwise, using the order on each hom-set). That
requirement is in particular satisfied by the usual concrete categories of cpos.
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