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Abstract—When performing visualization and classification, 

people often confront the problem of dimensionality reduction. 
Isomap is one of the most promising nonlinear dimensionality 
reduction techniques. However, when Isomap is applied to 
real-world data, it shows some limitations, such as being sensitive 
to the noise. In this paper, an improved version of Isomap, namely 
S-Isomap, is proposed. S-Isomap utilizes class information to 
guide the procedure of nonlinear dimensionality reduction. Such a 
kind of procedure is called supervised nonlinear dimensionality 
reduction. In S-Isomap, the neighborhood graph of the input data 
is constructed according to a certain kind of dissimilarity between 
data points, which is specially designed to integrate the class 
information. The dissimilarity has several good properties which 
help to discover the true neighborhood of the data, and thus 
makes S-Isomap a robust technique for both visualization and 
classification, especially for real-world problems. In the 
visualization experiments, S-Isomap is compared with Isomap, 
LLE and WeightedIso. The results show that S-Isomap performs 
the best. In the classification experiments, S-Isomap is used as a 
preprocess of classification and compared with Isomap, 
WeightedIso, as well as some other well-established classification 
methods including K nearest neighbor classifier, BP neural 
network, J4.8 decision tree and SVM. The results reveal that 
S-Isomap excels Isomap and WeightedIso in classification and is 
highly competitive with those well-known classification methods. 
 

Index Terms—Supervised learning, Dimensionality reduction, 
Manifold learning, Visualization, Classification 
 

I. INTRODUCTION 
ITH the wide usage of information technology in almost 
all aspects of daily lives, huge amounts of data, such as 

climate patterns, gene distributions and commercial records, 
have been accumulated in various databases and data 
warehouses. Most of these data have many attributes, i.e. they 
are distributed in high dimensional spaces. People working 
with them regularly confront the problem of dimensionality 

reduction, which is a procedure of finding intrinsic low 
dimensional structures hidden in the high dimensional 
observations. This may be a crucial step for the tasks of data 
visualization or classification. 
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Dimensionality reduction can be performed by keeping only 
the most important dimensions, i.e. the ones that hold the most 
useful information for the task at hand, or by projecting the 
original data into a lower dimensional space that is most 
expressive for the task. For visualization, the goal of 
dimensionality reduction is to map a set of observations into a 
(two or three dimensional) space that preserves as much as 
possible the intrinsic structure. For classification, the goal is to 
map the input data into a feature space in which the members 
from different classes are clearly separated. 

Many approaches have been proposed for dimensionality 
reduction, such as the well-known methods of principal 
component analysis (PCA) [5], independent component 
analysis (ICA) [2] and multidimensional scaling (MDS) [3]. In 
PCA, the main idea is to find the projection that restores the 
largest possible variance in the original data. ICA is similar to 
PCA except that the components are designed to be 
independent. Finally in MDS, efforts are taken to find the low 
dimensional embeddings that best preserve the pair wise 
distances between the original data points. All of these methods 
are easy to implement. At the same time, their optimizations are 
well understood and efficient. Because of these advantages, 
they have been widely used in visualization and classification. 
Unfortunately, they have a common inherent limitation: they 
are all linear methods while the distributions of most real-world 
data are nonlinear. 

Recently, two novel methods have been proposed to tackle 
the nonlinear dimensionality reduction problem, namely 
Isomap [13] and LLE [9]. Both of these methods attempt to 
preserve as well as possible the local neighborhood of each 
object while trying to obtain highly nonlinear embeddings. So 
they are categorized as a new kind of dimensionality reduction 
techniques called Local Embeddings [16]. The central idea of 
Local Embeddings is using the locally linear fitting to solve the 
globally nonlinear problems, which is based on the assumption 
that data lying on a nonlinear manifold can be viewed as linear 
in local areas. Both Isomap and LLE have been used in 
visualization [9], [11], [13], [16] and classification [11], [16]. 
Encouraging results have been reported when the test data 
contain little noise and are well sampled. But as can been seen 
in the following sections of this paper, they are not so powerful 
when confronted with noisy data, which is often the case for 
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real-world problems. In this paper, a robust method based on 
the idea of Isomap, namely S-Isomap, is proposed to deal with 
such situation. Unlike the unsupervised learning scheme of 
Isomap, S-Isomap follows the supervised learning scheme, i.e. 
it uses the class labels of the input data to guide the manifold 
learning. 

The rest of this paper is organized as follows. In section II, 
Isomap and the usage of it in visualization and classification are 
briefly introduced. In section III, S-Isomap is proposed, and the 
usage of it in visualization and classification is also discussed. 
In section IV, experiments are reported. Finally in section V, 
conclusions are drawn and several issues for the future work 
are indicated. 

 

II. ISOMAP FOR VISUALIZATION AND CLASSIFICATION 
For data lying on a nonlinear manifold, the “true distance” 

between two data points is the geodesic distance on the 
manifold, i.e. the distance along the surface of the manifold, 
rather than the straight-line Euclidean distance. The main 
purpose of Isomap is to find the intrinsic geometry of the data, 
as captured in the geodesic manifold distances between all pairs 
of data points. The approximation of geodesic distance is 
divided into two cases. In case of neighboring points, Euclidean 
distance in the input space provides a good approximation to 
geodesic distance. In case of faraway points, geodesic distance 
can be approximated by adding up a sequence of “short hops” 
between neighboring points. Isomap shares some advantages 
with PCA, LDA and MDS, such as computational efficiency 
and asymptotic convergence guarantees, but with more 
flexibility to learn a broad class of nonlinear manifolds. The 
Isomap algorithm takes as input the distances d(xi, xj) between 
all pairs xi and xj from N data points in the high-dimensional 
input space . The algorithm outputs coordinate vectors yq

i in 
a d-dimensional Euclidean space  that best represent the 
intrinsic geometry of the data.  The detailed steps of Isomap are 
listed as follows: 

d

Step 1. Construct neighborhood graph: Define the graph G 
over all data points by connecting points xi and xj if they are 
closer than a certain distance ε , or if xi is one of the K nearest 
neighbors of xj. Set edge lengths equal to d(xi, xj). 

Step 2. Compute shortest paths: Initialize dG(xi, xj) = d(xi, xj) 
if xi and xj are linked by an edge; dG(xi, xj) = +∞  otherwise. 
Then for each value of k=1, 2, …, N in turn, replace all entries 
dG(xi, xj) by min{ dG(xi, xj), dG(xi, xk) + dG(xk, xj)}. The matrix 
of final values DG = {dG(xi, xj)} will contain the shortest path 
distances between all pairs of points in G (This procedure is 
known as Floyd’s algorithm). 

Step 3. Construct d-dimensional embedding: Let pλ  be the 

p-th eigenvalue (in decreasing order) of the matrix ( )Gτ D  
(The operator τ  is defined by ( ) / 2τ = −D HSH , where S is 

the matrix of squared distances , and H is the 

“centering matrix” { 1

2{
ijij =S D }

/ }ij ij Nδ= −H ， ijδ  is the Kronecker 

delta function. [7]), and  be the i-th component of the p-th 
eigenvector. Then set the p-th component of the d-dimensional 
coordinate vector y

i
pv

i equal to i
p pλ v  (This is actually a 

procedure of applying classical MDS to the matrix of graph 
distances DG). 

Note that the only free parameter of Isomap, ε  or K, appears 
in Step 1. In this paper, only the parameter K is used in Isomap. 

Isomap can be easily applied to visualization. In this case, 
two or three dimensional embeddings of higher dimensional 
data are constructed using Isomap and then depicted in a single 
global coordinate system. Isomap’s global coordinates provide 
a simple way to analyze and manipulate high-dimensional 
observations in terms of their intrinsic nonlinear degrees of 
freedom. Isomap has been successfully used to detect the true 
underlying factors of some high-dimensional data sets, such as 
synthetic face images, hand gesture images and handwritten 
digits [13]. However, as can be seen in the following sections, 
when the input data are more complex and noisy, such as a set 
of face images captured by a web camera, Isomap often fails to 
nicely visualize them. The reason is that the local neighborhood 
structure determined in the first step of Isomap is critically 
distorted by the noise. 

As for the classification tasks, Isomap can be viewed as a 
preprocess. When the dimensionality of the input data is 
relatively high, most classification methods, such as K nearest 
neighbor classifier [4], [6], will suffer from the curse-of- 
dimensionality and get highly biased estimates. Fortunately, 
high dimensional data often represent phenomena that are 
intrinsically low dimensional. Thus the problem of high 
dimensional data classification can be solved by first mapping 
the original data into a lower dimensional space by Isomap 
(which can be viewed as a preprocess) and then applying K-NN 
classification to the images. Since the mapping function is not 
explicitly given by Isomap, it should be learned by some 
nonlinear interpolation techniques, such as Generalized 
Regression Networks [17]. Suppose that the data in  are 
mapped into (

q

d d q< ) by Isomap. The mapping function 
 can be learned by Generalized Regression 

Networks, using the corresponding data pairs in  and  as 
the training set. A given query x

: qf → d

q d

0 is first mapped into  to get 
its lower dimensional image f(x

d

0). Then its class label is given 
as the most frequent one occurring in the K neighbors of f(x0) in 

. Unfortunately, this scheme seems not to work very well 
compared with those widely used classification methods 
(according to the experiments in this paper), such as BP 
network [10], decision tree [8] and SVM [14], [15]. There may 
be two reasons. First, the real-world data are often noisy, which 
can weaken the mapping procedure of Isomap. Second, the goal 
of the mapping in classification is different from that in 
visualization. In visualization, the goal is to faithfully preserve 
the intrinsic structure as well as possible, while in classification, 
the goal is to transform the original data into a feature space that 
can make classification easier, by stretching or constricting the 
original metric if necessary. Both reasons indicate that some 

d
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modification should be made on Isomap for the tasks of 
classification. 

 

III. SUPERVISED ISOMAP: S-ISOMAP 
In some visualization tasks, data are from multiple classes 

and the class labels are known. In classification tasks, the class 
labels of all training data must be known. The information 
provided by these class labels may be used to guide the 
procedure of dimensionality reduction. This can be called 
supervised dimensionality reduction, in contrast to the 
unsupervised scheme of most dimensionality reduction 
methods. Some preliminary efforts have already been taken 
toward supervised dimensionality reduction, such as the 
WeightedIso method [16], which changes the first step of 
Isomap by rescaling the Euclidean distance between two data 
points with a constant factor λ  ( 1λ < ) if their class labels are 
the same. The basic idea behind WeightedIso is to make the two 
points closer to each other in the feature space if they belong to 
the same class. It is believed that this can make classification in 
the feature space easier. However, WeightedIso is not suitable 
for visualization because it forcefully distorts the original 
structure of the input data no matter whether there is noise in 
the data or not and how much noise is in the data. Even in 
classification, the factor λ  must be very carefully tuned to get 
a satisfying result (this has been well experienced in the 
following experiments). To make the algorithm more robust for 

both visualization and classification, a more sophisticated 
method is proposed in this section. 

Suppose the given observations are (xi, yi), 1...i

 
Fig. 1.  Typical plot of  as a function of d( , )i jD x x 2 ( , ) /i j

N= , where 
 and yq

i ∈x i is the class label of xi. Define the dissimilarity 
between two points xi and xj as 
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where d(xi, xj) denotes the Euclidean distance between xi and xj. 
A typical plot of D(xi, xj) as a function of d2(xi, xj)/ β  is shown 
in Fig. 1. Since the Euclidean distance d(xi, xj) is in the 
exponent, the parameter β  is used to prevent D(xi, xj) to 
increase too fast when d(xi, xj) is relatively large. Thus the 
value of β  should depend on the “density” of the data set. 
Usually, β  is set to be the average Euclidean distance between 
all pairs of data points. The parameter α  gives a certain chance 
to the points in different classes to be “more similar”, i.e. to 
have a smaller value of dissimilarity, than those in the same 
class. For a better understanding of α , it may be helpful to look 
at Fig. 2, which is the typical plot of  defined in (2).  ( , )i jD′ x x

βx x  

 
Fig. 2.  Typical plot of  as a function of ( , )i jD′ x x 2 ( , ) /i jd βx x  
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In Fig. 2, the dissimilarity between two points is equal to or 
larger than 1 if their class labels are different and is less than 1 
if otherwise. Thus the inter-class dissimilarity is definitely 
larger than the intra-class dissimilarity, which is a very good 
property for classification. However, this can also make the 
algorithm apt to overfit the training set. Moreover, this can 
often make the neighborhood graph of the input data 
disconnected, which is a situation that Isomap cannot handle. 
So α  is used to lose the restriction and give the intra-class 
dissimilarity a certain probability to exceed the inter-class 
dissimilarity. The value of α  should be greater than 0 and less 
than the value that makes the two curves tangent (when the two 
curves are tangent to each other, α  is about 0.65 and the value 
of d2(xi, xj)/ β  at which the two curves touch is about 0.38). It 
is worth mentioning that the function of α  can also be 
achieved through subtracting a constant from the squared 
dissimilarity D2(xi, xj), it does not matter much. 

As a point of comparison, the typical plot of the dissimilarity 
used in WeightedIso, namely WD(xi, xj), as a function of d(xi, xj) 
is shown in Fig. 3 ( 0.1λ = ). When yi ≠  yj, WD(xi, xj) =  d(xi, 
xj), otherwise, WD(xi, xj) = λ d(xi, xj). Thus the intra-class 
dissimilarity is linearly reduced while the inter-class 
dissimilarity keeps unchanged. This does offer some help to 
classification, but with limited ability to control the noise in the 
data. In detail, the range of WD(xi, xj), whether yi  = yj or yi ≠  yj, 
is [0, ]+∞ . This means the noise, theoretically speaking, can 
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change the original dissimilarity to any value in [0, ]+∞ . 
Consequently, so long as the noise is strong enough, the 
neighborhood relationship among the data points can be 
completely destroyed. 

As for the dissimilarity D(xi, xj), its properties and the 
corresponding advantages can be summarized as follows: 

Property 1: When the Euclidean distance is equal, the 
inter-class dissimilarity is larger than the intra-class 
dissimilarity. This is similar to WD(xi, xj) and makes D(xi, xj) 
suitable for classification tasks.  

Property 2: The inter-class dissimilarity is equal to or larger 
than 1 α−  while the intra-class dissimilarity is less than 1. 
Thus no matter how strong the noise is, the inter-class and 
intra-class dissimilarity can be controlled in certain ranges 
respectively. This makes D(xi, xj) suitable to apply to noisy 
data. 

Property 3: Each dissimilarity function is monotone 
increasing with respect to the Euclidean distance. This ensures 
that the main geometric structure of the original data set, which 
is embodied by the Euclidean distances among data points, can 
be preserved. 

Property 4: With the increasing of the Euclidean distance, 
the inter-class dissimilarity increases faster while the intra-class 
dissimilarity increases slower. This endows D(xi, xj) with 
certain ability to “recognize” noise in the data. On the one hand, 
the intra-class distance is usually small. So the larger it is, the 
more possible the noise exists, and the slower D(xi, xj) 
increases. On the other hand, the inter-class distance is usually 
large. So the smaller it is, the more possible the noise exists, 
and the slower D(xi, xj) decreases. Both aspects indicate that 
D(xi, xj) can gradually strengthen the power of noise 
suppression with the increase of noise-existing possibility. 

Because of these good properties, the dissimilarity D(xi, xj) 
can be used in the procedure of Isomap to address the 
robustness problem in visualization and classification. Since 
D(xi, xj) integrates the class information, this algorithm is 
called supervised Isomap, denoted by S-Isomap. There are also 
three steps in S-Isomap. In the first step, neighborhood graph of 
the input data is constructed according to the dissimilarity 
between data points. The neighborhood can be defined as the K 
most similar points or the points whose dissimilarity is less than 

a certain value ε . In this paper, the neighborhood is defined as 
the K most similar points. If two points xi and xj are neighbors, 
then connect them with an edge and assign D(xi, xj) to the edge 
as a weight. The second step is similar to that of Isomap, but the 
shortest path between each pair of points is computed 
according to the weight of the edge rather than the Euclidean 
distance between the points. However, for convenience of 
discussion, the word “distance” is still used to indicate the sum 
of the weights along the shortest path. Finally, the third step of 
S-Isomap is the same as that of Isomap.  

A. S-Isomap for Visualization 

 
Fig. 3.  Typical plot of WD(xi, xj) as a function of d(xi, xj)   

For visualization, the goal is to map the original data set into 
a (two or three dimensional) space that preserves as much as 
possible the intrinsic structure. Isomap can do this well when 
the input data are well sampled and have little noise. As for 
noisy data, which is common in real world, Isomap often fails 
to nicely visualize them. In this situation, the class labels of the 
data, if known, can be used to relieve the negative effect of 
noise. It is well known that points belonging to the same class 
are often closer to each other than those belonging to different 
classes. Under this assumption, S-Isomap can be used to 
recover the true manifold of the noisy data. In the first step of 
S-Isomap, D(xi, xj) pulls points belonging to the same class 
closer and propels those belonging to different classes further 
away (Property 1). Recall that D(xi, xj) has certain ability to 
“recognize” noise (Property 4), so when the data are noisy, this 
procedure can counteract the effect of noise and help to find the 
true neighborhood, and when the data are not noisy, this 
procedure hardly affects the neighborhood constructing. In 
both cases, D(xi, xj) ensures to preserve the intrinsic structure of 
the data set (Property 3) and bounds the effect of noise in the 
data (Property 2). Thus S-Isomap is suitable to visualize the 
real-world data, whether noisy or not. 

B. S-Isomap for Classification 
For classification, the goal is to map the data into a feature 

space in which the members from different classes are clearly 
separated. S-Isomap can map the data into such a space where 
points belonging to the same class are close to each other while 
those belonging to different classes are far away from each 
other (Property 1). At the same time, the main structure of the 
original data can be preserved (Property 3). It is obvious that 
performing classification in such a space is much easier. When 
the data are noisy, S-Isomap can detect the existence of noise 
(Property 4) and limit the effect of noisy (Property 2). Thus 
S-Isomap can be used to design a robust classification method 
for real-world data. The procedure is similar to that of using 
Isomap in classification, which has been described in section II. 
To summarize, the classification has three steps as follows: 

1. Map the data into a lower dimensional space using 
S-Isomap. 

2. Construct Generalized Regression Network to 
approximate the mapping. 

3. Map the given query using the Generalized Regression 
Network and then predict its class label using K-NN. 
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Fig. 4.  Artificial data sets: (a) Class structure. (b) Random samples. (c) 
Samples imbedded on S-curve. (d) Samples imbedded on Swiss roll. 

IV. EXPERIMENTS 

A. Visualization 
1) Methodology 

In many previous works on visualization, the results are 
mainly compared through examining the figures to point out 
which “looks” better. To compare the results more 
impersonally, some numerical criteria should be designed. 
When the distances between all pairs of data points are 
simultaneously changed by a linear transformation, the 
relationship of the points will not change, in other words, the 
intrinsic structure will not change. Recall that the goal of 
visualization is to faithfully represent the intrinsic structure of 
the input data. Thus the correlation coefficient between the 
distance vectors, i.e. the vectors that comprises the distances 
between all pairs of points, of the true structure and that of the 
recovered structure provides a good measurement of the 
validity of the visualization procedure. Suppose the distance 
vector of the true structure is DV  and that of the recovered 
structure is , then the correlation coefficient between  
and  is computed by 

′DV DV
′DV

( , )
( ) ( )

ρ
σ σ

′ ′−
′ =

′
DVDV DV DV

DV DV
DV DV

, (3) 

where  is the average operator,  represents the 
element-by-element product and 

′DVDV
σ  is the standard deviation of 

the vector’s elements. The larger the value of ( )ρ ′DV,DV , the 
better the performance of the visualization is. 

The experiment data sets include two artificial ones. First, a 
two-dimensional structure with 50 classes is constructed as 
shown in Fig. 4 (a), where different colors denote different 
classes. Then 1000 points are randomly sampled from the 
structure as shown in Fig. 4 (b). After that, the points are 
separately embedded onto two nonlinear manifolds “S-curve” 
and “Swiss roll”. At last, random Gaussian noise is added into 
the data. The mean of the noise is 0 and the standard deviation 
of the noise on each dimension is 3% of the largest distance on 
that dimension among the data points. The final two data sets 
are shown in Fig. 4 (c) and (d). Now the target of visualization 
is to discover the intrinsic structure (b) from one of the two 
three-dimensional data sets (c) and (d). 

Isomap, LLE, WeightedIso and S-Isomap are all used to 
visualize the data sets. Their results are compared through the 
figures as well as the correlation values between the distance 
vectors. When computing the correlation values, not only the 
distance vector of all the points, but also that of the class centers 
is considered. They are denoted by corrglobal and corrclass 
respectively. The value of corrglobal indicates the ability to 
discover the global structure while the value of corrclass 
indicates the ability to discover the class distribution. 

Isomap and S-Isomap are also compared on a real-world data 
set. The data set includes 505 gray-level face images, which are 
captured by a web camera from the same person with different 

poses. The face images have a resolution of 60×50 pixels, i.e. 
the data are 3000-dimensional vectors. The images contain 
some natural noise due to the limitations of the camera. Some 
typical images from the data set are shown in Fig. 5. The 
images are divided into 9 classes according to the face poses, i.e. 
Frontal (0), Left (1), Down-left (2), Down (3), Down-right (4), 
Right (5), Up-right (6), Up (7), Up-left (8). The indexes of the 9 
classes are superimposed upon the face images in Fig. 5. Since 
the only difference among these images is face poses, the 
degrees of freedom should be two. Thus the visualization task 
is to show the input images in a two-dimensional space and 
reveal the different poses of the face. 

 
Fig. 5.  Face images with 9 different poses. The class indexes are 
superimposed upon the typical face images.  

In the following experiments, if not explicitly stated, the 
number of neighbors K is set to 10 (including the parameter K 
in Isomap, LLE, WeightedIso and S-Isomap), the parameter λ  
in WeightedIso is set to 0.1, the parameter α  in S-Isomap is set 
to 0.5, and the parameter β  in S-Isomap is set to be the 
average Euclidean distance between all pairs of data points.  

2) Results 
Fig. 6 and Fig. 7 show the visualization results of Isomap, 

LLE, WeightedIso and S-Isomap applied to the data sets 
“S-curve” and “Swiss roll” respectively. The corresponding 
correlation values between the results and the original structure 
are shown in Table I and Table II. To compare the different 
kinds of distortion generated by the four compared algorithms 
in the absence of nonlinearity and noise, these algorithms are 
also applied to the original two-dimensional data set shown in 
Fig. 4 (b). The results are shown in Fig. 8. 

Fig. 6 and Fig. 7 reveal that both Isomap and LLE fail to 
nicely visualize the data, which is consistent with their 
relatively low correlation values in Table I and Table II. As 
mentioned in section II, the poor performances of Isomap and 
LLE are due to that the noise in the data sets disturbs the 
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neighborhood of the original structure. Fig. 6 and Fig. 7 also 
reveal that both WeightedIso and S-Isomap are able to catch the 
main structure of the data. However, WeightedIso forcefully 
distorts the original structure and makes the points in the same 
class tend to shrink to the center. On the other hand, S-Isomap 
can reproduce the original structure more faithfully because of 
the good properties of D(xi, xj). This is also supported by the 
correlation values of S-Isomap in Table I and Table II, which 
are the highest ones of both corrglobal and corrclass on both data 
sets. All in all, both the figures and the correlation values 
indicate that S-Isomap is the most powerful method to visualize 
the intrinsic structure of the noisy data among the four methods. 

It can be seen from Fig. 8 that in the absence of nonlinearity 
and noise, Isomap almost perfectly reproduces the original 
structure, LLE and S-Isomap can also obtain satisfying results, 
but WeightedIso fails to recover the original structure. 

Although both WeightedIso and S-Isomap change the original 
distances among the data points according to their class labels, 
S-Isomap exceeds WeightedIso in visualization because of its 
ability to “recognize” the noise and to work properly in the 
absence of nonlinearity. 

When applying Isomap, the number of neighbors K must be 
carefully adjusted to get a reasonable result. To find out 
whether S-Isomap is also sensitive to the value of K, it is tested 
on the “S-curve” data set while K increases from 6 to 20 with 2 
as the interval. Then the results are compared with those of 
Isomap. The correlation values are tabulated in Table III, where 
“Avg.” means average and “Std.” means standard deviation. 
The visualization results corresponding to K=6, 12 and 20 are 
shown in Fig. 9. 

Table III reveals that the average correlation values of 
S-Isomap are significantly larger than those of Isomap while 
the standard deviations of S-Isomap are significantly smaller 
than that of Isomap. Fig. 9 reveals that as K increases, the 
results of Isomap become significantly worse, but those of 
S-Isomap do not change much. Both Table III and Fig. 8 
indicate that S-Isomap is more accurate and less sensitive to K 
than Isomap. Thus S-Isomap can be easily applied to real-world 
data without much effort on parameter tuning. 

The visualization results of Isomap and S-Isomap on the face 
images are shown in Fig. 10 and Fig. 11 respectively. In the 

Fig. 6.  Visualization of the “S-curve” data set: (a) Isomap. (b) LLE. (c) 
WeightedIso. (d) S-Isomap. 

TABLE III 
COMPARISON OF ISOMAP AND S-ISOMAP WITH DIFFERENT VALUES OF K 

Isomap S-Isomap K 
globalcorr  classcorr  globalcorr  classcorr  

6 0.9837 0.9923 0.9858 0.9927 
8 0.9284 0.9377 0.9880 0.9944 

10 0.9277 0.9366 0.9880 0.9945 
12 0.9236 0.9325 0.9874 0.9937 
14 0.9243 0.9334 0.9863 0.9925 
16 0.9252 0.9344 0.9875 0.9937 
18 0.9163 0.9265 0.9875 0.9942 
20 0.8858 0.8984 0.9891 0.9958 

Avg. 0.9268 0.9365 0.9874 0.9939 
Std. 0.0269 0.0259 0.0010 0.0010 

Fig. 7.  Visualization of the “Swiss roll” data set: (a) Isomap. (b) LLE. (c) 
WeightedIso. (d) S-Isomap. 

Fig. 8.  Results of the compared algorithms applied to the original 
two-dimensional data set: (a) Isomap. (b) LLE. (c) WeightedIso. (d) S-Isomap.

TABLE I 
CORRELATION VALUES OF THE “S-CURVE” DATA SET 

 Isomap LLE WeightedIso S-Isomap 

corrglobal 0.9277 0.5765 0.9855 0.9880 
corrclass 0.9366 0.5960 0.9921 0.9945 

 

Fig. 9.  The visualization results of Isomap and S-Isomap corresponding to 
K=6, 12 and 20. The rows correspond to different algorithm, and the columns
correspond to different values of K.  

TABLE II 
CORRELATION VALUES OF THE “SWISS ROLL” DATA SET 

 Isomap LLE WeightedIso S-Isomap 

corrglobal 0.8082 0.7218 0.9775 0.9807 
corrclass 0.8195 0.7411 0.9781 0.9811 
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figures, the corresponding points of the successive images from 
up to down and from left to right are marked by black circles 
and linked by lines. The nine critical face samples shown in Fig. 
5 are marked by gray circles and shown near the corresponding 
points. 

It can be seen from Fig. 10 that Isomap can hardly reveal the 
different face poses. Part of the up-down line is almost parallel 
to the left-right line. And the arrangement of the nine face 
samples is tanglesome. On the other hand, in Fig. 11, the 
up-down line is approximately perpendicular to the left-right 
line. Thus the horizontal axis represents the left-right poses, 
and the vertical axis represents the up-down poses. Moreover, 
the nine face samples are mapped to the approximately right 
positions corresponding to the face poses. All these indicate 
that S-Isomap is able to approximately visualize the different 
poses of the face images. It is worth mentioning that the face 
images are only roughly divided into 9 classes, so the points in 
Fig. 11 tend to congregate in 9 groups corresponding to the 9 
classes. If the face images can be more detailedly divided (of 
course there should be more than one image in one class, 
otherwise there will not be any “intra-class” distances), the 

visualization result will be more accurate. 

 
Fig. 10.  Visualization result of Isomap on the face images 

B. Classification 
1) Methodology 

In this section, S-Isomap is compared with Isomap and 
WeightedIso in classification. Some other well-established 
classification methods including K nearest neighbor classifier 
[4], [6], BP neural network [10], J4.8 decision tree [18] and 
SVM [14], [15] are also compared.  

The method of using S-Isomap in classification has been 
described in section III.B. For convenience of discussion, 
“S-Isomap” is still used to indicate the three-step classification 
method that uses S-Isomap as the first step in this experiment. 
The meanings of “S-Isomap” can be easily distinguished from 
the context. Isomap and WeightedIso are used in classification 
in the similar way except that in the first step, S-Isomap is 
replaced by Isomap and WeightedIso respectively, and the 
corresponding classification methods are still denoted by 
“Isomap” and “WeightedIso”. In the dimensionality reduction 
procedure, the dimensionality of the data is reduced to half of 
the original. 

Fig. 11.  Visualization result of S-Isomap on the face images 

The parameters for most of the methods are determined 
empirically through ten-fold cross validation. That is, for each 
parameter, several values are tested through ten-fold cross 
validation and the best one is selected. For S-Isomap, different 
values of α  between 0.25 and 0.6 are tested. For WeightedIso, 
different values of λ  between 0.05 and 0.5 are tested. When 
applying K-NN algorithm, several values of K from 10 to 40 are 
tested. The BP neural networks and the J4.8 decision trees are 
constructed using WEKA [18] with the default settings. For 
SVM, both linear kernel and nonlinear kernel (radial basis 
function with bias 1.0) are tested and the best result is reported. 

The data sets include two artificial ones and thirteen 
real-world ones. The two artificial data sets are “S-curve” and 
“Swiss roll” which have been used in the visualization 
experiments. But now the task changes to classification. The 
thirteen real-world data sets are all from UCI machine learning 
repository [1]. Instances that have missing values are removed. 
Information of all the data sets is summarized in Table IV.  

It can be seen from Table IV that some data sets have 
categorical attributes. The previous discussion on S-Isomap is 
only about continuous data. As for categorical attributes, the 
distance is computed through VDM proposed by Stanfill and 
Waltz [12]. 

On each data set, ten times ten-fold cross validation is run. 
That is, in each time, the original data set is randomly divided 
into ten equal-sized subsets while keeping the proportion of the 
instances in different classes. Then, in each fold, one subset is 
used as testing set and the union of the remaining ones is used 
as training set. After ten folds, each subset has been used as 
testing set once. The average result of these ten folds is 
recorded. This procedure is repeated ten times and gets ten 
results for each compared algorithm. After that, the pair wise 
one-tailed t-test is performed on the results of S-Isomap paired 
with every other algorithm at the significance level 0.025. It is 
worth mentioning that the ten times ten-fold cross validation is 
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TABLE IV 
DATA SETS USED IN CLASSIFICATION 

Data Set Attributes 
Abbr. Name 

Size Classes 
Total Categorical Continuous 

bal Balance-scale 625 3 4 0 4 
bre Breast-cancer 277 2 9 9 0 
dia Diabetes 768 2 8 0 8 
gla Glass 214 7 9 0 9 
hea Heart-Cleveland 296 2 13 8 5 
iri Iris 150 3 4 0 4 
let Letter-recognition 2000 26 16 0 16 
liv Liver-disorders 345 2 6 0 6 
lym Lymphography 148 4 18 15 3 
scu S-curve 1000 50 3 0 3 
son Sonar 208 2 60 0 60 
soy Soybean 562 19 35 35 0 
swi Swiss roll 1000 50 3 0 3 
vow Vowel 990 11 10 0 10 
wav Waveform 2500 3 40 0 40 

 

completely separate with those used in parameter tuning, i.e. 
once the parameters for a certain method on a certain data set 
are determined, the data set is re-divided ten times and tested. 

2) Results 
The mean precisions, i.e. the average correct rates of the ten 

times ten-fold cross validation, of S-Isomap, Isomap, 
WeightedIso, K-NN, BP neural network (denoted by BP), J4.8 
decision tree (denoted by J4.8) and SVM on the 15 data sets are 
tabulated in Table V. On each data set, the best performance is 
emphasized by bold. The average performance of each method 
on all data sets is also given in the last row of the table. 

Table V reveals that S-Isomap gives the best performance on 
7 data sets, and is close to the best method on the remaining 8 
data sets. SVM performs best on 6 data sets and BP on 2. 

According to the average performance, the seven methods can 
be sorted as: S-Isomap > K-NN > SVM > BP > WeightedIso > 
J4.8 > Isomap. Here K-NN is in the second place. Recall that 
K-NN is also used in the last step of S-Isomap. However, K-NN 
in S-Isomap is performed in a space whose dimensionality is 
much lower. Thus S-Isomap is less computation and storage 
consuming than pure K-NN when the dimensionality of the 
input data is relatively high. 

TABLE V 
MEAN PRECISIONS OF THE COMPARED CLASSIFICATION METHODS 

Data Set S-Isomap Isomap WeightedIso K-NN BP J4.8 SVM 
bal 0.8953 0.7282 0.8742 0.8867 0.9075 0.7831 0.9090 
bre 0.7769 0.7553 0.7711 0.7593 0.7382 0.7358 0.7650 
dia 0.7525 0.7042 0.7435 0.7474 0.7508 0.7455 0.7737 
gla 0.7141 0.6163 0.7027 0.6897 0.6751 0.6796 0.6309 
hea 0.8326 0.7857 0.8215 0.8120 0.8083 0.7689 0.8328 
iri 0.9600 0.9293 0.9593 0.9627 0.9447 0.9627 0.9653 

0.5909 0.8057 0.8138 0.7731 0.7051 0.7681 let 0.8408 
0.6656 0.5750 liv 0.6306 0.5690 0.6254 0.6470 0.6935 

0.8067 0.8310 0.8509 0.8194 0.8037 0.8328 lym 0.8590 
0.6681 0.6811 0.7437 0.7202 0.7125 0.7524 scu 0.7687 

son 0.8740 0.6519 0.8616 0.8275 0.8240 0.7316 0.8813 
soy 0.8015 0.9081 0.8767 0.8944 0.9069 0.9058 0.9082 
swi 0.8318 0.5339 0.6223 0.8268 0.8252 0.7987 0.8376 
vow 0.6576 0.9776 0.9477 0.7951 0.7971 0.8669 0.9855 
wav 0.8279 0.8221 0.8378 0.8037 0.8359 0.7397 0.8584 
Avg. 0.7081 0.8015 0.8130 0.8017 0.7679 0.8102 0.8305 

 

To compare the robustness of these methods, i.e. how well 
the particular method m performs in different situations, a 
criteria is defined similar to the one used by Vlachos et al. [16]. 
In detail, the relative performance of m on a particular data set 
is represented by the ratio bm of its mean precision pm and the 
highest mean precision among all the compared methods: 
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=           (4) 

The best method m* on that data set has , and all the 

other methods have b

1
m

b ∗ =

m ≤ 1. The larger the value of bm, the 
better the performance of the method m is in relation to the best 
performance on that data set. Thus the sum of bm over all data 
sets provides a good measurement of the robustness of the 
method m. A large value of the sum indicates good robustness. 

Fig. 12 shows the distribution of bm of each method over the 
15 data sets. For each method, the 15 values of bm are stacked 
and the sum is given on top of the stack. Fig. 12 reveals that 
S-Isomap has the highest sum value. In fact, the bm values of 
S-Isomap are equal or very close to 1 on all the data sets, which 
means S-Isomap performs very well in different situations. 
Thus S-Isomap is the most robust method among the compared 
methods. 

The results of pair wise one-tailed t-test performed on 
S-Isomap paired with every other algorithm are tabulated in 
Table VI, where the results “significantly better”, “significantly 
worse” and “not significantly different” are denoted by 1, –1 
and 0 respectively.  

In Table VI, the average of each column is larger than 0.00, 
which means the average performances of S-Isomap over the 
data sets are better than all the other methods. Specially, the 
average of the “Isomap” column is 1.00, which means 
S-Isomap performs significantly better than Isomap on all data 
sets. Table VI also reveals that the average of each row is larger 
than 0.00 except for that of the “wav” row, which means the 
performances of S-Isomap are better than most other methods 
on almost all data sets. Specially, the average of the row “bre”, 
“gla”, “let”,  “lym”, “scu” and “vow” are all equal to 1.00, 
which means on these 6 data sets, S-Isomap performs 
significantly better than all the other methods. As for the data 
set “wav”, the average value is 0.00. This is likely due to that 

the number of the samples is large while the number of the 
classes is small, so the information given by each class label is 
relatively little. Since such information is used to guide the 
dimensionality reduction in S-Isomap, when it is relatively 
limited, S-Isomap may be not significantly superior to other 
methods. 

 
Fig. 12.  Robustness of the compared methods 

 

V. CONCLUSIONS 
In this paper, an improved version of Isomap, namely 

S-Isomap, is proposed for robust visualization and 
classification. S-Isomap uses the class information of the given 
data to guide the manifold learning. The procedure of using 
S-Isomap to reduce dimensionality is called supervised 
nonlinear dimensionality reduction. The utilization of the class 
information helps to deal with the noise in the data and thus 

TABLE VI 
PAIR WISE ONE-TAILED T-TEST ON S-ISOMAP VERSUS THE OTHER SIX METHODS 

Data Set Isomap WeightedIso K-NN BP C4.5 
bal 1 1 1 -1 1 -1 0.33 
bre 1 1 1 1 1 1 1.00 
dia 1 1 0 0 0 -1 0.17 
gla 1 1 1 1 1 1 1.00 
hea 1 1 1 1 1 0 0.83 
iri 1 0 0 0 1 0 0.33 
let 1 1 1 1 1 1 1.00 
liv 1 1 0 -1 -1 1 0.17 
lym 1 1 1 1 1 1 1.00 
scu 1 1 1 1 1 1 1.00 
son 1 1 1 1 1 0 0.83 
soy 1 0 1 1 0 0 0.50 
swi 1 1 0 0 1 -1 0.33 
vow 1 1 1 1 1 1 1.00 
wav 1 -1 1 -1 1 -1 0.00 

Avg. 1.00 0.73 0.73 0.40 0.73 0.20  
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makes S-Isomap more robust in both visualization and 
classification. In the visualization experiments, S-Isomap is 
compared with Isomap, LLE and WeightedIso. Both the figures 
and the correlation values between the recovered structures and 
the intrinsic structure indicate that S-Isomap is more powerful 
than the other three methods in visualization. In the 
classification experiments, S-Isomap is compared with Isomap 
and WeightedIso in classification on both artificial and 
real-world data sets. Some other well-established classification 
methods including K-NN, BP network, J4.8 decision tree and 
SVM are also compared. The results show that S-Isomap is also 
an accurate and robust technique for classification.  

When the given data are scattered in faraway clusters, the 
neighborhood graph of them may be disconnected. 
Unfortunately, neither Isomap nor S-Isomap can deal with such 
kind of data. In the future work, more efforts should be taken to 
tackle this problem. 

When S-Isomap is used for classification, the explicit 
mapping function from the original data space to the feature 
space is learned by some other nonlinear interpolation 
techniques. Thus the final generalization error is brought by not 
only S-Isomap, but also the interpolation method. If a more 
natural way for S-Isomap to map the query into the feature 
space can be found, the generalization ability of S-Isomap will 
be further improved. This is also worth to be further studied in 
the future. 
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