Survey Analysis of Machine Learning Methods for Natural Language
Processing for MBTI Personality Type Prediction

Brandon Cui (bcuil9@stanford.edu)! Calvin Qi (calvingi@stanford.edu)?

Abstract

We studied various natural language processing
techniques in conjunction with machine learning
techniques and evaluated their results on classi-
fying someone’s Myers-Briggs personality type
based on one of their social media posts.

1. Introduction
1.1. Myers-Briggs Type Indicator

The Myers-Briggs Type Indicator (MBTI) is one of the
most well-known and widely used descriptors of person-
ality type. It describes the way people behave and interact
with the world around them with four binary categories and
16 total types. They are as follows (table 1):

Energy: | Extrovert / Introvert
Information: | Sensing / INtuition
Decision: | Thinking / Feeling

Lifestyle: | Judging / Perceiving

Table 1: The Myers-Briggs Type Indicator Attributes

Each person’s MBTI personality type is defined as the col-
lection of their four types for the four categories, using the
bolded identifying letter for each. For example, one who
derives their energy mostly from being around other peo-
ple (E), trusts their gut and uses intuition to interpret infor-
mation in the world (N), thinks rationally about their deci-
sions (T), and lives life in a carefully planned manner (J)
rather than a spontaneous one would have the personality
type ENTJ. This is the personality schema that we will be
using throughout this paper.

1.2. Goal

We set out to predict one’s MBTI personality type from
one of their social media posts. Our algorithm takes in an
excerpt of text as input and outputs the predicted MBTI

!Stanford University, Department of Computer Science
2Stanford University, Department of Mathematics.

personality label (e.g. ENTJ). We will survey a variety of
methods for this task, looking both at classical Supervised
Learning and at the efficacy of deep learning with actively
trained word embeddings on such a task. Then we per-
form comparisons and analysis on their resulting error and
accuracy to find the method that is most effective for this
problem.

1.3. Motivation

In a world where communication is increasingly social me-
dia based, we are interested in finding out if there is a strong
relationship between ones use of language online and their
actual personality. There are two main implications of this
study. First is the possibility of one’s ‘online persona’ as
distinct from their in-person one, which suggests that peo-
ple have a likelihood of behaving in a completely different
way online. Second is that social media messages, being a
method of communication with its own quirks and styles of
language use distinct from prose or speech, contain a cer-
tain amount of representational power and reflect the per-
sonality of the author.

2. Dataset and Features
2.1. Dataset

We obtained our data from the (MBTI) Myers-Briggs Per-
sonality Type Dataset from Kaggle. It provides the text of
the 45-50 most recent social media posts for 8,600 users
along with the user’s MBTI personality type. This gives us
422,845 total labeled points in the form (post text, MBTI
type). The posts are drawn from the PersonalityCafe online
forum, a platform for all kinds of conversations and discus-
sions, and they obtain the labels by allowing the user to
input MBTI type as account info. This could lead to many
inherent data biases, as we will discuss in future sections.

We shuffle the data and split it into 70-15-15 portions for
training, validation (hold-out), and test sets respectively.
2.2. Tools

We collect, process, and analyze all of our data using
Python. We also utilize the Natural Language Toolkit

MBTI Personality Type Prediction

(NLTK) library for much of our text preprocessing, Numpy
for matrix computations, sk-learn for conventional learning
algorithms, and PyTorch for deep learning.

2.3. Data Analysis

The dataset is quite skewed and is not uniformly distributed
among the 16 personality types. For example, the most
common label, INFP, occurs 89,796 times whereas the least
frequent, ISFJ, only occurs 8,121 times. We found that
when training on the data in this original form, the model
tends to overfit on the predominant type(s) while underper-
forming on the others, so to remedy this we perform data
duplication and reduction by doubling and halving until no
class is twice as large as any other. As a result we are train-
ing on 328,650 data points instead of the original amount.

Two example data points are:

ENTP: “I'm finding the lack of me in these posts
very alarming”
INFJ: “What? There’s a series! Thanks for letting

me know :)”

2.4. Preprocessing

Since the data is raw text and online chatting language is of-
ten irregular and oddly formed (i.e. abbreviations, emojis,
punctuation) we apply a significant amount of text prepro-
cessing.

e Converting to lowercase (but we want to incorporate cap-
ital letter usage too so we include that as a feature)

e Using NLTK lemmatizer to combine word forms

o Identifying special text (URLSs, numbers, dates, emojis)
with regex and replacing them with special escape tokens
to standardize

e Separating punctuation from text

e Assigning words to numerical indices based on fre-
quency in our training set

2.5. Feature Selection

We begin by featurizing the posts using bag of words. This
includes all of the preprocessing and added features/tokens
from above. We let B denote the size of our bag, mean-
ing we consider the occurrences of the first B most fre-
quent words in our dataset and treat all other words as a
special unknown token. After tuning B as a hyperparamter
we found this most effective when B = 50, 000.

We also append even more additional features: bigrams,
skip grams, part of speech tags, capital letter count

3. Methods

3.1. Baseline

For our baseline, we used a multiclass Softmax classifier
on all 16 personality types, with minimal preprocessing
(only the first two steps mentioned above), using minibatch
Stochastic Gradient Descent with a minibatch size of 100
and a learning rate of @« = 0.1. Softmax regression is a
generalization of binary logistic regression to distinguish
between multiple classes, with a normalized output that
provides confidence probabilities for each class.

More formally, we have hy(x) outputting a vector of 15 real
values between 0 and 1 representing the prediction confi-
dence of each class (with the 16th being implied from the
other 15). Our parameters are 61, 6o, . . . , 615 and each out-
put is given by

exp (07'z)

ply =ilz;0) = ¢; =
([2:6) 1 +Zj1i1 exp (67 z)

The baseline performs with training accuracy 19% and test
accuracy 17 %, which beats randomly choosing classes for
6.25%.

3.2. Individual Personality Categories

One flaw in the full 16-class approach is that there is a lot
of overlap between classes and not necessarily any clear
way to distinguish between them. For example, INTJ and
INTP are treated as distinct classes even though they over-
lap completely in most aspects and only demonstrate a mi-
nor difference. Given that social media text is already quite
ambiguous and varied, this forces our classifier to have
to find tiny differences among highly similar, noisy data,
which is very difficult and not fruitful. These classes aren’t
actually independent, which thwarts a classifier that seeks
to find complete separation.

Instead, we transition to building binary classifiers for each
of the four personality categories (i.e. E/I, S/N, T/F, J/P)
then aggregating the four outcomes to get the overall pre-
dicted MBTI label. This provides a host of advantages:

e Distinguishing between actual dichotomies gives more
strongly separable data which improves accuracy dra-
matically

e There is more training data for each class when we split
in halves (e.g. E/I) compared to 16 parts.

e By training four different classifiers, each one can be op-
timized separately to best fit its own purpose, instead of
having a one-size-fits-all model

e By having a different prediction confidence for each per-
sonality trait, we get more meaningful output that can

MBTI Personality Type Prediction

show for example if someone is clearly 90 percent ex-
troverted but only 70 percent thinking over perceiving.
This gives more gradations and nuance.

3.3. Naive Bayes

One method of text classification is Naive Bayes. This
chooses to model p(z|y), the likelihood of our data, us-
ing the assumption that words/features are probabilistically
independent of each other conditioned on the labels, com-
puting p(xz|y) = [[, p(xi|y). This tends to be effective
because: (1) it doesn’t require much training or computa-
tional power and can obtain all of its parameter estimates
from proportions in the data itself, and (2) it can estimate
and incorporate the influence of each word/feature on the
class’s likelihood

For the result below we present the naive bayes results with
the traditional add-1-laplace smoothing, and get the follow-
ing accuracies (Table 2):

Classifier | Train Accuracy | Test Accuracy
E/N 0.799 0.750
S/N 0.869 0.845
T/F 0.701 0.624
J/pP 0.641 0.603

Overall 0.3174 0.2586

Table 2: Classification accuracies for Naive Bayes

However, overall, the train accuracy of Naive Bayes is 32%
and the test accuracy is 26%, which is a noticeable im-
provement from our Softmax baseline of 17%. The large
gap between training and test errors shows heavy overfit-
ting and weak generalization, which we will remedy in the
next model with regularization.

3.4.SVM

Support Vector Machines (SVMs) are very well-
performing, robust, and customizable supervised learning
algorithms. A SVM, alike logistic regression, seeks to find
a hyperplane separating the classes in the dataset, but it
uses the hinge loss and has the added optimization goal of
maximizing margin. The optimization problem is:

.1 2
min = |jw||
v,w,b2

st.y@wlzW4p)>1, i=1,....m

We also add L2 regularization so the model generalizes
more effectively. Then, we tuned the following hyperpa-
rameters by running trials varying the values on a log scale
and then honing in on smaller ranges and found the best
values to be (table 3):

SVM Hyperparameter value
SGD minibatch size: 100

Learning Rate: « = m
Regularization Rate: A = 0.005
Bag of Words size: B = 50,000

Table 3: Table of optimal SVM hyperparameters

Then, we train using minibatch Stochastic Gradient De-
scent until the error converges. The plot of dev error of
the E/I classifier for the first few epochs of one particular
trial is shown in Figure 1, and the error for the full MBTI
prediction is in Figure 2, where error is shown the propor-
tion of incorrect predictions on the dev set. After tuning all

Dev error for Improved Minibatch SGD of E/I classifier

0.40

Error

035

030

Figure 1. Single trait error

Dev error for Improved Minibatch SGD for full MBTI type

0.900
0.875
0.850
0.825

g

o 0800
0775
0.750

0725

=
=
)
@
i
=3
._.
=)
-
=

Figure 2. Total 4-trait error

of these parameters and performing the error analysis that
will be described next, our best classifier has a training ac-
curacy of 33.7% and a test accuracy of 32.6%, improving
upon both our Baseline and Naive Bayes models.

3.5. Error Analysis

In the process of refining our model and deciding how to
obtain our best SVM model, we performed ablative er-
ror analysis by removing components one by one from
our full SVM model to find out which parts of our
data+classification pipeline caused the most significant im-
provements.

These are the ablative error analysis results on an interme-
diate E/I classifier obtaining 76% dev accuracy before we

MBTI Personality Type Prediction

obtained our best SVM models (Table 4):

Component Removed Dev Accuracy

Full System 76.1%
Tuning o and A 75.6%
Tuning B 74.7%
Equalizing Classes 72.3%
Preprocessing Text 68.7%

Table 4: Ablative error analysis on the various components
in our data processing and classification system

We find that removing the preprocessing step has the largest
effect on our classifier accuracy. This is reasonable because
our entire model’s ability to understand text and find rela-
tionships depends on receiving input that is consistent and
meaningful, which comes from preprocessing and feature
selection. Thus, with this in mind, we focused more ef-
fort on improving the preprocessing stages, which led to
the addition of lemmatization, bigrams, skip grams, part of
speech tags, and capital letter counts to our text processing
and features.

3.6. Deep Learning
3.6.1. ENCODER DECODER FRAMEWORK

Our main deep learning framework was drawn from neural
machine translation, where they use an encoder-decoder
framework (Wu et al. 2016). Below we describe the
utilized framework:

Encoder Framework

For our encoding system we used a multi-layer long-short
term memory (LSTM) recurrent neural network as the en-
coder (Fig 3.)

Figure 3. Encoding Mechanism

The overall idea is to represent a single sentence with a
high dimensional vector. We considered every word in the
vocabulary to be represented by a high dimensional word
embedding. As seen in previous image captioning work all
word embeddings were actively trained to fit our specific
model (Karpathy et al 2015) (Lu et al 2017).

Decoder Framework
Our decoder framework was always a 3-layer feed-fowards

neural network, with every activation being rectified linear
units (ReLU) and the last layer outputs the probability of
each class via a softmax function.

3.6.2. TRAINING, LOSS FUNCTION, AND FINE-TUNING

For every experiment, we trained the neural network for
25 epochs, with a minibatch size of 500. We also used
Xavier initialization in order to have better gradient flow
over our deep network (Glorot et al 2010). Additionally, for
the encoder we used the RMSProp optimizer while for the
decoder we used a Adam optimizer (Kingma et al 2014).
Our loss function is the traditional cross-entropy loss which
is defined as follows:

Wy, 9) = — Z yilog(9:)

here, y represents the true label’s value and ¢ is the pre-
dicted label probability from the softmax function. We note
that y is always a one-hot vector representing the class label
for the given datapoint.

We varied multiple hyperparameters including dropout
size, hidden size, embedding size, and number of encoding
hidden layers in a random fashion as described in (Bergstra
et al. 2012).

3.6.3. 16-CLASS CLASSIFIER

We initially trained a single 16-class classifier to try to see
if our deep network could obtain a more favorable result
than our softmax baseline. However, after tuning multi-
ple hyperparameters our best training accuracy was 55%
and the test accuracy was 23%, This indicates that there
was heavy overfitting when considering all 16-classes con-
glomerated together.

3.6.4. 4 BINARY CLASSIFIERS

Since the division of all 16-classes based on such short
text passages proved to be too difficult, opted to create
4 different binary classifiers, one for every category. We
present some of our results below (Table 5)

‘We note that the random search of hyperparameters yielded
varying outcomes, but overall we were still able to achieve
slightly better results using deep learning. Also, between
classifiers there was no strong correlation between the var-
ious hyperparameters, since depending on the personality
class, different optima were found during training, which
come from different parameters. Our network reached 40%
training accuracy and 38 % test accuracy.

MBTI Personality Type Prediction

Classifier | Embedding Size | Hidden Size | Dropout | # Hidden Encoding Layers | Dev Accuracy | Test Accuracy
E/ 256 256 0.1 1 0.8974 0.8951
E/l 128 300 0.15 2 0.8955 0.8851
S/N 256 256 0.1 1 0.8856 0.89848
S/N 200 300 0.15 1 0.8691 0.8665
T/F 512 256 0.1 1 0.6910 0.6909
T/F 256 256 0.15 1 0.6912 0.6848
J/pP 256 256 0.15 1 0.6605 0.6765
J/p 128 300 0.1 1 0.6594 0.6837

Table 5: Comparison of various deep learning hyperparameters and result dev and test accuracies. Here the bolded values

indicate the best dev/test accuracy for that specific classifer.

4. Results
4.1. Comparison of Different Methods

Our best performing models were as follows (Table 6):

Model Type Train Accuracy Test Accuracy
Softmax (baseline) 19% 17%
Naive Bayes 32% 26%
Regularized SVM 34% 33%
Deep Learning 40% 38%

Table 6: Comparison of different methods for
MBTI-classification

We find that the Regularized SVM on individual person-
ality types yields better accuracy than our Baseline and
Naive Bayes models, and deep learning further outper-
forms SVM. This is reasonable since a deep learning archi-
tecture involves many more parameters and a much more
sophisticated set of operations, which gives it more repre-
sentational power and a much larger hypothesis class at the
expense of significantly longer training time.

4.2. Discussion

From an absolute standpoint, the overall final accuracy still
isn’t jaw-droppingly high, since it doesn’t even surpass 50
percent. However, when we examine each personality cat-
egory, the performance is much better, and it is clear that
our models are able to distinguish effectively within these
personality dichotomies.

The error that remains can be due to a variety of factors.
One is that the data could have a large amount of inherent
bias. Since users are only drawn from one particular forum,
we are receiving a very limited sample of the actual popu-
lation; in particular, the joining of that forum could already
favor certain personality types and act as a layer of selec-
tion. In addition, the ground truth MBTI types are self-
reported, so there is a lot of room for error for people who
don’t remember their type exactly or who have changed
in their personality/worldview/lifestyle since the last time
they took the MBTI test. In fact, one psychological study

reports that when people are tested just a few months apart,
50 percent end up with different results, so these personal-
ities are fluid by nature and change with time. This could
also come from a flaw in the test itself, or perhaps it can
be attributed to the temperament and inconsistency of the
people taking them.

Moreover, there are many who dispute the quality of the
MBTI schema itself. Some psychologists believe that the
four categories are not the most salient traits of personality,
and others have noted that the traits aren’t entirely orthog-
onal, so there is actually overlap and dependence among
them. These factors add variation, uncertainty, and user er-
ror, which together make it very challenging and somewhat
implausible to have an extremely accurate classifier.

5. Conclusion
5.1. Future Work

Moving forwards, we hope to incorporate richer data and
features to allow for a stronger understanding of the in-
put text as well as improved performance. Our dataset was
quite limited and didn’t include any other user information
or metadata for posts, such as time or the surrounding con-
versation, and that additional data would be hugely impor-
tant for understanding the bigger picture of one’s personal-
ity as well as the context of each post.

For deep learning, it would be desirable to look towards
other mechanisms of representing word embeddings, in-
cluding char and k-char word embeddings (Karpathy 2017)
and pretrained GloVe vectors on our corpus. Addition-
ally, it should be possible to achieve even better results by
adding on attention mechanisms to our current framework.
Lastly, because of new discoveries in NLP always arising
from current research, it’d be interesting to see results from
implementing these most cutting edge methods.

We would also like to try unsupervised learning to find out
if people’s social media posts naturally form clusters based
on personality, and to see if these clusters coincide with or
have any similarities to the MBTI types.

MBTI Personality Type Prediction

6. Contributions

Both group members contributed to the ideas, planning,
and decision making involved in this project. Brandon Cui
worked on the data parsing, Naive Bayes model, and deep
learning. Calvin Qi worked on text preprocessing, error
analysis, and SVM optimization. All other remaining work
was shared.

7. Bibliography

BergstraJ., Bengio Y. Random Search for Hyper-Parameter
Optimization. 2012. Journal of Machine Learning Re-
search.

Glorot X., Bengio Y. Understanding the difficulty of train-
ing deep feedforward neural networks. 2010. Internaional
Conference on Artificial Intelligence and Statistics.

Karpathy A., Fei-Fei L. Deep Visual-Semantic Alignments
for Generating Image Descriptions. 2015. IEEE Computer
Vision and Pattern Recognition.

Karpathy A. The Unreasonable Effectiveness of Recur-
rent Neural Networks. 2017. [online] Available at
http://karpathy. github.io/2015/05/2 1/rnn-effectiveness/

Kingma D., BaJ. Adam: A method for stochastic optimiza-
tion. 2014. CoRR.

Lu J., Xiong C., Parikh D., Socher R. Knowing When to
Look: Adaptive Attention via a Visual Sentinel for Im-
age Captioning. 2017. IEEE Computer Vision and Pattern
Recognition.

Wu Y., Schuster M., Chen Z., Le Q., Norouzi M. et al.
Google’s Neural Machine Translation System: Briding the
Gap between Human and Machine Translation. 2016.
arXiv preprint.

