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ABSTRACT
Recently, much work has been done on chemical probing strate-
gies with nanopore sequencing to identify RNA modifications at
the single nucleotide level. Here, we examine the use of Oxford
Nanopore’s Guppy basecalling to identify structural modifications
using localized, non-parametric peak detection. In a novel experi-
ment, we evaluate whether detection of structural modifications
is possible using the Guppy’s basecalling error and determine the
accuracy of our approach for selected RNA control sequences. Next,
we use statistical analysis to determine the dominant structural
bindings in a set of averaged read errors. Finally, we compare our
approach to average reactivity determined by orthogonal experi-
ments from SHAPE-CE and alternative approaches. We show that
localized, non-parametric peak detection demonstrates improved
accuracy and coverage of structural modifications in selected con-
trol RNA and that our method is agnostic to underlying changes
in the distribution. Our approach allows for a more generalizeable
methodology for detecting structural modification with nanopore
sequencing and the subsequent generated probabilities can be used
to refine further downstream analysis.
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1 INTRODUCTION
RNA is a central player of virtually all cellular processes. As such, it
is both a promising target and therapeutic agent for numerous dis-
eases as exemplified by the recent development of mRNA vaccines.
The function of RNA molecules closely depends on its structure,
which can regulate RNA-protein [12] and RNA-RNA interactions
[7]. However, RNA computational structure determination is a com-
plex challenge that benefits from experimental data. Over the years,
numerous tools have been developed to probe RNA secondary struc-
ture [24]. Popular approaches rely on a small chemical probe that
covalently modifies either the nucleobase (DMS, CMCT) or the ri-
bose (SHAPE reagents) of flexible positions. Modified positions are
then detected by reverse transcription and sequencing. Depending
on the method, the presence of an adduct will either stop reverse
transcription or increase the error rate at a given position (See [24]).

Early work on Oxford Nanopore sequencing focused on produc-
ing optimal basecalling algorithms using deep learning methods.
Guppy, a basecalling algorithm based on a Recurrent Neural Net-
work (RNN), is used to determine the nucleotide base (A,C,G,U) as
it passes through the nanopores [25]. Each sequenced RNA, base-
called with Guppy, is a ‘read’ that can be aligned and mapped to the
reference sequence using sequence aligners like Minimap [16]. The
sequenced reads may differ from the reference sequence and have
errors including insertion, deletion, or mismatch of a nucleotide.
Basecalling algorithms attempt to minimize spurious sequencing
errors and allow for determination of sequence variations in the
reads [21, 25] The understanding these variation have taken on new
importance as they can be indicative of various RNA modifications
[4, 14, 17, 22, 25].

2 PRIORWORK
Several tools have been introduced that pursue specific endoge-
nous or experimental modifications, and perform analysis of base-
calling errors to determine RNA modification. Often, these tools
apply specifically to methylated bases or well known motifs such
as DRACH and RRACH which can isolate methylated bases using
a distance metric within the motif, specifically focusing on errors
at ‘A’ bases for𝑚6𝐴 modifications, and employ the use of synthetic
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sequences [4, 14, 17, 22]. Given these specificities, it is still a chal-
lenging task requiring significant number of reads or read depth.
Yet, prior methods have been bench-marked with accuracies aver-
aging well above 70% at the lower range (Table 1). However the
benchmarks are not consistent across all methods and were not
tested on structure probe modifications [27].

For this comparison, we selected Epinano’s Epinano_Differr
method, which had the highest overall accuracy to test because its
methods could be applied to structural modifications. The Epinano-
SVM method and other methods developed for basecalling analysis
use pretrained models specifically designed for𝑚6𝐴 and could not
be applied to basecalling analysis for a novel structural modifi-
cation (Table 1). However, we calculated the differential between
unmodified and modified RNA basecall errors for mismatch, inser-
tion, deletion, and quality features and ranked them to determine
which feature was most indicative of a modification by measur-
ing accuracy according to Epinano’s protocol [18]. In our controls,
the features most indicative of a modification varied by sequence
and were not consistent enough to use as a determining metric in
our tests (Supplemental 3). We also examined the sum of errors
and corresponding z-score outliers using linear regression sum
of errors method (LRSUM) specified for basecalling features in
Epinano_Differr [18] and observed accuracies similar to statistical
outlier method (Supplemental Table 4).

These results may be partially due to the fact that we are identi-
fying structural modification rather than𝑚6𝐴 modifications. Also,
the use of synthetic RNA or methylated bases at specific distances,
particularly greater than the distances that induces pore constric-
tion on adjacent nucleotides (≤ 5 nucleotides), can significantly
modulate the upstream and downstream effects observed in sev-
eral experiments. These modulated distributions display uniform
errors in annotated positions and can more easily be characterized
using standard statistical approaches such as contingency tables,
and statistical tests. However, they do not always generalize well to
structural modification or capturing significant change in noisier
data, e.g. adjacent nucleotide modifications which is still a challeng-
ing problem [4, 14, 17, 22].

Here, we introduce a localized, non-parametric peak detection
method (LNPPD) to address these challenges and create a method
that works reasonably well with structural modifications. We ex-
amine the use of LNPPD on differential basecall error analysis on
five RNA sequences in determining structural modifications using
a small chemical probe, 1-acetylimidazole (AcIm), to determine
whether basecall error analysis has wider applicability to detection
of structural modifications and move towards a more generalizeable
approach that could be applied to any RNA sequence modification.

3 ACIM CHEMICAL MODIFICATION
Numerous reagents have been used to probe RNA structure. AcIm,
2-methylnicotinic acid imidazolide (NAI) and Diethyl pyrocarbon-
ate (DEPC) have recently been successfully used with Nanopore
sequencing [5, 9, 23]. We used AcIm, which generates the smallest
adduct upon reaction with 2’ hydroxyl base of the ribose of RNA
[23]. It can be used to probe all four nucleotides as it reacts with the
ribose, as opposed to DEPC which only reacts with adenines. We
apply this probe to in vitro transcribed RNA samples and sequence

them with Oxford Nanopore direct RNA sequencing. For valida-
tion, we perform the same experiments with SHAPE-CE (Selective
Hydroxyl-Acylation analyzed by Primer Extension and Capillary
Electrophoresis) and compare the detection of modified bases of
both experiments [15, 26].

4 DETECTION OF MODIFIED BASES
For detection of modified bases, we examine the Nanopore sequence
data from fast5 files of both unmodified RNA sequences and se-
quences probed with AcIm. The sequences are basecalled with
Guppy and aligned with minimap2 [16, 25]. We, then, extract rele-
vant statistical features of the basecalled data and create reactivity
profiles using the Guppy error rates indicating mismatch, dele-
tion, or insertion at a given base. These rates are calculated for both
umodified andmodified RNA. Unmodified error rates are subtracted
from the error rates of RNA modified with AcIm rates to remove
background modifications that occur even in the presence of no
modification, Methods A.2.2. We examined basecall reactivity pro-
files using three approaches: statistical anomaly detection, LRSUM,
and LNPPD.

5 OUTLIER DETECTION OF MODIFIED BASES
We normalize both basecalling reactivity and SHAPE-CE data to
unit scale for direct comparison of reactivities. Using the SHAPE-
CE threshold for anomalous or highly reactive bases, we observed
that anomalies were distributed across RNA sequences with some
overlap with SHAPE-CE, but less than 50% of basecall reactivites
correlated to SHAPE-CE’s indication of structural modification.
We compared the basecall reactivity profiles to the SHAPE-CE
reactivity profile using both the MannWhitney U test (MWU) and
Kolmogorov-Smirnov (KS) test, similarly, observed no significant
correlation (Table 2). The KS test is sensitive to differences in the
two underlying cumulative distributions, while the MWU test is
mostly sensitive to changes in the median of the ranked distribution
[19, 20].

We, then, applied standard statistical outlier detection to the
basecall reactivity profiles where an outlier is defined as 𝜇 ± 𝑘𝜎

Methods A.2.4 and observed varied, sequence dependent correlation
for in vitro RNA between basecall reactivity profiles and SHAPE-CE
reactivity.

Tetrahymena ribozyme exhibited accuracy up to 44% using this
method, while HCV IRES, E. coli tmRNA, FMN and Lysine riboswitches
recorded between 10% and 40% accuracy. Average accuracy across
our control sequences using statistical outlier methods including
both the SHAPE-CE threshold of .2 Figure 1 and the standard statis-
tical approach remained at or below 72% for all sequences (Methods
A.2.3). However, the number of predictions for each sequence was
very low and outliers did not reproduce detected modifications
in SHAPE-CE data very well (Figure 1) and demonstrating low
coverage (Figure 2).

6 LOCALIZED, NON-PARAMETRIC PEAK
DETECTION OF MODIFIED BASES

Direct outlier detection of basecall reactivity profiles is more chal-
lenging because reactivity profiles are not necessarily Gaussian
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Table 1: Comparison of Published Methods

Method Modification Benchmark Method

Diff_err [22] 𝑚6𝐴 66% (Accuracy) G-Test
Eligos [14] 𝑚6𝐴 74-96% (AUROC) Fisher’s Exact & Benjamin-Hochberg

Epinano (LRSUM) [17, 18] 𝑚6𝐴 87-90% (Accuracy) Linear regression, z-score outliers (Multiple)
Drummer [4] 𝑚6𝐴 Comparative overlap w/ Eligos only Modified G-Test & Odds ratio

Figure 1: A. Basecall reactivity profiles were plotted against SHAPE-CE reactivity. reactivity profiles were scaled to SHAPE-CE
reactivity for direct comparison. The green line indicates the SHAPE-CE reactivity threshold which is approximately .2 when
scaled to unit. Both data were scaled to unit vector and the average number of reactive sites, using SHAPE-CE medium and
high reactivities as ground truth, detected across our control sequences was 12 and the maximum number was 17. The average
distance between the basecall error and SHAPE-CE reactivity was approximately .07. The basecall reactivity profiles were in
agreement with SHAPE-CE reactivity, less than the average distance between the two measurements, on average 46 % of all
measured sites.

distributions and modified nucleotides exhibit effects in reactiv-
ity of up to 2 nucleotides both upstream and downstream of the
indicated nucleotide. Moreover, modified nucleotides can show
moderate to significant decreases or increases in reactivity that cor-
related with a modified nucleotide indicated by SHAPE-CE which
means the definition of an outlier in this context is highly variable.
To account for non-Gaussian and non-parametric behaviour that
confounds typical outlier detection, we applied a Gaussian ker-
nel density estimate (KDE) to estimate local relative probabilities
(within 3-5 nucleotide) for each base Methods A.2.5.

Next, we applied peak detection to the KDE using a 2 base peak
plateau to capture adjacent modifications and compared them to
SHAPE-CE reactivities to determine relative probabilities and ac-
curacy of peaks across our control sequences (Methods A.2.6). We,
again, applied the MWU and KS tests to the resulting distribu-
tions. Both tests are non-parametric tests of the null hypothesis
that the distribution underlying two samples are the same. While
outlier based methods were not significantly correlated with exper-
imental SHAPE-CE data, p-values rejected the null hypothesis that

the distributions are the same. P-values using peak detection indi-
cated similar distributions for all sequences except Tetrahymena
ribozyme (Table 2).

6.1 Probabilistic Peak Weights
Finally, we optimized the relative probabilities within the ±2 base
ranged of a peak. Our analysis showed a consistent ranking from
lowest to highest accuracy for each offset between [−2, 2], where
negative indicates upstream and positive indicates downstream,
in comparison with SHAPE-CE reactivity. The position 2 bases
upstream from a detected peak, had the highest accuracy across
control sequences (Methods A.2.3). We used this observation to
determine relative probabilities for each offset from [−2, 2] by find-
ing a weight vector, 𝑤 , that maximized the average accuracy all
sequences. Using the control sequences, we calculated the joint
probability of a given base being modified at relative position to
the detected peak. The 𝑤 vectors ranked from lowest to highest
between [−2, 2] was .35, .25, .25, .1, and .2. We evaluated these
relative probabilities at each offset and determined their accuracy.
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7 PERFORMANCE
First, we evaluated the distribution correlations using the outlier
based method, LRSUM and LNPPD. The outlier based method distri-
butions indicated 𝑝 < .05meaning the distribution of bases detected
in silico differed significantly from bases detected by SHAPE-CE
using both MWU and KS test. LNPPD demonstrated improved the
correlation of in silico detected bases to experimentally detected
bases compared to both outlier and LRSUM detection method and
were significantly correlated (𝑝 > .05), except for in the case of the
Tetrahymena ribozyme where LRSUM was very highly correlated
with SHAPE-CE.

Next, we evaluated the average accuracy and coverage of our
method against both the outlier detection method and LRSUM
[18]. LNPPD demonstrated improved coverage and detection of
modified bases indicated by SHAPE-CE compared to both the outlier
detection method discussed in this work and LRSUM. Average
accuracy of detected modified bases across all sequences increased
on average by 12% compared to the outlier method and by an
average of 22% compared to LRSUM.

8 DISCUSSION
All methods of analysis on basecall data have several caveats includ-
ing accommodating changes in underlying methods, imbalanced
data sets, the use of averaged reads across many sequences, and
inherent noise and variation of sequence structure. Additionally,
the basecalling algorithm used by Oxford Nanopore have changed
several times [25] and therefore the effectiveness of any method
may be limited by these changes. Non-parametric approaches, like
LNPPD, may more easily adapt to and accurately capture dynamic
effects. Modifications to native or in vitro transcribed RNA, may
yield imbalanced data sets, unlike synthetic modifications. As a
result, different measures of accuracy may be required based on
the prediction task. For instance, imbalanced data sets are not well
suited to machine learning methods requiring balanced training
sets and straight forward anomaly detection may rely too heavily
on statistical assumptions. Approaches like LNPPD accommodate
a more robust method of anomaly detection. While many works to
date are based on averaged reads across many sequences, additional
orthogonal experiments with single nucleotide resolution may fur-
ther improve results. Finally, the noise and variance we see is often
sequence dependent as observed in all algorithms the accuracy is
related to the structure of the sequence, proximity of modifications
and other factors which have yet to be explored. Based on this,
we conclude that Guppy basecall errors can be used to determine
structural modifications, but due to the inherent noise and variation
across sequences there may be a more practical use as an a priori
probability. We designed the probabilistic peak weights (Section
6.1) to act as a control for variance in downstream analysis.

9 CONCLUSION
We have presented a novel method for detection of structural mod-
ification in Oxford Nanopore’s basecall data that does not require
the use of synthetic sequences to detect changes. LNPPD does not
rely on pre-trained data or synthetic sequences, it is agnostic to
the type of change whether it is a𝑚6𝐴 endogenous modification

A

B

Figure 2: A. Accuracies were measured for each sequence and
compared using Epinano’s method (gray), outlier detection
method (blue) and the non-parametric approach (purple). In
all cases non-parametric peak detection outperforms other
methods. It specifically outperforms LRSUM by on average
22%. B. Depicts the increased coverage or number of pre-
dicted bases for each sequence compared to experimentally
predicted bases, SHAPE-CE: LRSUM (gray), outlier detection
(blue), non-parametric peak detection (purple), and SHAPE-
CE (black). Both LRSUM and LNPPD significantly outper-
form outlier detection methods. However, the differences in
coverage between LRSUM and LNPPD is comparable. Base
coverage more than doubled using LNPPD and more closely
approached the number of bases detected using SHAPE-CE
for FMN riboswitch and Lysine Riboswitch.

or AcIm chemical modification and, therefore, more generalize-
able than existing methods. Moreover, our method emphasizes a
non-parametric approach that does not rely on the assumption of
standard Guassian distributions to detect outliers as modifications.
Instead, localized peak detection more accurately distinguishes be-
tween persistent non-specific anomalies and actual modified sites.
Finally, weighted probabilities allow for fine-tuning of accuracy
and coverage over multiple sequences, and optimization for spe-
cific modification features. We demonstrated that LNPPD offers
improved accuracy and coverage over existing methods and more
closely aligns with experimental predictions. This suggests that
non-parametric methods, like LNPPD, have wider applicability to
diverse sequences and modifications.

In the future, as more work on Oxford Nanopore’s basecall and
signal analysis becomes available, the estimated probabilities could
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Table 2: P-Values of Distribution Correlations

Sequence Outlier based MWU & KS Test LRSUM based MWU & KS Test LNPPD based MWU & KS Test

Tetrahymena ribozyme 2.84e-08, 1.10e-42 0.65, .99 3.75e-09, 4.16e-06
E. coli tmRNA 0.0003, 4.54e-30 .007, .099 0.02, 0.36
HCV IRES 8.05e-11, 1.05e-49 1.82e-05, .001 0.06, 0.07
FMN riboswitch 1.55e-07, 2.79e-19 2.67e-06, .02 0.38, 0.99
Lysine riboswitch 6.39e-17, 4.42e-34 .001, .099 0.01, 0.29

serve as orthogonal information for detection of structural modifi-
cation along with signal analysis and other sequence characteristics.
Future work should focus on expanding this characterization across
a large number of RNA sequences and experiments and developing
better probabilistic estimates across larger datasets for application
to novel RNA.
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10 APPENDICES

A RESEARCH METHODS

A.1 Experimental Methods
A.1.1 In vitro transcription. DNA templates were amplified by
PCR using custom oligos in order to add a T7 promoter and a
structured cassette 3’ of the sequence of interest (as in [26]). RNA
were in vitro transcribed from PCR amplified templates using T7
RNA polymerase (NEB) for 2 hours at 37°C. DNA templates were
digested with DNAse I (NEB) for 15 minutes at 37°C and RNA
products were purified using SPRI beads (Beckman). RNA were
quantified with a Nanodrop 2000 (Thermo) and their integrity was
assessed by gel electrophoresis.

A.1.2 SHAPE-CE. SHAPE-CE was performed as in [11]. 12 pmoles
of RNA were folded in 40 µL as for electromobility shift assays.
One 18 uL aliquot was added to 2 µL SHAPE probe (0.75 M AcIm
or 1M BzCN or DMS) and one 18 µL aliquot was added to 2 µL
DMSO as the non-modified control and incubated for 10 minutes.
RNA were precipitated with 0.3 M sodium acetate, 1 µg glyco-
gen and 75% ethanol at -20°C. After centrifugation, pellets were
washed in ethanol 75%, air dried and resuspended in 10 µL H2O.
RNA were reverse transcribed using MMLV reverse transcriptase
(Thermo) for 30 minutes at 42°C with 0.3 µM 6-FAM-labeled primer
(Applied Biosystems). A sequencing reaction was set in parallel
with a NED-labeled primer and 0.5 mM ddTTP (Jena Bioscience).
cDNA from probing and sequencing reaction were then mixed and
precipitated with 0.3 M sodium acetate, 1 µg glycogen and 75%
ethanol, resuspended in HiDi formamide and submitted to capillary
electrophoresis (Applied Biosystems). Flurorescence signals were
processed using QuSHAPE [15] to determine SHAPE reactivities.

A.1.3 ONT sequencing. RNA were polyadenylated with E. coli
polyA polymerase (NEB). Polyadenylation efficiency was assessed
by gel electrophoresis and RNA were purified on RNAClean &
Concentrator columns (Zymo Research). Polyadenylated RNA were
modifiedwith AcIm as for SHAPE-CE, then purified on RNAClean&
Concentrator columns. 200 ng of RNA processed for ONT sequenc-
ing using SQK-RNA002 kit (ONT) using the provided RTA adapter.
Superscript IV (Thermo) was substitued to Supercript III with no
notable effect. Ligated, reverse-transcribed RNA were loaded on
Flongle flow cells (R9.4.1 chemistry) and run until the number of
active pore dropped bellow 5.

A.2 Data Analysis
A.2.1 Basecalling Nanopore Reads. RNA sequences were base-
called with ONT Guppy basecalling software version 5.0.11 [25]
with filtering at QC >= 7 during sequencing to ensure at least 20,000
reads were obtained for non-structure probed RNA (control). Sub-
sequently, all RNA were basecalled without filtering and aligned to
their respective sequences using Minimap2 version 2.24 [16]. For
noncoding reference sequences and structure were obtained from

PDB [6] and from existing literature for HCV IRES[8] and E. coli
tmRNA [13].

A.2.2 Basecalling Reactivity Profiles and Transformation. Basecall-
ing reactivity profiles were generated for control sequences using
Guppy [25] for both unmodified (DMSO) and modified (AcIm) con-
trol sequences. Basecalling reactivity profiles were generated using
Pysam [3], Samtools [10], and Minimap2 [16] to obtain insertion,
deletion, and mismatch errors for each read and each nucleotide.

For all reads, at position, i, in sequence, 𝑆 , the basecalling error
at 𝑝𝑖 is the sum of the insertions, 𝐼 , deletions, 𝐷 , and mismatches,
𝑀 at 𝑝𝑖 divided by the total number of reads at 𝑝𝑖 . The basecalling
reactivity profile consists of all 𝑝𝑖 ∈ 𝑆 .

𝑝𝑖 =

∑ (𝐼𝑖 + 𝐷𝑖 +𝑀𝑖 )
∥𝑝𝑖 ∥

(1)

We evaluate the empirical cumulative distribution function (cdf)
for each reactivity profile using the standard discrete cdf where
𝐹𝑑𝑚𝑠𝑜 =

∑
𝑥𝑖≤𝑥 Pr(𝑥𝑖 ) and 𝐹𝐴𝑐𝐼𝑚 =

∑
𝑥𝑖≤𝑥 Pr(𝑥𝑖 ) and difference,

Δ𝐹 is calculated as 𝐹𝐴𝑐𝐼𝑚 − 𝐹𝑑𝑚𝑠𝑜 .

A.2.3 Measuring Accuracy. Accuracy is based on a 2 base offset
both upstream and downstream are calculated for all controls since
nucleotide modifications have been observed exhibiting both up-
stream and downstream effects. We calculated accuracy based on
±2 nucleotides from an indicated modification. Meaning if a base is
identified as having a modification by a method, then it is counted
as true if there is a modification indicated by SHAPE-CE within
±2 nucleotides. Accuracy is defined as TP+TN

𝑃+𝑁 where TP indicates
true positive, TN indicates true negative, p indicates positive, and n
indicates negative. Due to imbalanced data sets balanced accuracy
may be a better measure of accuracy for some sequences.

A.2.4 Statistical Outliers. Statistical outliers were defined as 𝜇±𝑘𝜎 ,
where 𝑘 represented the factor of standard deviations required to
detect outlier. 𝑘 was varied to account for non-Gaussian distribu-
tions present in reactivity profiles. The optimal 𝑘 was chosen to
compute the performance metrics for each sequence and the best 𝑘
for all sequences was used to define the final metric.

A.2.5 Kernel Density Estimate. We apply scikit-learn’s kernel den-
sity estimation [2] using a Gaussian kernel and the "scott" bandwith
method to 𝐹𝑘𝑑𝑒 = KDE(Δ𝐹 ) (Methods A.2.2) detect local maxima
and minima using a 3 base sequential subset of nucleotides for each
estimate, we iterate over each 𝐹𝑘𝑑𝑒 [𝑖 : 𝑖 +2]. Using all of 𝐹𝑘𝑑𝑒 elicits
global maxima and minima that are not ideal as the cdf is a mono-
tonically increasing function to observe local changes. Variation
and noise in basecalling reactivity do not necessarily allow for a
global threshold.

A.2.6 PeakDetection. Weapply scikit-learn’s peak detectionmethod
to the KDE of 𝐹𝑘𝑑𝑒 (Methods A.2.5) detect local maxima andminima
within a maximum width (or plateau)of 2 nucleotides to allow for
adjacent nucleotide modification [1]. Initial examination suggests
that there may be some further improvement in applying additional
transforms such as wavelet to Δ𝐹 before performing peak detection.
Our methods applies the non-parametric kernel density estimate
(Methods A.2.5).

https://doi.org/10.1016/j.csbj.2022.10.023
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B SUPPLEMENTAL DATA
B.1 Accuracy by Basecall Column Feature by

Sequence
In Table 3, we show that basecall reactivity correlated well with
column reactivity, being on average at or above the maximum accu-
racy for individual columns except in the case of Lysine. We opted
to use basecall reactivity (Methods A.2.2) as selecting individual
sets of columns as suggested in Epinano [18] yielded little overall
advantage in accuracy and the sum in basecall reactivity could aptly
capture changes.

B.2 Accuracies for Linear Regression Sum of
Errors with Outlier Detection using z-score

In Table 4, we applied Epinano’s [18] method of using the recon-
struction error between actual errors and errors predicted by linear
regression using the basecall columns as features. We used the rec-
ommended columns of insertion, mismatch, deletion, and quality

for all predictions. Outlier values were tested at 𝑧 ≥ 1 and 𝑧 ≥ 2,
and set at 𝑧 ≥ 2 as this produced the best accuracy for this method,
however it did reduce coverage and overlap with SHAPE-CE, sig-
nificantly in some cases. This method was calculated with the same
offset values used in peak detection, and performed best with an
offset of −2 (Table 3). We observed that varying columns would
need to be customized for each sequence and this method did not
lend itself well to a fully unsupervised prediction method. As doing
feature determination in this way requires a more supervised ap-
proach. Therefore, we opted to use all recommended columns for
each sequence for a reasonable comparison to our method. We did
not apply the optional Bonferroni correction to this method and
that may offer some additional improvement in accuracy.[
𝑟2 𝑟4 𝑟5 𝑟1 𝑟3

]
∗
[
𝑤2 𝑤4 𝑤5 𝑤3 𝑤1

]
=
[
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

]
𝑃 (𝑠𝑖 = 𝑝𝑒𝑎𝑘 ∧ 𝑠𝑖 =𝑚𝑜𝑑) =

[
𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

]
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Table 3: Accuracy by Basecall Column Feature by Sequence

Sequence Mismatch Insertion Deletion Quality Basecall Reactivity Most Reactive Column

Tetrahymena ribozyme .62 .60 .57 0 .61 Mismatch
E. coli tmRNA .71 .72 .71 0 .75 Insertion
HCV IRES .71 .76 .79 0 .79 Deletion
FMN riboswitch .79 .79 .79 0 .78 Equal
riboswitch .75 .75 .75 0 .68 Equal

Table 4: Accuracies for Linear Regression Sum of Errors with Outlier Detection

Sequence Accuracy Number of Predicted Bases Number of SHAPE-CE Predicted Bases Coverage

Tetrahymena ribozyme .52 126 138 66
E. coli tmRNA .58 123 90 57
HCV IRES .58 132 79 55
FMN riboswitch .77 5 55 0
Lysine riboswitch .64 27 52 9
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