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ABSTRACT

While a lot of work has focused on improving the efficiency, scalabil-
ity, and usability of machine learning (ML), little work has studied
the cost of data acquisition for ML-based analytics. Datasets are
already being bought and sold in marketplaces for various tasks,
including ML. But current marketplaces force users to buy such
data in whole or as fixed subsets without any awareness of the
ML tasks they are used for. This leads to sub-optimal choices and
missed opportunities for both data sellers and buyers. In this paper,
we outline our vision for a formal and practical pricing framework
we call model-based pricing that aims to resolve such issues. Our
key observation is that ML users typically need only as much data
as needed to meet their accuracy goals, which leads to novel trade-
offs between price, accuracy, and runtimes. We explain how this
raises interesting new research questions at the intersection of data
management, ML, and micro-economics.
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1 INTRODUCTION

Analytics using machine learning (ML) is now an integral part of
science, business intelligence, journalism, and many other domains.
Research and industrial efforts have largely focused on how to
integrate ML with data systems (e.g., MADIib [8]), how to improve
performance or scalability (e.g., GraphLab [18]), cloud ML services
(e.g., Microsoft AzureML), or applying database ideas to ML tasks
(e.g., Columbus [23]). However, limited research has studied the
cost of acquiring data for ML-based analytics: users often buy data
from one or more data sellers to train their ML models.

Many companies, including Bloomberg, Twitter, and Lattice
Data sell rich, marked-up, structured (relational) datasets. But
such datasets are often very expensive due to the immense effort
that went into collecting, integrating, and cleaning them. Today,
such datasets are often sold through data markets, possibly in the
cloud, e.g., Azure Marketplace [2] or BDEX [1]. But existing data
markets either force users to buy the whole dataset or support
very simplistic pricing mechanisms such as pricing fixed subsets [9]
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without any awareness of ML tasks. This means that valuable
datasets are often not accessible to many users with limited budgets.
In turn, this leaves a large market of potential buyers untapped for
sellers and marketplaces. As ML-based analytics grow in popularity,
it is a pressing challenge to devise more flexible, ML-aware pricing
frameworks that could democratize access to valuable datasets.

In this paper, we describe our vision for a formal and practical
fine-grained pricing framework for ML over relational data in the
cloud. Our key observation is that a sample of the available data is
often enough to train an ML model to achieve an accuracy desired by
the user; the price then should depend on the size of sample used and
not the full dataset. Since the price is based on the model instance
returned after training over the samples, we call our framework
model-based pricing (MBP). We start with two motivating examples.

Example 1. Alice is a journalist studying the relationship between
demographics and economic indicators for an upcoming article. She
wants to test how predictive some demographic features are of the
average annual household income. Datasets with such demographic
information exist online, but they are expensive and exceed Alice’s
available budget. In this scenario, a system or a data marketplace
with MBP would allow Alice to be charged only based on her ML
task and desired accuracy. In particular, a subset of the examples and
perhaps, an appropriate subset of the features might be sufficient
for Alice’s purposes.

Example 2. Companies like Twitter, IBM, and Lattice Data pro-
cess text, images, and other so-called “dark data” sources to build
structured knowledge bases, which they then sell. For example,
Twitter’s GNIP API [3] enables users to pay for aggregate data
about an audience (a set of Twitter users with the same age, lo-
cation, and/or gender). Such datasets are bought by advertising
companies, online retailers, business analysts, etc., who use it to
build ML models about user behavior to develop better market
strategies, detect fraud, etc. MBP could offer more flexibility for
such buyers, potentially increasing the market size.

Our Contributions. We propose a novel framework, called model-
based pricing, to price ML models learned over relational data.
Model-based pricing involves three agents: seller, broker, and buyer.
The seller provides the dataset that they wish to sell, the buyer
specifies the ML model they wish to learn along with specific cri-
teria (e.g., accuracy, budget), and the broker releases an ML model
instance trained on (subsamples of) the dataset based on the crite-
ria specified by the buyer. The basic premise of MBP is that there
is a fundamental accuracy-price trade-off in ML analytics: buyers
are typically willing to pay more for a model instance with higher
accuracy. Conversely, buyers are typically willing to tolerate a lower
accuracy for a lower price. Thus, a key desideratum is that an ML
model instance’s price has to be significantly lower than the price
of the dataset (subsample) it was trained on; otherwise, a buyer can
simply purchase the dataset and train a model themselves.
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2 BACKGROUND AND RELATED WORK

Pricing Relational Queries. The problem of pricing relational
data has received a lot of attention recently. This has been driven
by the growing number of data brokers and data markets in the
cloud. The pricing schemes currently supported in data markets are
typically simplistic: a prospective buyer can either buy the whole
dataset for some fixed price, or ask simple queries and be priced
according to the number of output tuples.

A recent line of work [4, 9-11, 17] started the formal study of
pricing schemes for assigning prices to relational queries issued
over such data, a setting called query-based pricing. In query-based
pricing, we are given a dataset D and a query Q, and the goal is to
assign a price p(Q, D) based on the information disclosed by the
query answer. Central to query-based pricing is the notion of arbi-
trage. Intuitively, whenever query Q; discloses more information
than query Q,, we want to ensure that p(Q1) > p(Q2); otherwise,
the data buyer has an arbitrage opportunity to purchase the desired
information for a lesser price. To formalize information disclosure,
query-based pricing uses the mathematical tool of query determi-
nacy [20, 21]. In the proposed framework [9], the seller specifies a
set of fixed prices for views over the data (price points), based on
which an arbitrage-free price is computed for any query.

At first glance, MBP seems similar to query-based pricing. For
relational queries, the price is for the information released by the
query output, while for ML analytics, the price is for the information
released by the model instance. However, there are fundamental
differences: for relational queries, the buyer obtains a deterministic
answer, while for ML analytics, the model is typically computed
in an non-deterministic way using random sampling. Also, in MBP,
we enable the buyer to specify an accuracy constraint to control
the predictive power of the model instance they buy.

ML over Relational Data. We focus on standard supervised ML
for relational/structured data, specifically, classification and regres-
sion. We are given a dataset table D with N labeled examples and
d features. The target (label) is denoted Y, while the feature vector
is denoted X. We assume that X and Y correspond to the attributes
of a single relation. In this setting, the labeled examples are typ-
ically assumed to independently and identically distributed (IID)
samples from some underlying (hidden) distribution that produces
the data, P[X, Y]. An ML model is simply a mathematical model to
approximate P in some intuitive manner. For example, the ordinary
least squares regression model assumes the data can be represented
using d-dimensional hyperplane. An ML model instance is a specific
instance of that ML model that corresponds to some prediction
function f : Dx — Dy. For example, an instance of the least
squares linear regression model a given vector w € R%. Given D,
a learning algorithm computes such a prediction function. The set
of functions learnable (representable) by an ML model is called its
hypothesis space. The predictive power of a model instance is often
evaluated using standard scores such as holdout test error [5]. There
are hundreds of ML models [19]; some of the most popular ones
are Naive Bayes, other Bayesian Networks, and Generalized Lin-
ear Models (GLMs). These models are popular mainly due to their
interpretability, simplicity, speed, and extensive systems support.
Thus, we primarily focus on such models.
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3 OVERVIEW OF MODEL-BASED PRICING

We now provide an overview of model-based pricing, including the
key concepts and assumptions.

In a data marketplace, the seller provides the dataset D(X,Y)
that they wish to sell. The broker specifies a set M of supported ML
models (e.g., logistic regression and Naive Bayes for classification,
ordinary least squares for regression, etc.). Let Hp, denote the
hypothesis space of an ML model m € M and h;,, € Hyp, denote an
instance of ML model m. The broker also specifies a training algo-
rithm Ty, for each supported ML model m. For the sake of simplicity,
we also assume that the broker (or the seller) sets aside a holdout
test set with the same schema as D to measure the generalization
error (in short, error) of an ML model. The seller also provides the
broker model-specific pricing functions for D, which help determine
how much lower the price of a model instance trained on a subset
of D should be compared to a model instance trained using all of D.
We will discuss here two orthogonal scenarios for pricing:

Horizontal pricing : in this scenario, a subset of the exam-
ples in the dataset are used to train the model.

Vertical pricing : in this scenario, a subset of the available
features (attributes) are used to train the model.

The buyer specifies an ML model m € M they are interested
in learning over (a subset of) D. They buyer also specifies a set of
optimization criteria: objective and budget constraints (along with
a random seed for reproducibility) to compute a desired model
instance hy,. While the specifics of the optimization formulations
differ for horizontal and vertical pricing, in general, the buyer can
specify an accuracy (error) budget or a price budget and request
the broker to optimize for the other. The broker performs the ML
task based on the buyer’s preferences and returns a learned model
instance hy, to the buyer. We will later discuss on how to extend the
framework to also handle cloud resource costs and time constraints:
the buyer can then also specify a time budget, while the broker also
factors in the cost of the computational resources used to handle
the buyer’s request. Our framework aims to make it easier for
buyers to specify their ML tasks over data for sale in the cloud,
for the sellers to specify their pricing functions, and for brokers to
efficiently perform the model-based pricing computation.

4 PROBLEMS AND CHALLENGES

In this section we discuss the proposed pricing framework, consist-
ing of horizontal pricing, vertical pricing, and pricing in practice.

4.1 Horizontal Pricing

Models. In horizontal pricing, only the data examples are priced.
Formally, given a dataset (relation) D(X,Y) with N tuples, all
features in X will be utilized for ML but only a subset of the N
examples—determined by the buyer’s preferences-will be used. The
buyer performs a single transaction with the broker requesting
them to subsample D on some specified criteria to train an ML
model and return the model instance. We consider two settings
from the seller’s perspective: uniform tuple pricing and stratified tu-
ple pricing. In the former, all data examples are treated equally and
the price of a model instance depends only on the size of the sample.
Formally, the seller specifies a pricing function p : M x [N] — R*
to price a subset D’ C D at cost p(m, |D’|). In the latter, however,



Model-based Pricing: Do Not Pay for More than What You Learn!

data examples are treated non-uniformly, i.e., the price depends on
both the size and content of the sample. Formally, the seller pro-
vides the broker with a collection of datasets D = {Dj, Dy, ..., Dy}
with the same schema: D; has N; tuples. Let D = Ui.c:lD,- and

N = Zle N;. The seller also provides k pricing functions of the
form p; : M x [N;] — R¥ to price subsets of D;. Figure 1(B) shows
three possible price curves that can be set by a seller given the error
curve in Figure 1(A). Note that P is the price of the model instance
trained on D, which must be smaller than the price of D itself.
There are two ways to model the user behavior: (i) the user has a
fixed error tolerance and aims to minimize the price she has to pay
to achieve that tolerance, and (ii) the user has a fixed price budget
and aims to obtain a model instance that is as accurate as possible.

Challenges. As discussed in [9], a desideratum of query-based
pricing is that it should be arbitrage-free: the buyer should not be
able to answer a query Q by somehow “splitting” it into multiple
queries such that the total price ends up being cheaper than the
price of Q. In model-based pricing, the question becomes the fol-
lowing: Is it possible for the buyer to obtain a similar (or higher)
accuracy at a cheaper price by somehow “combining” multiple model
instances trained on multiple smaller subsamples compared to one
larger subsample? We describe next how we can formally define
these notions for uniform tuple pricing.

Definition 4.1 (Strong Arbitrage). If there exists k € Z* s.t. for any
dataset D, there exists k + 1 subsets of D, viz., D1, D2, - -+ , D, Dg4q
and a function g(-) that maps k models to 1 model, such that:

k

> p(mi. Dil) < plmgss. IDgess).

) (1)
e(g(mi, mg, -+ ,my)) < e(Mp4q),

then the pricing function p(-, -) is k-strongly arbitrage.

Definition 4.2. Strong arbitrage freeness for uniform tuple pric-
ing: if the pricing function p(-, -) is not k-strongly arbitrage, then
we call it k-strongly arbitrage free.

Definition 4.3 (Weak Arbitrage). If there exists k € Z* s.t. there

exists some dataset D with subsets D1, D, - - - , Dy, D1 and a func-
tion g(-) that maps k models to 1 model, such that:

k

D pmi, IDi) < p(mpsr, IDgsa ),

im1 (2
e(g(my, ma, - -+ ,mg)) < e(Mpyq)s

then the pricing function p(-, -) is k-weakly arbitrage.

Definition 4.4. Weakly arbitrage freeness for uniform tuple pric-
ing: if the pricing function p(, -) is not k-weakly arbitrage, then
we call it k-weakly arbitrage free.

If a pricing function p is strongly arbitrage, then no matter what
dataset the seller has, a buyer is always able to combine a few
models at a cheaper price to obtain a lower error than buying a
single model. That is to say, no matter what the dataset is, there
is some subset of the data with an “invalid” price to the seller. A
strong arbitrage pricing function is hardly useful to a seller and
thus, must be avoided.
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Figure 1: Illustrating pricing functions. (A) An ML classifier’s er-
ror; (B) Different pricing functions in the model-based pricing set-
ting for ML analytics. (C) the price error curve. The tradeoffs of the
pricing scheme become clear. Curve 1 sees the price drop sharply
even for modest increases in error, which makes it hard for buyers
to fix a precise error budget. In contrast, curve 3 extracts a much
higher price even if only small fraction of the dataset is used.

If a pricing function p is weak arbitrage, then for some dataset,
a buyer could be able to achieve a lower error than using a single
model by combining a few models with a lower price. It is certainly
possible that a buyer cannot make profit from some dataset using a
weak arbitrage pricing function. Therefore, a weak arbitrage price
function can still be valid to a seller for certain datasets. Note that
weak arbitrage freeness is desired, but strong arbitrage freeness is
required. In other words, the former one implies the latter one.

Given the above definitions, we seek to characterize the class of
pricing functions that satisfy the (strong/weak) arbitrage freeness
guarantees. This task is challenging because the characterization
depends on the particular ML task and the dataset on hand.

4.2 Vertical Pricing

Models. In this setting, we allow the buyer to pick a subset of the
features to learn a model. Formally, the seller registers D(X, Y)
with N tuples and d = |X] features with the broker. In contrast to
horizontal pricing, in vertical pricing, we assume that all examples
in D will be used for ML but perhaps only a subset of the d features,
determined by the user’s preferences, will be used. Similar to the
uniform versus stratified distinction in horizontal pricing, there
are two alternatives pricing settings in vertical pricing too, viz.,
uniform feature pricing and stratified feature pricing. The former
assumes that all features are treated equally and the price only
depends on the number of features used, while the latter assumes
different prices for different features, as specified by the seller.

Challenges. Similar to horizontal pricing, we need to define the
notion of arbitrage freeness and provide corresponding guarantees.
A new challenge is how to incorporate feature selection methods
with pricing. Since optimal feature selection is an NP-hard prob-
lem, most practical feature selection methods use different heuristic
techniques [7]. Furthermore, any database dependencies among
features also need to be taken into account in the pricing formula-
tion [15]. These issues make it challenging to incorporate feature
selection with pricing in a principled way.

4.3 Pricing in Practice

Models. Besides accuracy and price, computational cost is another
important resource in practical machine learning tasks, especially
those performed in the cloud setting.
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Example. Consider the journalist Alice again, who wants to learn
a logistic regression model over a demographic dataset. But now
she has an additional constraint of having to finish this task within
30 minutes so that she can prepare her report in time. Of course, she
also has a price budget and would like the lowest error. This leads
to a new optimization problem space for the broker: should they
spend more of the money for more resources to run more iterations
or should they spend more of the money for a larger sample and
run fewer iterations with fewer resources?

This example illustrates the fundamental challenge: the price-
accuracy tradeoff of model-based pricing has to be expanded to a
price-accuracy-runtime tradeoff space. To take into account the com-
putational cost, the broker needs two more tools. First, a runtime
modeling function should be provided to measure how much time
it takes to run a specific ML model using a given number of tuples
and features. Second, a resource pricing function must be provided
to measure how much the resource costs. Note that this is the cost
of computational resources, including CPUs or GPUs and memory,
not the cost of the data.

Challenges. The first challenge is how to model the resource costs
for ML. This is challenging partly because different ML algorithms
have different runtime characteristics and hyper-parameters. From
a technical perspective, this problem subsumes the problem of
pricing cloud resources for ML tasks; thus, any new mechanisms
developed as part of this work are likely to have implications beyond
just the context of pricing.

We first consider ML models with no hyper-parameters that af-
fect runtime. This primarily means that the training algorithm only
needs only one pass over the data (e.g., inversion-based least squares
regression and Naive Bayes), or the number of iterations is known
(e.g., logistic regression with 20 iterations of gradient descent). It
also includes single-pass or fixed-pass feature selection techniques.
However, even for fixed-pass algorithms, the computations are
varied, e.g., Naive Bayes requires counting distinct discrete values,
while linear regression requires a matrix multiplication over a nu-
meric space. Moreover, there is a large variety of resource types in
the cloud: single-core, single-node multi-core, NUMA, distributed
memory, etc. These issues make it challenging to develop generic
mechanisms to model the resource costs of ML workloads. We plan
to build upon some recent work in this space [6, 13].

In addition to fixed-pass training algorithms, some ML models
enable users to specify accuracy-based convergence criteria, e.g.,
applying a threshold on the fractional decrease in the value of the
loss for logistic regression. This makes the task of resource-aware
model-based pricing even more challenging for two reasons. First,
it is not clear how to obtain estimates of the number of iterations
for a given convergence criterion for different sizes of subsamples;
this requires developing a predictive model of how the convergence
criterion affects the number of iterations. Second, it is not clear
how to obtain error estimates for different numbers of iterations of
the optimization algorithm used. To the best of our knowledge, the
classical error bounds in learning theory do not capture the effects
of iterative numerical optimization algorithms.

The final step in our vision is to integrate horizontal, vertical,
and resource pricing into a single framework. The key challenge
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is that runtime will now become a first-class citizen in our opti-
mization formulations. In other words, we have to consider the
price-accuracy-runtime tradeoff holistically, wherein the buyer can
constrain any combination of these quantities.

5 CONCLUSION AND FUTURE WORK

In this paper, we lay out our vision for a formal and practical
framework for pricing datasets and resources for ML in the cloud.
This is only the first step towards a comprehensive framework.
There are several other exciting directions to expand our scope.

First, more complex ML models such as Bayesian networks, artifi-
cial neural networks, decision trees, SVMs, and statistical relational
models are also frequently used. Non-relational data (images, text,
video, etc.) might require complex feature extraction, possibly im-
plicitly within an ML model (as in deep learning [16]). Handling
such complex models is a key avenue to extend our framework. Sec-
ond, we assumed that buyers know which ML model they want. But
in practice, users often perform model selection and explore different
ML models [5, 19] and refine their choices iteratively [14]. Systems
such as AutoWeka [22] and MLbase [12] help automate parts of
such model selection tasks. Incorporating such manual, iterative,
or automated model selection and refinement along with pricing is
another key avenue to extend our framework. Third, in some cases,
datasets offered for sale come with privacy constraints because they
were extracted from private users. Integrating model-based pricing
with data privacy is also a core future challenge.
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