A General Distributed Approach to Slice Embedding with Guarantees

Flavio Esposito®

flavio@cs.bu.edu

SComputer Science Department
Boston University, MA

Abstract—To provide wide-area network services, resources
from different infrastructure providers are needed. Leveraging
the consensus-based resource allocation literature, we propose a
general distributed auction mechanism for the (NP-hard) slice
embedding problem. Under reasonable assumptions on the bid-
ding scheme, the proposed mechanism is proven to converge, and

it is shown that the solutions guarantee a worst-case efficiency

of (1 — %) relative to the optimal solution. Using extensive

simulations, we confirm superior convergence properties and
resource utilization when compared with existing distributed slice
embedding solutions, and we show how by appropriate policy
design, our mechanism can be instantiated to accommodate the
embedding goals of different service and infrastructure providers,
resulting in an attractive and flexible resource allocation solution
for network virtualization.

I. INTRODUCTION

The challenge of deploying wide-area virtualization based
network services recently spurred interest in both the business
and the research communities: from a research perspective,
this enables the networking communities to concurrently ex-
periment with new Internet architectures and protocols, each
running on an isolated instance of the physical network. From
a market perspective, this paradigm is appealing as it enables
multiple infrastructure and service providers (InPs and SPs) to
experiment with new business models that range from leasing
their infrastructure to hosting multiple concurrent network
services.

A slice (or virtual network) is a set of virtual instances
spanning a set of physical resources, e.g. processes and phys-
ical links, and by network service we mean the commodity
supplied by the slice, e.g. an online game or the access to
a distributed virtual network testbed. Examples of service
providers are content delivery networks, high performance
computing systems such as cluster-on-demand, or large-scale
distributed testbed platforms (e.g. Emulab [23], GENI [2].)
InPs may cooperate or compete to provide such services
themselves, or they could lease their resources to an SP. We
consider a model in which a set of InPs receive a slice request
from an SP (or an intermediary “connectivity” provider [26]),
and try to embed it in a distributed fashion.

The slice embedding problem ' consists of three tasks: (1)
resource discovery, which involves monitoring the state of
the physical resources, (2) virtual network mapping, which
involves matching users’ requests to the available resources,
and (3) allocation, which involves assigning the resources

IThe term “slice embedding” was coined in [10]. An alternative term is
“virtual network provisioning” [11].

Donato Di Paola *

dipaola@ba.issia.cnr.it

Ibrahim Matta®

matta@cs.bu.edu

! Institute of Intelligent Systems for Automation
National Research Council (CNR), Bari, Italy

that match the users’ requests. These three tasks are tightly
coupled, and although there exists a wide spectrum of solutions
that solve a particular task, at most two tasks along with their
interactions have been considered (see Section II or [8] for a
complete survey.)

Distributed virtual network mapping solutions that allow
different InPs to collectively embed a slice already exist [5],
[12], [25]: some of them focus on the desirable property of
letting InPs use their own (embedding) policies [5], while
others rely on truthfulness of a virtual resource auction [25].
Although they have systematic logic behind their design,
such distributed solutions are still restricted to a subset of
the three slice embedding tasks, they have performance (e.g.
convergence speed or resource utilization) tightly determined
by the chosen heuristic, and they are limited to a single
distribution model — the type and amount of information
propagated to embed a slice.

Existing embedding solutions are also restrictive with re-
spect to slice’s arrival rate and duration: the lifetime of a
slice can range from few seconds or minutes (in the case
of cluster-on-demand services) to several months and years
(in the case of a slice hosting a content distribution service
similar to Akamai [20], or a GENI [2] slice hosting a novel
architecture looking for new adopters to opt-in.) For instance,
in wide-area testbed applications, slices are provided in a best-
effort manner, and the inter-arrival time between slice requests
and the lifetime of slices are typically much longer than the
slice embedding time, so existing solutions assume complete
knowledge of the network state, and ignore the overhead of re-
source discovery and the slice embedding time. In applications
with higher churns, e.g., cluster-on-demand such as financial
modeling, anomaly analysis, or heavy image processing, where
slice providers have rigid Service Level Objectives (SLO) —
the technical requirements within a Service Level Agreement
(SLA) — or where slices have short lifetime and request
short response time, it is desirable that solutions attempt to
reduce the slice embedding time, and employ limited resource
discovery to reduce overhead.

In summary, due to the wide range of providers’ goals and
allocation models (e.g., best effort or SLO), a flexible solution
that is adaptable to different provider goals and tackles the
distributed slice embedding with its three phases does not
yet exist. Moreover, none of the previously proposed solu-
tions give guarantees on both the convergence of the slice
embedding process, and on allocation performance — ratio
of the number of slices successfully allocated on the physical

infrastructure to the total requested.

To this end, leveraging properties from the consensus lit-
erature [17], we propose a general Consensus-based Auction
mechanism for Distributed slice embedding (CAD). The mech-
anism is general as it supports a large spectrum of applications
and providers’ objectives along with their distribution models
by tuning its policies. CAD iterates over a bidding and an
agreement (or consensus) phase to embed virtual nodes, before
a third phase embeds virtual links. By only exchanging bids
and few other policy-driven information with their neighbors,
physical nodes discover available resources, find a mapping
solution and agree on a slice assignment.

To demonstrate its flexibility, we compare and analyze
the tradeoffs between two different policy configurations of
CAD (Section III): the first, that we call Single Allocation
Distributed slice embedding (SAD), allows bidding on a
single virtual node per auction round. The second, called
Multiple Allocation Distributed slice embedding (MAD), al-
lows bidder physical nodes to win multiple virtual resources
simultaneously and therefore leads to faster slice embedding
(convergence) time. Using extensive trace-driven simulations,
we show the counter-intuitive result that having full knowledge
of the entire slice to be allocated before bidding, MAD may
yield lower allocation efficiency. Moreover, we show that SAD
better balances the load and often has shorter response time
— time to identify whether a slice can be embedded —
independently from the slice (virtual) topology (Section V.)

It is known that distributed auctions converge to a solution
if the bidding function is sub-modular [4], [15]. We obtain
the same convergence result relaxing the sub-modularity as-
sumption and using the notion of pseudo-submodularity of
the utility function that physical nodes use to bid, that is, each
physical node is free to use any private bidding function for
each auction round, and communicates its bids in a way so
that they appear to be obtained using a sub-modular function.
We show that independently from the bidding policy that InPs
decide to adopt, CAD has a worst-case convergence time of
D - |Vy|, where D is the diameter of the physical network
and |V | the size of the slice H to be embedded (Section IV.)
Under the same assumptions, we also show that CAD has a
minimum performance guarantee of (1 — e~ !) relative to the
optimal solution.

II. RELATED WORK

Distributed slice embedding: to avoid restricting services
within a limited single provider’s domain, distributed solutions
to the slice embedding have been proposed. Some solutions
rely on a centralized authority that partitions the slice and
orchestrates the mapping [11], [26], while others do not
require such orchestration and hence we classify them as fully
distributed [12]. The only (to the best of our knowledge)
fully distributed embedding solution existing today [12] has
discouraging discovery overhead as each mapping information
is flooded to all physical nodes. The resource discovery phase
is different in PolyVINE [5], where an SP sends the entire
slice to a subset of trusted InPs, which can eventually map

the slice partially, and forwards the residual virtual subgraph
to another set of trusted InPs. The process continues and the
slice is rejected if a threshold number of hops is reached before
its mapping is complete. The SP does the final allocation,
based on the best price among the multiple candidate mapping
solutions returned by different sets of InPs. The mapping and
the allocation depend on the discovery, that is, on the sequence
of visited InPs and therefore the proposed heuristic in practice
lead to heavy sub-optimalities or to significant overhead (in
case the residual virtual network is flooded to all remaining
InPs.)

Our mechanism also supports slice splitting and centralized
embedding orchestration, but its bidding mechanism (thanks
to the max-consensus strategy) provides a complete resource
discovery relying on low overhead nearest-neighbor commu-
nications, and furthermore allocation is concurrently done.
Auctions and guarantees: the idea of using auctions for
a distributed slice allocation has been floated before: V-
Mart [25] ensures a fair market but its auction winner de-
termination algorithm does not guarantee that the sum of
provider utilities is maximized. Auction algorithms and their
optimality performance have also been theoretically studied in
several application domains [3]. In the electronic commerce
for example [6], truthful auction strategies are sought when
multiple items are released by a centralized auctioneer, and
guarantees on an equilibrium are proven to exist [16]. Our
approach does not need a centralized auctioneer, and we
also prove bounds on the number of iterations to reach an
equilibrium (convergence to an embedding), as a function of
the physical network diameter, and the size of the slice to
allocate. Moreover, in our settings truthful strategies may not
work as there is uncertainty on whether more slices, or even
more virtual nodes in the same slice, are to be assigned in the
future; bidders may have incentives to preserve resources for
stronger future bids.

In different settings, Choi et al. [4] present a decentralized
auction that greedily assigns tasks to a fleet of robots. Our
problem formulation allocates virtual nodes and links, and
physical nodes do not move as robots do.

III. CONSENSUS-BASED AUCTIONS FOR
DISTRIBUTED SLICE EMBEDDING

Problem statement. Given a virtual network H =
(Vi, En,Cy) and a physical network G = (Vg, E¢, Cg),
where V is a set of nodes, F is a set of links, and each node
or link e € V U E is associated with a capacity constraint
C(e), 2 a virtual network (slice) mapping (or embedding) is a
mapping of H onto a subset of GG, such that each virtual node
is mapped onto exactly one physical node, and each virtual
link is mapped onto a loop-free physical path p. Formally,
the mapping is a function M : H — (Vg,P) where P
denotes the set of all loop-free paths in G. M is called a
valid mapping if all constraints of H are satisfied, and for

2Each C(e) could be a vector {C(e),...,C~(e)} containing different
types of constraints, e.g. physical geo-location, delay or jitter.

vt

Node
Agreement

Complete
Assignment

Fig. 1. (a) Slice with capacity constraints to be embedded. (b) Each physical
node (PN) can be owned by a different InP, and can have a different capacity.
(c) CAD workflow: a virtual link embedding phase follows the virtual node
bidding and agreement phases.

each [= (s rf1) € Ey, 3 at least one physical loop-free
path p: (s%,...,7%) € P where s is mapped to s¢ and r#
is mapped to r¢.
Objective: multiple valid mappings of H over G may exist;
each physical node 7 has a utility function U,;. We are
interested in finding in a distributed fashion the embedding
solution that maximizes the sum of the utilities of all providers
ZiEVG Ui, e.g., by letting InPs instantiate policies according
to their goals and run the auction. A natural objective for
an embedding algorithm is to maximize revenue. The revenue
can be defined in various ways according to economic models.
As in [24], we use the notion of a higher economic benefit
(reward) from accepting a slice or virtual request that requires
more resources (e.g., bandwidth, CPU) from the physical
network.
CAD mechanism: consider a slice embedding request by an
SP (Figure 1a) on a physical network (Figure 1b) where each
physical node (PN) belongs to a different InP. The SP sends
to (a subset of) all physical nodes a request with (a subset of)
the virtual elements (nodes and links), e.g. virtual nodes VN1
and VN2 connected by virtual link VL1. Each physical node i,
where i € V(, uses a private utility function U; € RLYH ' to bid
on the virtual nodes, knowing that it could be the winner of a
subset (for example VN1 or VN2 or both), and stores its bids
in a vector b; € RLYH | Each entry b;; € b; is a positive real
number representing the highest bid known so far on virtual
node j € Vy. Also, physical nodes store the identifiers of
the virtual nodes on which they are bidding in a list (bundle
vector) m; € VI?, where T; is a target number of virtual
nodes mappable on 7. After the private bidding phase, each
physical node exchanges the bids with its neighbors, updating
an assignment vector a; € VC|;VH | with the latest information
on the current assignment of all virtual nodes, for a distributed
auction winner determination.

The winner physical nodes communicate the mapping to
the SP which, if possible, releases the next slice(s) or the next
slice partition if any (e.g. VN3, VN4, VL3 in Figure la.) 3

3The slice partitioning problem has been shown to be NP-hard, e.g in [11]
and it is outside the scope of this paper.

Once the physical nodes have reached consensus on who is
the winner for all the virtual nodes of the (partial or full)
slice released for the auction, a distributed link embedding
phase is run to embed each virtual link on a set of (one or
many) loop-free physical paths (Figure 1c.) The mechanism
iterates over multiple node bidding and agreement (consensus)
phases synchronously, that is, the second bidding phase does
not start until the first agreement phase terminates. Physical
nodes act upon messages received at different times during
each bidding phase and each consensus phase; therefore, each
individual phase is asynchronous. In the rest of the paper, we
denote such rounds or iterations of node bidding followed by
consensus with the letter £ and we omit ¢ when it is clear from
the context.

Adapting the definition of max-consensus from the consen-
sus literature [17] to the slice embedding problem we have:

Definition 1: (max-consensus.) Given a physical network
G, an initial bid vector of physical nodes b(0) 2
(b1(0), ..., b ((0)T, a set of neighbors N; Vi € Vi, and

the consensus algorithm for the communication instance ¢+ 1:
b;(t+1)= max {b;(t)} Vie Vg, 1
(1) = max (b0} ViEVe, ()

Max-consensus on the bids among the physical nodes is said
to be achieved with convergence time [, if 3/ € N such that
Vt>land Vi,i € Vg,

b;(t) = by (t) = max{by(0),...,bjy,(0)}, 2)

where max{-} is the component-wise maximum.
Assumptions: we assume that physical nodes are aware of
the physical outgoing link capacity to reach each of its first-
hop neighbors to propagate the highest bids, the routing
table for the path embedding phase, and the diameter D of
the physical network, useful as a termination condition: if a
physical node has received more than D messages the auction
phase terminates. *

CAD Policies: one of the design goals of CAD is its flexibility
— ability to create customizable slice embedding algorithms
to satisfy desired policies, rules, and conditions. We describe
here such policies, and later in this section we show few
examples of how they can be instantiated to satisfy other goals.
A straightforward example of policy is the (normalized) utility
function U that InPs use to bid on virtual resources (nodes).
In our evaluation (Section V), the bid value of physical node
1 on virtual node j is equivalent to U;;, where:

Uij = ———— 3)

Ti=Ci+ Y Ci, -

kEN;
where T; is the target virtual (node and links) capacity that
is allocatable on i, and S;; the stress on physical node 7,
namely, the sum of the virtual node capacity already allocated
on 7, including virtual node j on which ¢ is bidding, plus the
capacity of the virtual links allocated on the adjacent physical

4Algorithms to compute the diameter of a network in a distributed way are
well known [17], and they are outside the scope of this paper.

links. Note that, due to the max consensus definition, the bid
b;; at physical node 4 on virtual node j is the maximum utility
value seen so far. The normalization factor 11% ensures that such
bids are comparable across physical nodes.

We have seen from related work, e.g. [12], [26], how
embedding protocols may require SPs to split the slice. CAD
is able to express this requirement by enforcing a limit on the
length of the bid vector b;, so that physical nodes bid only
on the released slice partition. Each InP can also enforce a
load target on its resources by limiting its target allocatable
capacity T;, which, in turn, limits its bundle size T;.

Another auction policy is the assignment vector a;, that is,
a vector that keeps track of the current assignment of virtual
nodes. a; may assume two forms: least and most informative.
In its least informative form, a; = x; is a binary vector where
x;; 1s equal to one if physical node 7 hosts virtual node j and
0 otherwise. In its most informative form, a; = w; is a vector
of physical nodes that are far winning the hosting of virtual
nodes; w;; represents the identifier of the physical node that
made the highest bid so far to host virtual node j. Note that
when a; = w; the assignment vector reveals information on
which physical nodes are so far the winners of the auction,
whereas if a; = x; physical node 7 only knows if it is winning
each virtual node or not. As a direct consequence of the max-
consensus, this implies that when the assignment (allocation)
vector is in its least informative form, each physical node only
knows the value of the maximum bid so far without knowing
the identity of the bidder. We also leave as a policy whether
the assignment vector is exchanged with the neighbors or not.
In case all physical nodes know about the assignment vector
of the virtual nodes, such information may be used to allocate
virtual links in a distributed fashion. Instead, if a; = x;, to
avoid physical nodes flooding their assignment information, ¢
asks the SP about the identity of the physical node hosting the
other end of the virtual link and attempts to allocate at least
one loop-free physical path.

A. Phase 1: CAD Bidding (Auction) Phase

Consider procedure 1: after the initialization of the assign-
ment vector a;, the bid vector b, and the bundle vector m; for
the current iteration ¢ (line 3) °, each physical node checks if
another bidding phase is needed (line 4), for example because
there is enough capacity or because the auction policy allows
another bidding, or else terminates. If a physical node can
bid, but cannot outbid any virtual node, the bidding phase
terminates. If instead there is at least one biddable virtual
node j i.e. if U;;(t) > b;y; (line 5), ¢ physical node i
registers in its bid vector the bid with the highest reward
n= argmax{h” U;;} (line 6) and updates the state vectors

(lines 7 — 9) At the end of the bidding phase, the current
winning bid vector (line 10) and if the auction policy allows
it (lines 11 — 13), the assignment vector a; are exchanged
with each neighbor. Depending on the configured policies,

5We elaborate on the need to reset m; at the end of Remark 2, Section III-C.
6T(-) is an indicator function, unitary if the argument is true and O otherwise.

Procedure 1 CAD biddingPhase for physical node 4 at iteration ¢
1: Input: a;(t — 1), b;(t — 1)

2: Output: a;(t), b;(t), m;(t)

3: az(t) :ai(t—].), bl(t) :bl(t— 1),ml(t) =0

4: if biddingIsNeeded (a;(t),T;) then

5: if 3 j: hij = I[(Uij(t) > bij(t)) == 1 then

6: 1 = argmax;evy {hi; - U}

7: m;(t) = m,(t) @n // append 7 to bundle

S A

9: update(n, a;(t))

10: Send / Receive b; to/ from k Vk € N;
11: if a, = w; then

12: Send / Receive w; to/ from k Vk € N;
13: end if

14 end if

15: end if

the functions biddingIsNeeded ()
Procedure 1 may behave differently.
SAD configuration: in particular, let us consider a scenario
in which InPs (1) wish to reveal the least possible information
to other (competitor) InPs, and (2) they are interested in
the quickest possible response time on a slice request. To
accommodate these goals, we set the assignment vector policy
to its least informative form, the partition size to two (so that
a slice is rejected as soon as one of the two virtual nodes or
their adjacent virtual link is not allocatable), and the bundle
vector size to one, so that the auction is on a single item. As
we are forcing physical nodes to bid on a single virtual node
per auction round, we refer in the rest of the paper to this
policy configuration as Single Allocation for Distributed slice
embedding (SAD).

SAD bidding: given such policy configuration, the
biddingIsNeeded () function can be implemented
by only verifying if A(t) =3 ;cy, :;(t) = 0, knowing that
bidders are only allowed to win one virtual node per round
“t”, that is, A(t) < 1. Given the SAD policy configuration,
the update () function implementation simply changes the
assignment vector from x;,(t) = 0 to x;,(¢) = 1.

Example 1: (SAD bidding.) Consider Figure 1: virtual
nodes VN1 and VN2 are released by the SP. Assuming that
all nodes use as utility their residual node capacity, PNI,
PN3 and PN5’s initial bidding vectors are bpy;(0) = (8,0),
bpn3(0) = (0,20), and bpys(0) = (0,40). Note that the
first bid of each physical node is its initial capacity, and
PN1 could not bid on VN2 since VN2 requires 9 capacity
units whereas PN1’s capacity is 8. Also we assume that a
physical node, whenever feasible, bids on the virtual node
with highest residual capacity as this brings higher reward
(revenue.) In their first bidding phase, physical nodes assign
themselves as winners for the virtual nodes as they do not
know yet each other’s bids, and so xpy; = (1,0) and
xpng = Xpns = (0,1).

MAD configuration: let us now consider a scenario in which
embedding slices with the least possible auction iterations

and update () of

(convergence time) is more desirable than hiding information
from other physical nodes. To this end, we remove the limit
on the number of biddable virtual nodes within the same
auction round, and we do not partition the slice so that each
physical node has an offline knowledge of the entire slice
(as opposed to SAD that releases the slice components in an
online fashion, i.e. the slice embedding algorithm runs without
a complete knowledge of the input.) Moreover, we set the
assignment vector policy to its most informative form, so that
the consensus is run simultaneously on both the bid vector and
on the assignment vector.

MAD bidding: under these settings, the function
biddingIsNeeded () is implemented so that it returns
true while there is still room for additional virtual resources.
The amount of virtual resources that physical node i is
attempting to host can be expressed either in terms of the
total number of virtual nodes in its current bundle m;(t), i.e.
|m;(t)|, or in terms of the resulting virtual capacity stress
on physical node ¢ as in (3). Also under these settings, the
update () function implementation updates the allocation
vector with w;,(t) = 4 (not just with 1 or 0 but with the
identifier of the winning physical node.)

Example 2: (MAD bidding.) Let us consider Figure 1 and
let us assume that the target allocated capacity of PN3 is 16
units, and that the requested virtual capacity is equivalent to
the reward that a physical node gets if it wins the hosting
of that virtual node. In this example, let us also assume that
physical node bids are equivalent to their residual physical
capacity, e.g., a physical node with residual capacity 10
units bids 10 to attempt the hosting of a virtual node whose
requested capacity is no higher than 10 units. Let us apply
MAD to construct the bundle of PN3. First PN3 bids on VN2,
as it is the virtual node with the highest requested capacity
(reward) and so bpys = (0,20,0,0). After filling its bundle
with VN2, PN3 updates its residual capacity from 20 to 11
(as VN2 requested capacity is 9). The next virtual node to
be inserted in the bundle is hence VNI, as it has the highest
requested capacity among the remaining virtual nodes. PN3
bidding phase terminates with bp g = (11,20,0,0), wpns =
(PN3,PN3,—,—) and bundle mpys = (VN2,VN1), as
embedding more virtual nodes would increase the allocated
capacity beyond the target.

B. Phase 2: CAD Agreement Phase

In this phase, physical nodes make use of a maximum
consensus strategy to converge on the winning bids b, and
to compute the allocation vector & (Procedure 2.)

The consensus, for example on the bid vector b, after
receiving the bids from each physical node k in ’s neigh-
borhood N;, is performed by comparing the bid b;; with by,
for all k¥ members of A;. This evaluation is performed by the
function IsUpdated () (line 5.) In case the auction requires
consensus only on a single virtual node at a time, i.e. jm;| = 1
as in SAD, the function IsUpdated () merely checks if there
is a higher bid, that is, if 3k, j : bg; > b;;. This means that
when a physical node ¢ receives from a neighboring physical

Procedure 2 CAD agreementPhase for physical node 4 at iteration ¢
1: Input: ai(t), bz(t), ml(t)
2: Output: a;(t), b;(t), m;(t)
3: for all £k € \V; do

4. for all j € Vg do

5: if IsUpdated(bs;) then

6: update(b;(t), a;(t), m;(t))
7: end if

8: end for

9: end for

node k a higher bid for a virtual node j, the receiver i always
updates its bid vector b; (b;; < by;), no matter when the
higher bid was generated. In general, i.e., when |m;| > 1,
physical nodes may receive higher bids that are out of date.
We discuss the conflict resolution of CAD in Section III-C.

Example 3: (SAD consensus.) We have assumed that host-
ing higher capacity virtual nodes bring higher revenue, and
so continuing Example 1, after exchanging its bid vector with
PN5, PN3 updates bpns from (0,20) to (0,40), and xpn3
from (0,1) to (0,0). Having lost the auction for node VN2
(the most profitable virtual node) to PN5, PN3 bids on VNI,
and so updates again its bid vector from bpys = (0,40) to
(20,40), as all PN3’s capacity can now be used for VN1 and
PN5’s bid on VN2 is recorded. PN3 also changes its allocation
vector again from xpy3 = (0,0) to (1,0). Eventually, all
physical nodes agree that PN5’s bid is the highest for the most
profitable virtual node VN2, while PN4 wins VNI as it has
the highest residual capacity after VN2 assignment.

When instead physical nodes are allowed to bid on multiple
virtual nodes in the same auction round (|m;| > 1) as in MAD,
even if the received bid for a virtual node is higher than what
is currently known, the information received may not be up-
to-date. In other words, the standard max-consensus strategy
may not work. Each physical node is required to evaluate the
function IsUpdated (). In particular, IsUpdated () com-
pares the time-stamps of the received bid vector, and updates
the bundle, the bid and the assignment vector accordingly
(Procedure 2, line 6.) Intuitively, a physical node loses its
assignment on a virtual node j if it gets outbid by another
physical node that has a more recent bid, or after realizing
that its bid for j was subsequent to another previous bid that
it had lost more recently.

More precisely, in CAD bids on a physical node for the
same virtual node are required to be lower if more virtual
nodes are previously allocated. This is obvious in our exam-
ples, as to bid, a physical node uses its residual capacity that
decreases as more virtual nodes are added to the bundle —
as we show later, this monotonically non-increasing condition
must hold for any other utility function. This means that if a
physical node ¢ is outbid on a virtual node j, all the subsequent
nodes m;; Vj' > j were computed using an invalid value and
therefore need to be released, that is, b;;» =0 vy’ > .

C. Conflicts resolution

When it receives a bid update, physical node ¢ has three
options: (i) ignore the received bid leaving its bid vector
and its allocation vector as they are, (i¢) update according
to the information received, i.e. w;; = wy; and b;; = by, or
(it7) reset, i.e. w;; = () and b;; = 0. When |m,| > 1, the
bids alone are not enough to determine the auction winner as
virtual nodes can be released, and a physical node ¢ does not
know if the bid received has been released or is outdated.

We conclude this subsection with two remarks that explore
how such conflicts are resolved. In particular, we illustrate how
bids should be ignored or reset if they are outdated, and how
subsequent bids to a more recently lost bid should be released.

Remark 1: (bids may be ignored or reset.) There are cases
in which the bid values are not enough to resolve conflicts,
and so the time-stamps at which the bid was generated are
used to resolve conflicts. In particular, (1) if a sender physical
node ¢ thinks that a receiver k is the winner and £ thinks the
winner is n # {7, k}, or (2) when ¢ thinks n is the winner and
k thinks the winner is m # {n, 4, k}, or when (3) both ¢ and k
think m is winning but with a different bid. In all these cases,
knowing which bid is most recent allows k to either ignore or
update its bid based on the bid from . In other cases, even
the time-stamps are not enough and ¢ and %k need to reset their
bids. In particular, (4) when ¢ thinks the winner is k£ and k
thinks the winner is 7. In this case, even if 7’s bid were more
recently generated, it might have been generated before k’s
bid were received by 1.

Remark 2: (releasing subsequent bids.) Given PN3’s bid-
ding phase in Example 2, and computing PN5’s vectors
we have: mpys; = (VN2,VN1,VN3,VN4), bpys =
(31,40,25,20) and wpys = (PN5, PN5, PN5, PN5). Af-
ter receiving the bids from PN5, PN3 realizes that its first
bundle’s entry is outbid (20 < 40) and so it must release VN2.
Therefore PN3 needs to also release the other subsequent node
in its bundle VNI, as its bid value was a function of the bid
on VN2, i.e. the bid on VNI assumed the residual capacity
after VN2 is allocated on PN3.

Since CAD allows physical nodes to bid using their most
updated residual capacity, releasing subsequent items from a
bundle intuitively improves the sum of the utilities of the
physical nodes and hence, when physical nodes cooperate,
this improves the number of slices allocated. Moreover, as we
show in Section IV-A, such residual capacity utility guarantees
convergence to a slice embedding. Note also that, due to the
slice topology constraints, a change of assignment of any
virtual node not present in a bundle may invalidate all its bids.
Assume, for example (Figure 1), that PN5 is winning VN2
when PN3 bids on VNI1. The bid on VN1 may change if the
connected VN2 is later hosted by another physical node, e.g.
PN4, as the residual physical link capacity to connect physical
nodes PN3 and PN4 may be smaller than the residual capacity
of the physical link connecting PN3 and PNS5. In extreme
cases, the residual capacity of the physical link PN3-PN4 can
be even null, not allowing the embedding of the slice at all. To

avoid storing bids computed with an out-of-date utility value,
physical nodes simply reset their own bundle at the beginning
of every bidding phase (procedure 1, line 3.)

D. Pseudo sub-modular utility functions

As we will see in Section IV, our CAD mechanism guar-
antees convergence allowing InPs to use their own bidding
policies, as long as the function appears to be sub-modular to
other bidders [14]. Sub-modularity is a well studied concept
in mathematics [19], and applied to the distributed slice
embedding problem, can be defined as follows:

Definition 2: (sub-modular function.) The marginal utility
function U(j, m) obtained by adding a virtual resource j to
an existing bundle m, is sub-modular if and only if

U(j,m") > U(j,m)Vm’' | m' C m.)

This means that if a physical node uses a sub-modular utility
function, a value of a particular virtual resource j cannot
increase because of the presence of other resources in the
bundle.

Although having sub-modular utility functions may be
realistic in many resource allocation problems [15], in the
distributed slice embedding problem this assumption may be
too restrictive, as the value of a virtual node may increase
as new resources are added to the bundle, e.g. the cost of
mapping a virtual link between two virtual nodes decreases
if a physical node hosts both virtual source and destination.
To guarantee convergence without using a sub-modular score
function, as in [14], we let each physical node communicate
its bid on virtual node j obtained from a bid warping function:

Wij (Ui, bi) = min {Usj, Wik} (5)
where Wy, is the value of the warping function for the k'"
element of b,;. Note how by definition, applying the function
W to the bid before sending it is equivalent to communicating
a bid that is never higher than any previously communicated
bids. In other words, bids appear to other physical nodes to
be obtained from a sub-modular utility function.

E. Phase 3: Virtual Link Embedding

Similar to the bidding and agreement phases for virtual
nodes, in the virtual link embedding phase, our CAD mecha-
nisms allow applications and provider’s goals to tune the slice
embedding protocol behavior through policy instantiation.

This last phase is based on the observation that all virtual
link embedding schemes have two commonalities: information
known at each physical node about physical paths, and the
algorithm for determining the best physical path(s) to allocate
a virtual link. We hence define three CAD policies for virtual
link embedding: (¢) the type of information known at each
physical node, for example the routing table or the available
paths for any source-destination, (z¢) the update frequency of
such information, for example every hour or every time a new
slice is requested, and (iiz) the selection of physical path(s)
over which a virtual link is mapped. One example of such

virtual link embedding scheme is a simple SP assisted auction,
where, similarly to [25] and [13], an SP elicits bids from each
InP, computes the “cheapest” loop-free physical path according
to the bids, and then allocates the virtual link on that path. As
shown in [24], another effective example is a k-shortest path
algorithm with path splitting [7].

In our experiments we let physical nodes know the routing
table, computed only once at the beginning of our experiments
using Dijkstra’s algorithm, and we also use the k-shortest (hop
distance) path algorithm with k£ = 3. This virtual link (path)
embedding policy has the limitation of forcing intermediate
physical nodes on a path to accept the allocation of a virtual
link if they have capacity. We leave for future work the
exploration of other strategies (for example path bidding [13].)

IV. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section we show results on the convergence proper-
ties of CAD. By convergence we mean that a valid mapping
(Section III) is found in a finite number of steps (Defi-
nition 1.) Moreover, leveraging well-known results on sub-
modular functions [9], [19], we show that under the assump-
tion of pseudo sub-modularity (Section III-D) of the utility
function, CAD guarantees a (1 — 1) optimal approximation. ’

A. Convergence Analysis

All physical nodes need to be aware of the mapping, by
exchanging their bids with only their first-hop neighbors,
therefore a change of bid information needs to traverse all
the physical network, which we assume has diameter D.
The following proposition (Proposistion 4.1) states that a
propagation time of D hops is also a necessary and sufficient
condition to reach max-consensus on a single virtual node
allocation. Another interesting observation that follows from
the result is that the number of steps for CAD to converge
on the embedding of a slice of |Vpy| virtual nodes is always
D -|Vy| in the worst case, regardless of the size of the bundle
vector. This means that the same worst-case convergence
bound is achieved if CAD runs on a single or on multiple
virtual nodes simultaneously. These claims are a corollary of
Theorem 1 in [4], which deals with a distributed task allocation
problem for a fleet of robots.

Let the tasks allocated by a robot represent the virtual nodes
to be hosted by a physical node. Therefore, by induction on
the size of the bundle the following result holds as a corollary
of Theorem 1 in Choi et al. [4]:

Proposition 4.1: (Convergence of CAD.) Given a virtual
network H with |Vy| virtual nodes to be embedded on a
physical network with diameter D, the utility function of each
physical node is pseudo sub-modular, and the communications
occur over reliable channels, then the CAD mechanism con-
verges in a number of iterations bounded above by D - |Vy]|.

Proof: (Sketch). We use W;;(U;j,b;) as a bid func-
tion (sub-modular by definition). From [4] we know that a

"Note that in this paper we use utility functions that optimize the allocation
of virtual nodes and their first-hop links, but not virtual path allocations.

consensus-based auction run by a fleet of NV, agents, each
assigned at most L, tasks, so as to allocate NV, tasks, converges
in at most Ny, - D where Ny = min{ Ny, N,, - L; }. Note
that the proof of Theorem 1 in [4] is independent of the utility
function used by the agents as long as they are sub-modular,
and of the constraints that need to be enforced on the tasks.
Since for CAD to converge, every virtual node needs to be
assigned, in the distributed slice embedding problem, N, is
always equal to N; = |V|, and therefore we prove the claim.

|
B. Performance Guarantees

We assume that each physical node ¢ does not bid on a
virtual node j unless it brings a positive utility, therefore U;;
and so W;; are positive. Moreover, if we append the bundle
m; to bid on an additional set of virtual nodes v resulting in
bid vector b}, we have:

Wij(Uij, b)) < Wij(Usj,my) Yv #) (6)

which means that JV;; is monotonically non-increasing.

Since the sum of the utilities of each single physical node,
and since the bid warping function W;;(U;;,b;) of CAD
is a positive, monotone (non-increasing) and sub-modular
function, all the axioms of Theorem 3.1 in Nemhauser et
al. [19] on sub-modular functions are satisfied. We hence
obtain the following result:

Proposition 4.2: (CAD Approximation.) The CAD node
consensus strategy yields an (1 — %)-approximation w.r.t. the

optimal node assignment solution.

V. PERFORMANCE EVALUATION

To test the proposed distributed auction algorithms, we

developed our own trace-driven simulator, whose code is
publicly available at [1].
Physical Network Model: Using the BRITE topology
generator [18], we obtain a physical topology. We use the
generation model of BRITE to build a flat topology using
either the Waxman model, or the Barabasi-Albert model
with incremental growth and preferential connectivity. We
tested our algorithms with physical network sizes varying
n physical nodes with about 5n physical links (as in [24]).
Our simulations do not consider delay constraints, while
link capacity constraints are discussed later in this section.
The results are similar regardless of the topology generation
model and the physical network size. In this paper we only
show the results obtained for n = 50 and a Barabasi-Albert
physical topology.

Virtual Network Model: we use a real dataset of 8 years
of Emulab [23] slice requests [22]. For each simulation run
we process 61968 requests; the average size of a request
is 14 with standard deviation of 36 virtual nodes; 99% of
the requests have less than 100 virtual nodes, and 85%
have at most 20 virtual nodes. Excluding the 10% long-lived
requests that cause the standard deviation of slice lifetime
to exceed 4-million seconds, the duration of the requests

s 10
2 T 1 -#-SAD .
g [N -0-MAD ° $--3--x
2038 £08 }} O Hub & Spoke] 5 o 2
H &) \ - PolyVINE & 0- ~—£ R &
Zoq go6 ? ;‘}i% - Eos te. \%@.,% 8
1Z] Bt N -~ - [=] - - ~ en
Zod £ 0.4 % i % xi_%:\ 2 0.4 % é g %-—}1 8 7~ CAD upper bound
B f N - ° ~*-SAD N H i H -4-SAD
202 go2 % ¢ 5 g 8 0.2 -0-MAD %% R S ~0-MAD
= — VN Size 12 N % N 2 o Hub & Spoke % "3l o Hub & Spoke
E)) -~ VN Duration 0 x}- -o--o or PolyVINE - PolyVINE
] > °
10° . 10/ 1t 2 3 4 5 6 2 3 4 5 7 10 .20 40 60 80 100
Emulab VN size [# nodes] and Duration [s] Average Virtual Node Degree Average Virtual Node Degree Virtual Network size [# of nodes]
(b) (c) (d)
Linear Star Tree Full , x10°
150 s I I T8 . Ce-SAD 1
i £ 008 1 ! 56 -0-MAD °
S ‘ Q 9) §<} o Hub & Spoke| % 08
g 5 H B i 2 R o PolyVINE =
o 20060 ‘ ; 24 ’ % £ 0.6
2y L el *%*%\3}
g . R ! = R AR = 0.4
, e1E) Fag ety] 2m
& s L % & L] og2 g P{\i 1 8gal -o-map
Sooy _F @ e o = 2 tor Ps s @ 7| ~+-SAD node stress only
g e e - & 0 i I ol ~7~MAD node stress only
.20 40 60 80 100 SMHPSMHP SMHP SMH P 2 3 4 5 6 7 2 3 4 5 6 7
Virtual Network size [# of nodes] Distributed Slice Embedding Algorithm Average Virtual Node Degree Average Virtual Node Degree

(e) ®

Fig. 2.

(€3] (h)

(a) CDF of the size and lifetime of 8 years of Emulab slice requests. (b) SAD allocates more slices when a single shortest path is available. (c)

MAD allocates more slices when a k-shortest path link allocation policy (where k = 3) is used. (d) MAD has shorter convergence time. (¢) SAD has shorter
response time. (f) SAD better balances the load on physical nodes (k = 3). S, M, H and P indicate SAD, MAD, Hub and Spoke and PolyViNE, respectively.
(g) MAD allocates more slices consecutively (k = 3.) (h) Considering simultaneously node and link stress in the utility improves the slice allocation ratio.

is on average 561 with 414 seconds of standard deviation
(Figure 2a.) As the dataset does not contain neither the
number of virtual links nor the virtual network topology, we
connect each pair of virtual nodes at random with different
average node degree (Figures 2b, c, g, and h.) Moreover, we
extend our evaluation comparing linear, star, tree, and fully
connected virtual topologies (Figure 2f). All our simulation
results show 95% confidence intervals; the randomness comes
from both the virtual network topology to be embedded, and
the virtual constraints, that is, virtual node and link capacity
requirements. Similarly to previous work [24], we randomly
assign physical link capacities between 1 and 100, then we
assign the physical node capacity to be the sum of its outgoing
physical link capacities. Then we assume the virtual link
capacity to be randomly chosen between 1/R and 100/R,
where R = {50, 100,500}, and the virtual node capacity is
then assigned to be the sum of its outgoing virtual links. The
results are similar and we only show plots for R = 100.
Comparison Method: we compare our CAD mechanism, in-
stantiated with the SAD and MAD configuration, with another
policy based distributed virtual network embedding algorithm,
PolyVINE [5], and with the first published distributed virtual
network embedding algorithm [12], that we call Hub and
Spoke due to the adopted heuristic.

Evaluation metrics: our evaluation results quantify the ben-
efits of our approach along two metrics: embedding effi-
ciency and time to find a solution. In particular, we evaluate
the response time — number of steps measured in one-
hop communications needed to realize a VN can or cannot
be embedded — and the convergence time — number of
steps until a valid embedding is found. The efficiency of

an embedding is evaluated with the VN allocation ratio —
ratio between the number of virtual networks successfully
embedded and requested, and with the resource utilization —
physical node and link capacity utilized to embed the VN
requests, as well as with the endurance of the algorithm, i.e.
the number of successfully allocated requests before the first
VN request is rejected. We also evaluate the effect of different
utility functions.

A. Simulation results

We present here our trace-driven simulation results summa-
rizing the key observations.
(1) MAD leads to larger VN allocation ratio, as long as
multiple physical paths are available for each virtual link.
When the virtual link allocation policy allows a virtual link
to be allocated only on a single physical shortest path,
SAD has a higher VN allocation ratio (Figure 2b.) This is
because SAD, allowing a single virtual node allocation for
each auction round, balances the load over physical resources
more efficiently. When instead a physical node ¢ is allowed
to simultaneously win a bundle of virtual nodes m; as in
MAD, the physical links adjacent to ¢ quickly exhaust their
capacity due to the VN topology; all the outgoing virtual links
adjacent to the virtual nodes in m; that are not mapped on ¢
are in fact mapped onto a small set of physical paths starting
from physical node i. However, if the virtual link embedding
policy uses a k-shortest path (with & > 3), MAD is able to
allocate more VNs (Figure 2c.) From this result we conclude
that when fewer physical paths are available, InPs should
consider (switching to) a SAD setting, otherwise MAD is more
efficient. In the considered physical topologies, there are no
more than 3 physical paths between any pair of physical nodes,

and the confidence intervals overlap for SAD and MAD with
k=2.

(2) MAD has faster convergence time. Although we showed
that MAD has the same worst-case convergence bound as
SAD, simulation results show how MAD can in practice be
faster (Figure 2d). In the best case, a single physical node has
highest bids for all virtual nodes, and all the other bidders will
converge on a VN allocation in a single auction round.

(3) SAD has faster response time. Due to the VN partitioning
policy, that is, due to the fact that the SP releases only two
virtual nodes at a time, SAD has a quicker response time as
physical nodes immediately know if a virtual node or a link
(and so the entire VN) cannot be allocated (Figure 2e.) We
do not show the response time for the other algorithms in
Figure 2e as they are similar to their convergence time.

(4) SAD better balances the load independent of the VN
topology. To verify our findings, we average over time the
variance of the utilization across all nodes with 25% and
75% percentiles for each of the algorithms, and we repeat
the experiment for linear, star, tree, and full virtual network
topologies (Figure 2f). Note how SAD better balances the load,
independent of the VN topology. One exception is PolyViNE,
that has lowest load variance for tree topologies, but at the
expense of lowest VN allocation ratio.

(5) SAD allocates more VNs before the first one is rejected. As
a direct consequence of a better VN allocation ratio, we verify
that SAD yields a larger number of VNs allocated before
the first one gets rejected in case the virtual link allocation
policy allows only a single physical shortest path, while MAD
allocates more requests if multiple physical loop-free paths are
available (Figure 2g).

(6) Considering link stress in the utility function improves the
VN allocation ratio. In this last experiment we show how
different utility functions may lead to different VN allocation
efficiency. In particular, by comparing two different utilities,
i.e. Uj; = (T;—S];) where S" is only the stress on the physical
nodes, and U;; where the stress also includes adjacent physical
links, we confirm the premise that considering nodes and links
simultaneously in the slice embedding problem leads to higher
VN allocation rate (Figure 2h). We leave the investigation of
the best utility function given the goals of providers as an
interesting research direction.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed CAD, a general distributed
approach to solve the slice embedding problem, consisting
of three tightly coupled phases — discovery, virtual network
mapping and allocation [8]. By leveraging the distributed task
assignment literature, and well-known results on sub-modular
function properties, we show how CAD has bounds on both
convergence and performance. Using extensive trace-driven
simulations, we compare the performance of two existing dis-
tributed solutions with our mechanism, instantiated with two
different sets of policies, following different providers’ goals.
We plan to further investigate CAD by considering larger
InP topologies, and by prototyping it within Quantum [21],

the networking component of the OpenStack initiative that
allows building and configuring virtual network connectivity
and resource allocation policies in real cloud settings.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grant CNS-0963974.

REFERENCES

[1] CAD source code. http://csr.bu.edu/cad.

[2] The GENI initiative http://www.geni.net.

[3] D. P. Bertsekas. Auction Algorithms. In Encyclopedia of Optimization,
Dec 2001.

[4] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based Decentralized
Auctions for Robust Task Allocation. IEEE Trans. of Rob., 25(4), 2009.

[5] M. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE: Policy-Based
Virtual Network Embedding Across Multiple Domains. In Proc. of ACM
SIGCOMM workshop on Virtualized Infrastructure Systems and Arch.,
VISA 10, pages 49-56, New York, NY, USA, 2010. ACM.

[6] N. R. Devanur and S. M. Kakade. The Price of Truthfulness for Pay-
Per-Click Auctions. In Proceedings of the 10th ACM conference on
Electronic commerce, EC, pages 99-106, New York, NY, USA, 2009.

[7]1 D. Eppstein. Finding the k Shortest Paths. STAM Journal of Computing,
28(2):652-673, 1999.

[8] F. Esposito, I. Matta, and V. Ishakian. Slice Embedding Solutions for
Distributed Service Architectures. ACM Computing Surveys (to appear),
Accepted on November 2012.

[9] U. Feige. A Threshold of In n for Approximating Set Cover. J. ACM,

45(4):634-652, July 1998.

GENI Planning Group. GENI Facility Design Document,

http://www.geni.net/GDD/GDD-07-44.pdf, March 2007.

1. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache. Virtual Network

Provisioning across Multiple Substrate Networks. Computer Networks,

55(4):1011-1023, Mar. 2011.

I. Houidi, W. Louati, and D. Zeghlache. A Distributed Virtual Network

Mapping Algorithm. In ICC ’08.

N. Immorlica, D. Karger, E. Nikolova, and R. Sami. First-price Path

Auctions. In Proceedings of the 6th ACM conference on Electronic

commerce, EC °05, pages 203-212, New York, NY, USA, 2005. ACM.

L. B. Johnson, H.-L. Choi, S. S. Ponda, and J. P. How. Allowing Non-

Submodular Score Functions in Distributed Task Allocation. In IEEE

Conference on Decision and Control (CDC), 2012.

A. Kulik, H. Shachnai, and T. Tamir. Maximizing Submodular Set

Functions Subject to Multiple Linear Constraints. In Proceedings of

the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 09, pages 545-554, Philadelphia, PA, USA, 2009. Society for

Industrial and Applied Mathematics.

R. P. Leme, V. Syrgkanis, and E. Tardos. Sequential Auctions and

Externalities. In Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA, pages 869-886, 2012.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1st edition,

Mar. 1996.

A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Ap-

proach to Universal Topology Generation. In Proceedings of the

Ninth International Symposium in Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, MASCOTS 01, pages

346—, Washington, DC, USA, 2001. IEEE Computer Society.

G. Nemhauser, L. Wolsey, and M. Fisher. An Analysis of Approxima-

tions for Maximizing Submodular Set Functions. Math. Prog., 1978.

E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: a

Platform for High-Performance Internet Applications. SIGOPS Oper.

Syst. Rev., 44(3):2-19, Aug. 2010.

Quantum. http://wiki.openstack.org/quantum.

R.Ricci. Personal communication., 2011.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar. An Integrated Experimental

Environment for Distributed Systems and Networks. SIGOPS Operating

System Review ’02.

M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual Network

Embedding: Substrate Support for Path Splitting and Migration. SIG-

COMM Comput. Commun. Rev., 38(2):17-29, 2008.

F. Zaheer, J. Xiao, and R. Boutaba. Multi-provider Service Negotiation

and Contracting in Network Virtualization. In IEEE Network Oper. and

Management Symposium (NOMS), 2010, pages 471 —478, April 2010.

Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford. Cabernet:

Connectivity Architecture for Better Network Services. In Proceedings

of the 2008 ACM CoNEXT Conference, CONEXT, 2008.

[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]

[21]
[22]
[23]

[24]

[25]

[26]

