Class Notes: February 16, 2006

Topic: A Case Study in UI Design and Evaluation for Computer Security

Lecturer: Rob Reeder

Scribe: Colleen Koranda

Improving user-interface dependability through mitigation of human error
Roy A. Maxion and Rob Reeder
Background Info

He created a new user design for the file permissions interface for XP, the design of interface and evaluated the two. His goal was to make file permissions more usable

Why is this important?

Memogate: Memos were stolen

1. The person at fault was a system admin who misconfigured file permissions,

2. Of the 144 people who had files on the server none noticed that all files could be viewed by everyone

File Permissions Task

-File Permissions are a way of specifying who (users) should have access (13 types) to objects in the system

Challenges of file permissions:

1. It is not realistic to expect admin to set permissions for every file

2. Microsoft uses grouping to handle permissions, but there can be

problematic user groupings: if group A is allowed access and group B is not, it is unclear what will happen to Miguel (a part of both A and B)

3. There are lots of access types, so they group the 13 access types into smaller groups

Example Task of Wesley with XP interface

-Seems simple, but there are challenges

-4 steps to be able to view Wesley’s permissions

-He is inheriting permissions from the group, (by step 9)

-Know which group he is in, and change his permissions (by step 12)

-Do the initial set of steps again to double check what was done

5 Areas to Improve XP Interface with the Salmon Interface

1. Feedback

XP: from admin’s perspective, ‘who is trying to access what,’ so you want to see all the permissions that are inherited from groups. 1 in 12 users found effective permissions tab

Salmon: shows the actual access that users have, which is complied based on what groups the users are in

2. Labels

XP: Usability problems with grouping list: There are 2 reads, Write and modify are too similar, (modify actually allows editing and deleting), What does it mean to execute a text file? What are special permissions? Why are they grayed out? They happen when you set the 13 access types so that the composite types can’t cover the 5 permission groupings

-Usability problems within the full list: there are a lot of them, the meaning of the slash, what are attributes or extended attributes?

Salmon: He didn’t want to completely change Microsoft model, but took out the slash. ‘Read’ permissions relabeled ‘View’ permissions because of the difference between reading the data and read attributes. Read file permissions actually refers to seeing the permissions of a given file.

<class discussions>

-This only dealt with allowing changing permissions for users, not changing ownership of the files as well

-You shouldn’t be able to lock yourself out of your own computer because of permissions

-This is an example of why someone might need to boot off the restore disk to restore permissions

-Write data can write data over a file, append data only allows data to be added to the end of the file

3. Violation of conventions

XP: When you click on ‘Deny’ checkboxes you assume that they are independent. Problems: 1. One checkbox can control others, 2. Reversing an action to uncheck a box does not bring it back to the initial state

Salmon: listing all 13 types and removing grouping helped to address this problem

4. Hidden options

XP: Denying delete permissions is a common goal, but the 6 options displayed don’t allow it. Most people can’t find it.

Salmon: all options are immediately visible at the top. People completed the task more consistently and faster

5. Omission errors

XP: If a sequence of things and one doesn’t lead immediately into the next there can be serious errors, e.g. You walk up to an ATM, you put card in, get your cash, you leave your card in the machine. If you make the person take the card before the cash then they’ll take it.

Salmon: feedback portion of interface of ‘effective permissions’, they immediately could tell if something was right or wrong to prevent omission errors

Important Acronym: FLOCK

Feedback poor

Labels ambiguous

Omission error potential

Convention violation

Keeping options visible

<class discussion>

-Problem of transferring file from one system to another and loosing permissions in the process

-Are people in the real world aware of permissions? An admin will know to set minimum permissions on a file but a novice may not. Designing interfaces to help explain that to users that they should set minimum permissions

Evaluation of XP and Salmon

User studies Advice:

1. Know what you’re measuring

-Accuracy – carefully define success and failure

e.g. have the user set the background color to grey, and give them the RGB value of grey

-Speed - stopwatch

-Security – use serious math (he borrowed Microsoft’s security model, so he didn’t explore this much)

<class discussion>

-Math is more quantitative than ‘lots of hackers’, security needs to account for the motivation of the hacker

-Very hard to prove things about running code. You can prove something about the model of the code, but hard to prove that the code is right

-If I have you $5 check you’d cash it, but $5 check from Jimi Hendrix you’d hold onto it. Can we quantify this for systems? Use game theory and market based approach, offer money for hackers if they can break into the system. Could you quantify it using this approach? And how much would you actually offer?

-In narrow security problems, can be quantified in a quantitative way, e.g. compare size of password in multiple systems>

-Harder to measure: satisfaction, learnability, memorability

2. Maintain internal validity

-Making sure your results are due to the effect of your testing and controlling for compounding variables

-e.g. have a single person give instructions that are read from a script, so the instructions are the same, ensure that each user is given the same tasks.

-Learning effects if you’re give the same order of tasks, so you randomize the order of tasks

-Assign users randomly to groups

3. Maintain external validity

-Make sure results are reflective about the real world

-Average user sets file permissions once a month

-Make lab experiment as close as possible to the real world by choosing real tasks

-Pick people from the actual pool of people that will use this when it goes live in the real world

Formative (as you’re iterating on the interface design) and summative (an actual measurement of how well the interface is performing, to perform to a baseline)

Study Design:

-Users were given seven different file permission-setting tasks

-Set definitions for accuracy and speed for his study

-Between-participants (each participant only gets 1 condition) vs. within (same participants get both conditions, advantage because people are highly variable and you can get a direct comparison)

-Jack Task: Wesley task with a slight twist, harder task to complete in windows because it’s hard to see that Jack has administrative permissions.

-If jack is harder, why did people do better on jack than Wesley for a harder task? The salmon differences are not statistically significant.

Final Results

Used Think-Aloud (video and screen capture). Broke up behavior into 10 different types of behavior. How much time people spent in each behavior.

-Salmon saved time in checking group membership

-Salmon spent way less time consulting help files, to indicate having less trouble with the interface

-XP did better in setting permissions because there are less permission labels, so spend 2x reading labels in salmon. But this is an important tradeoff to get more accuracy and sacrifice some speed

End Result: Help turn angry congressmen into happy congressmen

<class discussion>

-User background in the study ~3/4 had set permissions before, but none we admins

-Future groupings for salmon: he would make a disjoint grouping of read, write, administrate group, and two other groups

-If the underlying model was changed? Could it be improved? Doesn’t think the 13 permission types are necessary. 3 file permissions is nice for Unix model, but there needs to be more flexibility for groups

