Jeremy Hyland
 Class Notes 3/2/2006

17-500

Class Notes for March 2, 2006
Topic: Design for Privacy II
Lecturer: Rachel Shipman
Note Taker: Jeremy Hyland

The focus of this lecture is Chapter 21 in the text: Five Pitfalls in the Design for Privacy. In this chapter Lederer, Hong, Dey, and Landay discus the five privacy pitfalls they noted during their design of Faces, a ubiquitous computing environment.
-> Why is designing for privacy so difficult?

“No definition of privacy is possible because privacy issues are fundamentally matters of values, interests and power” – Alan F. Westin, legal and policy scholar
Everyone looks at privacy from the perspective of their particular background. This means a sociologist will have a fundamentally different perspective on privacy then an engineer. This situation is made even more complicated by social and national background, for instance Europeans have different privacy expectations then Americans.

-> Systems that interact with private user data are classified as Privacy-affecting systems. Designers can reduce the privacy impact their system has by implementing reasonable steps to protect the privacy of users – such system systems are called Privacy-sensitive. By avoiding the typical privacy pitfalls, system designers can maximize the number of Privacy-sensitive systems.
-> The Five Privacy Pitfalls: the authors found that the five typical privacy pitfalls designers fall into can be divided into two categories:

Understanding Privacy Implications:

1. Obscuring potential information flow
2. Obscuring actual information flow

Socially Meaningful Action:
3. Emphasizing configuration over action

4. Lacking coarse-grained control

5. Inhibiting established practice

Understanding Privacy Implication pitfalls come when designers neglect to properly inform users about how their data will be used or who else has access to their data. Socially Meaningful Action pitfalls deal with allowing the user to show different pieces of data in different contexts. This is similar to the way humans behave in really life where we show different faces in different circumstances. For example, we may behave very differently at work then we do at home.

-> What is ubiquitous computing?
“ubicomp integrates computation into the environment, rather than having computers which are distinct objects.” – wikipedia
Mark Weiser, the so called father of ubiquitous computing talks about ubiquitous computing as the progression of computers from large expensive mainframes to small ever present devices that blend into the background of our lives.

Privacy in a ubiquitous computing environment is a very hard problem, the amount of data collected on users is huge, so care must be taken in who this information is disclosed to – the user should be made aware of this data collection and be able to control the disclosure.

Lederer, Hong, Dey, and Landay wanted to create a ubiquitous computing system that would allow this kind of control. Their answer was Faces: a ubiquitous computing interface that enables users to control the disclosure of their information and informs users of past disclosure so users can refine their disclosure preferences.
-> How thorough was the design process for Faces?

Pretty thorough. The Authors went through an extensive user centered design process including a literature review, user interviews, surveys, and iterative prototype design cycles. From a methods standpoint they seem to have done everything right.
User study findings:

· The primary factor determining how users set their privacy preferences is based on who is asking about the information.

· The particular situation or context is also very important.
Both of these findings seem to match up with what we know about human behavior – it changes based on who we are around and what situation we are in.

-> What is Faces?

Faces is a ubiquitous computing interface with a focus on privacy. It allows users to define rules to control the disclosure of their information. Basically one is able to define what face to show what people in what circumstances.
The idea for Faces comes from a paper by Goffman: The Presentation of Self in Everyday Life (1956). Goffman uses the analogy of actors playing roles to describe the human tendency to act differently in different circumstances. We even use props to try to reinforce the image we want others to have of us – expensive clothes, etc. This concept of actors and roles is how Goffman feels that humans deal with self presentation. Interestingly enough, while we may be aware of our conscious effort to show a certain face to others, but we often forgot or are unaware that others are doing the same thing.
Goffman’s model seems like a really good way of representing privacy in a ubiquitous computing system. It allows people to extend the way they manage their self identity in the real world to the virtual world. The Faces interface attempts to implement this model.
The information disclosed by faces depends on the context and the inquirer. For example, on Saturday morning, if your friend wants to know where you are, you may want to tell them – but if your manager asks, you may not want to disclose your location. In each situation the Faces system shows the inquirer a different “face” or answer to their query based on the rules the user has defined in the Faces database.

-> Faces evaluation: five participants were introduced to Faces and the basic functionality was explained. The users had to configure two rules for two different inquirers in two situations. Unfortunately in the end, the users’ defined Faces preferences did not their stated preferences. Users were also unable to remember the level of precision they had set in their Faces rules.

· From the results of the Faces evaluation, the authors were able identify the five common privacy design pitfalls.

-> Two Understanding Privacy Implications Pitfalls
1. Obscuring potential information flow
2. Obscuring actual information flow

Avoiding these pitfalls involves thorough illumination of all both potential information disclosures and the actual information disclosures within the system. The users need to be made aware of the systems scope and how the information collected will be disclosed.
1. Obscuring potential information flow: Users should be informed of all potential for data disclosure. This includes the type of information, who it would be disclosed to and what the information would be used for. Make sure users understand the full scope and limits of the system.

Examples:

· Internet Explorer – Cookie management interface doesn’t really tell us what it is doing and the levels of privacy are too arbitrary.

· Transponder Badges – wearer is not informed to the true function of the device.

· Campus XPress – Discloses Social Security Number.
· Tor – Install wizard could be more specific about potential information disclosures.

· Online Forms – Often no clear/visible statement about the usage of information when signing up for an account. Should adequately provide information on why each piece of information is collected and what it will be used for. Could possibly use help links or mouse-over text.
2. Obscuring actual information flow: The interface should clearly inform users of information disclosures as the happen or shortly after – within a reasonable delay. This means providing obvious feedback to the user about the disclosures.
Examples:

· Kazaa – Fails to adequately inform users of what files they are sharing.

· Cookies in Web Browsers – inadequate feedback when a cookie is set/retrieved.
· Faces? – Possibly because it informs users after the disclosures, however this could be considered reasonable delay.
Systems that avoid this pitfall include Instant Messaging clients (notification when someone adds you to their buddy list) and Mozilla’s Cookie Management system. Both provide adequate notification when a privacy affecting action occurs.

-> Three Socially Meaningful Action Pitfalls
3. Emphasizing configuration over action

4. Lacking coarse-grained control

5. Inhibiting established practice

Privacy in real life is a complicated process that often depends on the context and circumstances. Human observers infer meaning by looking at actions over time. Privacy-affecting systems should take care to mimic the social behavior normally used by humans to create their own levels of privacy under in different scenarios.
3. Emphasizing configuration over action: Requiring excess configuration in order for users to protect their privacy is very problematic. Given the complex nature of privacy preferences it is very easy for users to forget to make the proper configurations. There seems to be heavy usage of large configuration menus in most modern software, so this pitfall is defiantly a widespread issue.
Examples:

· Faces – Users were unable to remember the level of precision when configuring their privacy preferences.

· Kazaa – Users forget or are unaware of what files are being shared.

· PGP – Configuration difficulties cause frustration and unintentional privacy problems.
The problem of over reliance on configuration options is very widespread and actually most software suffers from it at least to some extent.
However, some social networking tools have avoided the problem by building privacy controls into the basic functionality. Also, the smartcard system used at Georgia Tech has the interesting solution of using a double swipe of the card for privacy.
4. Lacking coarse-grained control: Users are used to having a way to turn devices off and on – Software should mimic this functionality. There should be a simple way to completely turn something off.

Examples:

· Online Shopping Sites That Track Usage – Users should have away to turn off tracking if desired.
In general, the best examples of coarse-grained controls are things like camera lens caps and on/off buttons. These are controls that anyone can easily understand.

5. Inhibiting established practice: Systems should mimic real word privacy nuances. Privacy is very contextually driven, so designers should take care to understand the correct system behavior in light of its context.
Examples:

· Gmail – Content triggered advertising violates users’ learned expectation of what a mail service should do.

One popular privacy defense is for people to enter false information when signing up for services including grocery discount cards. Other defenses include cell phones and Instant Messengers clients that allow users to not answer without having to explain why. Tribe.net embraces human privacy nuances by allowing users to group friends into tribes to allow social connections to different but separate groups of friends
-> Understanding the user’s mental model is key. When designing a privacy-affecting system designers should take special care to make sure users fully understand the scope of the system and how their information flows through it. Users need to understand what can be observed during their interaction with the system.
-> Activity:

The class divided into two groups with the task of finding an example of a system that falls into one of the five pitfalls and then the groups had to propose a solution to fix it.
Group 1 did Pitfall number 4: Lacking coarse-grained control. They decided that Tor, in its current state lacked an easy method for turning it off and on. However the new design being worked on by the CUPS team will fix this issue by creating a very simple way for users to switch Tor on and off.

Group 2 did Pitfall number 2: Obscuring actual information flow. They pointed out that many software music players actually send usage information back to the creating company. Often this is done without any clear indication to the user of what is happening. Group 2 felt the best way to prevent this would be to make the option for sending back usage information by default disabled – so op-out by default but ask the user if they want to enable the option by accurately explaining what information is actually being transmitted.
PAGE
2

