
A General Approach for Securely Updating XML Data∗

Houari Mahfoud
University of Nancy 2 & INRIA-LORIA Grand Est

Nancy, France
houari.mahfoud@loria.fr

Abdessamad Imine
University of Nancy 2 & INRIA-LORIA Grand Est

Nancy, France
abdessamad.imine@loria.fr

ABSTRACT
Over the past years several works have proposed access con-
trol models for XML data where only read-access rights
over non-recursive DTDs are considered. A small number
of works have studied the access rights for updates. In this
paper, we present a general model for specifying access con-
trol on XML data in the presence of the update operations
of W3C XQuery Update Facility. Our approach for enforc-
ing such update specification is based on the notion of query
rewriting. A major issue is that query rewriting for recursive
DTDs is still an open problem. We show that this limitation
can be avoided using only the expressive power of the stan-
dard XPath, and we propose a linear algorithm to rewrite
each update operation defined over an arbitrary DTD (re-
cursive or not) into a safe one in order to be evaluated only
over the XML data which can be updated by the user. This
paper represents the first effort for securely XML updating
in the presence of arbitrary DTDs (recursive or not) and a
rich fragment of XPath.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity and
protection — Access control

General Terms
Algorithms, Security

Keywords
XML access control, XML views, XPath, XQuery

1. MOTIVATION
The XQuery Update Facility language [13] is a recommen-

dation of W3C that provides a facility to modify some parts
of an XML document and leave the rest unchanged, and this
through different update operations. This includes rename,
insert, replace and delete operations at the node level. The
security requirement is the main problem when manipulat-
ing XML documents. An XML document may be queried
and/or updated simultaneously by different users. For each
class of users some rules can be defined to specify parts of

∗Extended version of this paper can be found in [10]

Copyright is held by the author/owner. Fifteenth International Workshop
on the Web and Databases (WebDB 2012), May 20, 2012 - Scottsdale, AZ,
USA.

the document which are accessible to the users and/or up-
datable by them. A bulk of work has been published in the
last decade to secure the XML content, but only read-access
rights has been considered over non-recursive DTDs [3,4,9].
Moreover, a few works have considered update rights.

In this paper, we investigate a general approach for se-
curing XML update operations of the XQuery Update Fa-
cility language. Abstractly, for any update operation posed
over an XML document, we ensure that the operation is
performed only on XML nodes updatable by the user. Ad-
dressing such concerns requires first a specification model
to define update constraints and a flexible mechanism to
enforce these constraints at update time.

We now present our motivating example for controlling
update access. Consider the recursive DTD1 of a hospi-
tal depicted as a graph in Fig. 1(b) (we refer to this DTD
throughout the paper to illustrate our examples). An XML
document conforming to this DTD consists of different de-
partments (dept) defined by a name dname and each de-
partment includes patients of the hospital and other patients
coming from some clinics (patients under clinical element).
For each patient (with name pname and category categ),
the hospital maintains a medical history of its parents (par-
ent) and a medical folder (medicalFolder) which includes all
treatments done for this patient (treatment can be analy-
sis or diagnosis); descp and result represent the description
and the result of the treatment respectively. The treatment
data is organized into two groups depending on whether
the treatment has been done in some laboratories (anal-
ysis treatments) or not (the diagnosis treatments). Each
dname, pname, categ, descp, and result has a single text
node (PCDATA) as its child. An instance of the hospital DTD
is given in Fig. 2. Due to space limitations, this instance is
split into Figures 2 (a) and (b), where Fig. 2(b) represents
the medical folder of patient3.

Suppose that the hospital wants to impose an update pol-
icy that allows the doctors to update all treatment data
(e.g., add some treatment results) except those of analy-
sis. According to this policy, only the nodes treatment1
and treatment4 of Fig. 2(b) can be updated. As the nodes
treatment2 and treatment3 are analysis treatments they
cannot be updated.
Problem 1. The existing access control approaches are un-
able to specify the above policy. The model given in [3]
consists in annotating the schema of the document by dif-
ferent update constraints, like putting attribute @insert=Y

1A DTD is recursive iff at least one of its elements is defined
(directly or indirectly) in terms of itself.

Figure 1: Hospital DTD.

in element type treatment of the hospital DTD to specify
that some data can be inserted into nodes of type treatment.
However, only local annotations (the update concerns only
the node and not its descendants) are used which is not suffi-
cient to define some update policies. For instance, to enforce
the hospital update policy imposed, the analysis treatment
data (i.e., nodes treatment2 and treatment3) cannot be
discarded from doctors’s updates by the model introduced
in [3] even by using XPath upward-axes. Specifically, the
annotation @insert=[not(ancestor::analysis)] over ele-
ment type treatment is not the adequate constraint since it
makes node treatment4 not updatable.

In the XACUannot language presented in [7], an update
annotation over an element type of the DTD is defined with
a full path from the DTD root to this element. E.g., the an-
notation ann(hospital/patients/patient, insert)=Y speci-
fies that some nodes can be inserted under hospital patients.
However, the XACUannot language cannot be applied in the
presence of recursive DTDs. For instance, due to recursion,
the hospital update policy given above cannot be defined
since the paths denoting updatable treatment nodes (not
done during analysis) stand for an infinite set of paths. As
we will see in the next, this set of paths can be expressed us-
ing the Kleene star operator (*) which cannot be expressed
in XPath as outlined in [14]. To our knowledge, no model
exists for specifying update policies over recursive DTDs.
Problem 2. For each update operation, an XPath expres-
sion is defined to specify the XML data at which the up-
date is applied. To enforce rights restriction imposed by
an update policy, the query rewriting principle can be ap-
plied where each update operation (i.e., its XPath expres-
sion) is rewritten according to the update rights into a safe
one in order to be evaluated only over parts of the XML
data updatable by the user. However, this rewriting step
is already challenging for a small class of XPath. Consider
the downward fragment of XPath which supports child and
descendant-or-self axes, union and complex predicates. We
show that, in case of recursive DTDs, an update operation
defined in this fragment cannot be rewritten safely. More
specifically, a safe rewriting of the XPath expression of an
update operation can stand for an infinite set of paths which
cannot be expressed in the downward fragment of XPath.
To overcome this rewriting limitation, some solutions have
been proposed [6,8] based on the Regular XPath to express
safe recursive paths. However, these solutions remain a the-
oretical achievement since no tool exists to evaluate Regular

Figure 2: Example of XML Document.

XPath expressions. Thus, no practical solution exists for
enforcing update policies in the presence of recursive DTDs.

Our Contributions. Our first contribution is an expres-
sive model for specifying XML update policies, based on the
primitives of the XQuery Update Facility, and over arbitrary
DTDs (recursive or not). Given a DTD D, we annotate el-
ement types of D with different update rights to specify re-
strictions on updating XML documents that conform to D
through some update operations (e.g., deny insertion of new
nodes of type analysis under treatment nodes). We pro-
pose a new model that supports inheritance and overriding
of update privileges and overcomes expressivity limitations
of existing models. Our approach for enforcing such update
policies is based on the notion of query rewriting. How-
ever, to overcome the rewriting limitation presented above,
we investigate the extension of the downward fragment of
XPath using upward-axes and position predicate. Based on
this extension, our second contribution is an algorithm that
rewrites any update operation defined in the downward frag-
ment of XPath into another one defined in the extended
fragment to be safely evaluated over the XML data. To our
knowledge, this yields the first model for specifying and en-
forcing update policies using the XQuery update operations
and in the presence of arbitrary DTDs.

Related Work. During the last years, several works have
proposed access control models to secure XML content,
but only read-access has been considered over non-recursive
DTDs [3, 4, 9]. There has been a few amount of work on
securing XML data by considering the update rights. Dami-
ani et al. [3] propose an XML access control model for up-
date operations of the XUpdate language. They annotate
the XML schema with the read and update privileges, and
then the annotated schema is translated into two automa-
tons defining read and update policies respectively, which
are used to rewrite any access query (resp. update opera-
tion) over the XML document to be safe. However, the up-
date policy is expressed only with local annotations which is
not sufficient to specify some update rights (see Problem 1).
Additionally, the automaton processing cannot be success-
ful when rewriting access queries (resp. update operations)

defined over recursive schema (i.e., recursive DTD).
Authors of [7] propose an XML update access control

model based on the XQuery update operations. A set of
XPath-based rules is used to specify, for each update opera-
tion, the XML nodes that can be updated by the user using
this operation. These rules are translated into annotations
over element types of the DTD (if it exists) to present an
annotation-based model called XACUannot. However, this
is possible only in the case of non-recursive DTDs.

The view-based access control for XML data has re-
ceived an increased attention [4, 9, 11]. However, a major
issue arises in the case of recursive security views when
XPath query rewriting becomes not possible. To over-
come this problem, some authors [6, 8] propose rewriting
approaches based on the non-standard language, “Regular
XPath”, which is more expressive than XPath and makes
rewriting possible under recursion. However, no system ex-
ists for evaluating regular XPath queries in order to demon-
strate the practicality of the proposed approaches2. Thus,
the need of a rewriting system of update operations over
recursion remains an open issue.

Outline. The remainder of the paper is organized as fol-
lows. Section 2 presents basic notions on DTD, XPath, and
XML update operations considered in this paper. We de-
scribe in Section 3 our specification model of update. Our
approach for securing update operations is detailed in Sec-
tion 4. Finally, we conclude this paper in Section 5.

2. PRELIMINARIES
This section briefly reviews some basic notions tackled

throughout the paper.

DTDs. Without loss of generality, we represent a DTD D
by (Ele, Rg, root), where Ele is a finite set of element types;
root is a distinguished type in Ele called the root type; Rg
is a function defining element types such that for any A in
Ele, Rg(A) is a regular expression α defined as follows:

α := str | ε | B | α’,’α | α’|’α | α*

where str denotes the text type PCDATA, ε is the empty word,
B is an element type in Ele, and finally α’,’α, α’|’α, and α*
denote concatenation, disjunction, and the Kleene closure
respectively. We refer to A → Rg(A) as the production of
A. For each element type B occurring in Rg(A), we refer
to B as a subelement type (or child type) of A and to A
as a superelement type (or parent type) of B. A DTD D is
recursive if some element type A is defined in terms of itself
directly or indirectly.

For example, Fig. 1 represents (a) the productions of the
hospital DTD; and (b) its graph representation.

XML Documents. We model an XML document with
an unranked ordered finite node-labeled tree. Let Σ be a
finite set of node labels, an XML document T over Σ is a
structure defined as [14]: T=(N,R↓, R→, L) where N is the
set of nodes, R↓ ⊆ N ×N is a child relation, R→ ⊆ N ×N
is a successor relation on (ordered) siblings, and L : N → Σ
is a function assigning to every node its label. We use the
term XML Tree for this type of structures.

2According to [12] the SMOQE system [5] has been removed
because of experiment conduction for additional research.

An XML document T conforms to a DTD D if the
following conditions hold: (i) the root of T is the unique
node labeled with root ; (ii) each node in T is labeled either
with an Ele type A, called an A element, or with str, called
a text node; (iii) for each A element with k ordered children
n1, ..., nk, the word L(n1), ..., L(nk) belongs to the regular
language defined by Rg(A); (iv) each text node carries a
string value (PCDATA) and is the leaf of the tree. We call T
an instance of D if T conforms to D.

XPath Queries. We consider a small class of XPath [1]
queries, referred to as X and defined as follows:

p := α::lab | p [q] | p /p | p ∪ p

q := p | p /text() =’c’ | q and q | q or q | not (q)

α := ε | ↓ | ↓+ | ↓∗

where p denotes an XPath query and it is the start of the
production, lab refers to element type or ∗ (that matches
all types), ∪ stands for union, c is a string constant, α is
the XPath axis relations, and ε, ↓, ↓+, and ↓∗ denote self,
child, descendant, and descendant-or-self axis respectively.
Finally the expression q is called a qualifier or predicate.

For a node n in an XML tree T , the evaluation of an
XPath query p at n (called context node n) results in a set
of nodes which are reachable via p from n, denoted by n[p].

Practically, this XPath fragment (called downward frag-
ment) is commonly used and is essential to XQuery, XSLT
and XML Schema [6]. Authors of [6] have shown that in the
case of recursive security views, the fragment X is not closed
under query rewriting (i.e., some update operations defined
in X cannot be rewritten to be safe). Our solution to deal
with this problem is based on the following extension:

p := α::lab | p [q] | p /p | p ∪ p | p [n]
q := p | p /text() =’c’ | q and q | q or q | not (q)

α := ε | ↓ | ↓+ | ↓∗ | ↑ | ↑+ | ↑∗

we enrich X by the upward-axes parent (↑), ancestor (↑+),
and ancestor -or -self (↑∗), and the position predicate. The
position predicate, defined with [n](n ∈ N), is used to re-
turn the nth node from an ordered set of nodes. For instance,
since we model an XML document with an ordered tree, the
query ↓::∗[1] over a node n returns its first child node. We

denote this extended fragment with X⇑[n].

In our case, fragment X is used only to formulate update
operations and to define our update policies, while we will
explain later how the fragment X⇑[n] defined above can be

used to avoid the XPath query rewriting limitation.

XML Update Operations. We review some update op-
erations of the W3C XQuery Update Facility recommenda-
tion [13] (abbreviated as XUF). We study the use of the
following operations: insert, delete, and replace. In each up-
date operation an XPath target expression is used to spec-
ify the set of XML node(s) in which the update is applied.
Moreover, a second argument source is required for insert
and replace operations which represents a sequence of XML
nodes. Note that target may evaluate to an arbitrary se-
quence of nodes, denoted target-nodes, in the case of delete
operation. As for other operations, however, target must
evaluate to a single node, denoted target-node; otherwise a
dynamic error is raised. The XML update operations con-
sidered in this paper are detailed as follows:

• insert source into / as first into / as last into / before
/ after target: Inserts each node in source as child, as first
child, as last child, as preceding sibling node, or as following
sibling node of target-node respectively. The order defined
between nodes of source must be preserved. We abbreviate
these kinds of insert operations by insertInto, insertAs-
First, insertAsLast, insertBefore, and insertAfter re-
spectively. In the case of insertBefore and insertAfter

operations, target-node must have a parent node; other-
wise a dynamic error is raised. For insertInto operation,
the position of insertion is undetermined and may depend
on the XUF implementation. Thus, the effect of executing
an insertInto operation on target can be that of inser-
tAsFirst /insertAsLast executed on target or insertBe-

fore /insertAfter executed at any child node of target.

• delete target: This operation is used to delete all nodes
in target-nodes along with their descendant nodes.

• replace target with source: Used to replace target-node
and its descendants with the sequence of nodes specified
in source by preserving their order. Note that target-node
must have a parent node; otherwise a dynamic error is
raised.

3. UPDATE ACCESS CONTROL MODEL
This section describes our access control model for XML

update.

3.1 Update Specifications
We focus on the security annotation principle presented

in [4] and on the update access type notion introduced in [2]
to define our update specifications.

Definition 1. Given a DTD D, an update type de-
fined over D is of the form insertInto [Bi], inser-

tAsFirst [Bi], insertAsLast [Bi], insertBefore [Bi], in-

sertAfter [Bi], d-elete [Bi] or replace [Bi,Bj], where Bi

and Bj are element types of D. 2

Intuitively, an update type ut represents a set of update
operations which are defined for specific element types. For
example, the update type replace [Bi,Bj] represents the up-
date operations“replace target with source”where target-
node is of type Bi and nodes in source are of type Bj .

Definition 2. We define an update specification Sup as a
pair (D, annup) where D is a DTD and annup is a partial
mapping such that, for each element type A in D and each
update type ut, annup(A, ut), if defined, is an annotation of
the form:

annup(A,ut) := Y | N | [Q] | Nh | [Q]h

where Q is a qualifier in our XPath fragment X . 2

An update specification Sup is an extension of a document
DTD D associating update rights with element types of D.

Let n be a node of type A in an instantiation of D. Intu-
itively, the authorization values Y , N , and [Q] indicate that,
the user is authorized, unauthorized, or conditionally autho-
rized respectively to perform update operations of type ut at
n (case of insert operations) or over children nodes of n (case
of delete and replace operations). For instance, the annota-
tion annup(A,insertInto [B])=Y specifies that the user can
insert nodes of type B as children nodes of n. However, the

annotation annup(A,replace [Bi,Bj])=[Q] indicates that Bi

children of n can be replaced by new nodes of type Bj iff:
n � Q. An annotation annup(A,ut)=value is valid at node
n iff: (i) value=Y ; or, (ii) value=[Q]|[Q]h and n � Q.

Our model supports inheritance and overriding of update
privileges. If annup(A,ut) is not explicitly defined, then an
A element inherits the authorization of its parent node that
concerns the same update type ut. On the other hand, if
annup(A,ut) is explicitly defined it may override the inher-
ited authorization of A that concerns the same update type
ut. All update operations are not permitted by default.

Finally, the semantic of the specification values Nh and
[Q]h is given as follows: The annotation annup(A,ut)=Nh

indicates that, for a node n of type A, update operations of
type ut cannot be performed at n and no overriding of this
authorization value is permitted for descendant nodes of n.
For instance, if n′ is a descendant node of n whose type is A′,
then an update operation of type ut cannot be performed at
n′ even though annup(A′,ut)=Y is explicitly defined. While,
with the annotation annup(A,ut)=[Q]h, descendant nodes of
an A element can override this authorization value only if Q
is valid at this element. For instance, let n and n′ be two
nodes of type A and A′ respectively, and consider the anno-
tation annup(A′,ut)=[Q′], then an update operation of type
ut can be performed at node n′ iff: n′ � Q′. Moreover, if
the annotation annup(A,ut)=[Q]h is defined and n′ is a de-
scendant of n, then the annotation annup(A′,ut)=[Q′] takes
effect and an update operation of type ut can be performed
at node n′ iff: n � Q and n′ � Q′. We call annotation with
value Nh or [Q]h as downward-closed annotation.

Example 1. Suppose that the hospital wants to impose
an update policy that authorizes the doctors to update (in-
sertion, deletion,...) only data of patients having category
’A’, which are under department ’cardiology’ and are not
involved in any clinical trial. We define formally this policy
over an update type ut as follows:

R1: annup(dept,ut)=[↓::dname/text()=’cardiology’]h
R2: annup(clinical,ut)=Nh

R3: annup(patient,ut)=[↓::categ/text()=’A’]

Consider the case where ut=insertInto [treatment]. For
a node p of type patient, the annotation R3 takes effect
over data of p only if p is under cardiology department and
outside of clinics (p has no ancestor node of type clinical);
otherwise no insertion of treatment nodes is permitted un-
der node p regardless its category. For the XML document
presented in Fig. 2(a), insertions under nodes patient3 and
patient4 are permitted (e.g., insert some treatment nodes
into medicalFolder3). 2

3.2 Rewriting Problem
In the case of recursive DTD, an update operation with

target defined in fragment X cannot be rewritten into an
equivalent one defined in X in order to update only autho-
rized data. This problem is known as the XPath closure
problem [6]. Consider the following update annotations:

R1: annup(medicalFolder,ut)=Y
R2: annup(diagnosis,ut)=Y
R3: annup(analysis,ut)=N

In the case of ut=delete [treatment], all treatment nodes
can be deleted except those of analysis data. The up-
date operation delete ↓+::treatment cannot be rewrit-
ten into a safe update expressed in X . Indeed, the

paths denoting updatable treatment nodes (not done dur-
ing analysis) stand for an infinite set. This set of
paths can be captured with: delete (↓+::medicalFolder
∪ ↓+::diagnosis)/(↓::treatment)*/↓::treatment. However,
the Kleene star (∗) cannot be expressed in XPath [14].

In the next section we explain how the extended fragment
X⇑[n], defined in Section 2, can be used to overcome this

rewriting limitation of update operations.

4. SECURELY UPDATING XML
In this paper we focus only on update rights and we as-

sume that every node is read-accessible by all users. Given
an update specification Sup=(D, annup), we discuss the en-
forcement of such update constraints where each update op-
eration posed over an instance T of D must be evaluated
only over nodes of T that can be updated by the user w.r.t.
Sup. We assume that the XML document T remains valid
after the update operation is performed, otherwise the up-
date is rejected. In the following, we denote by Sut the set
of annotations defined in Sup over the update type ut and
by |Sut| the size of this set. Moreover, we denote by {ann}
the set of all annotations defined with ann, and by |ann| the
size of this set.

4.1 Updatability
We say that a node n is updatable w.r.t. update type

ut if the user is granted to perform update operations of
type ut either at node n (case of insert operations) or over
children nodes of n (case of delete and replace operations).
For instance, Bi children of n can be replaced with nodes of
type Bj iff n is updatable w.r.t. replace [Bi,Bj].

Definition 3. Let Sup=(D, annup) be an update specifica-
tion and ut be an update type. A node n in an instantiation
of D is updatable w.r.t. ut if the following conditions hold:

i) The node n is concerned by a valid annotation with
type ut; or, no annotation of type ut is defined over
element type of n and there is an ancestor node n′ of n
such that: n′ is the first ancestor node of n concerned
by an annotation of type ut, and this annotation is
valid at n′ (the inherited annotation).

ii) There is no ancestor node of n concerned by an invalid
downward-closed annotation of type ut. 2

Given an update specification Sup=(D, annup), we define

two predicates U1
ut and U2

ut (expressed in fragment X⇑[n]) to

satisfy the conditions (i) and (ii) of Definition 3 with respect
to an update type ut:

U1
ut := ↑∗::∗[

∨
(annup(A,ut)=Y |N|[Q]|Nh|[Q]h)∈Sut

ε::A][1]

[
∨

(annup(A,ut)=Y)∈Sut
ε::A∨

(annup(A,ut)=[Q]|[Q]h)∈Sut
ε::A[Q]]

U2
ut :=

∧
(annup(A,ut)=Nh)∈Sut

not (↑+::A)∧
(annup(A,ut)=[Q]h)∈Sut

not (↑+::A[not(Q)])

where
∧

and
∨

denote conjunction and disjunction respec-
tively. The predicate U1

ut has the form ↑∗::∗[qual1][1][qual2].
Applying ↑∗::∗[qual1] on a node n returns an ordered set S
of nodes (node n and/or some of its ancestor nodes) such
that for each one an annotation of type ut is defined over
its element type. The predicate S[1] returns either node n,

if an annotation of type ut is defined over its element type;
or the first ancestor node of n concerned by an annotation
of type ut. Thus, to satisfy condition (i) of Definition 3,
it amounts to check that the node returned by S[1] is con-
cerned by a valid annotation of type ut, done by S[1][qual2]
(i.e., n � U1

ut). The second predicate is used to check that
all downward-closed annotations of type ut defined over an-
cestor nodes of n are valid (i.e., n � U2

ut).

Definition 4. Let Sup=(D, annup), ut, and T be an up-
date specification, an update type and an instance of DTD
D respectively. We define the updatability predicate Uut
which refers to an X⇑[n] qualifier such that, a node n on T is

updatable w.r.t. ut iff n � Uut, where Uut := U1
ut

∧
U2
ut. 2

For example, the XPath expression ↓+::∗[Uut] stands for
all nodes which are updatable w.r.t. ut. As a special case,
if Sut = φ then Uut = false.

Example 2. According to the update policy of Example 1,
the predicate Uut := U1

ut

∧
U2
ut is defined with:

U1
ut := ↑∗::∗[ε::dept

∨
ε::clinical

∨
ε::patient][1]

[ε::dept[↓::dname/text()=’cardiology’]∨
ε::patient[↓::categ/text()=’A’]]

U2
ut := not (↑+::clinical)

∧
not (↑+::dept[not (↓::dname/text()=’cardiology’)])

Applying ↑∗::∗[ε::dept
∨
ε::clinical

∨
ε::patient] over the

node medicalFolder3 of Fig. 2(a) returns the ordered set
S={patient3, patient2, dept1} of nodes (each one is con-
cerned by an annotation of type ut); S[1] returns patient3;
and the predicate [ε::dept[↓::dname/text()=’cardiology’]∨

ε::patient[↓::categ/text()=’A’]] is valid at patient3.
Thus U1

ut is valid at node medicalFolder3. Also, we
can see that medicalFolder3 � U2

ut. Consequently,
the node medicalFolder3 is updatable w.r.t. ut (i.e.,
medicalFolder3 � Uut). This means that, in the case
of ut=insertInto [treatment], the user is granted to in-
sert nodes of type treatment under node medicalFolder3.
However, if ut=delete [treatment], then treatment chil-
dren of node medicalFolder3 can be deleted (case of node
treatment1 of the instance of Fig. 2). 2

4.2 Rewriting of Update Operations
Finally, we detail here our approach for enforcing update

policies based on the notion of query rewriting. Given an up-
date specification Sup=(D, annup). For any update opera-
tion with target defined in the XPath fragment X , we trans-
late this operation into a safe one by rewriting its target ex-
pression into another one target′ defined in the XPath frag-
ment X⇑[n], such that evaluating target′ over any instance

of D returns only nodes that can be updated by the user
w.r.t. Sup. We describe in the following the rewriting of
each kind of update operation considered in this paper. We
refer to DTD D as a pair (Ele,Rg, root), and to source as
a sequence of nodes of type B.

Delete/Replace. Consider the update operation “delete
target”. For any node n of type Ai referred to by target,
parent node n′ of n must be updatable w.r.t. delete [Ai]
(i.e., n′ � Udelete[Ai]). To this end, we rewrite the target
expression into: target[

∨
Ai∈Ele ε::Ai[↑::∗[Udelete[Ai]]]].

Consider now the update operation “replace target with
source”. A node n of type Ai referred to by target can

be replaced with nodes in source if its parent node n′ is
updatable w.r.t. replace [Ai,B] (i.e., n′ � Ureplace[Ai,B]).
Thus, the target expression of the replace operations can
be rewritten into: target[

∨
Ai∈Ele ε::Ai[↑::∗[Ureplace[Ai,B]]]].

Insert as first into/as last into/before/after. Consider
the update operation “insert target as first into source”.
For any node n referred to by target, the user can insert
nodes in source at the first child position of n, regardless
the type of n, provided that he holds the insertAsFirst [B]
right on this node (i.e., n � UinsertAsFirst[B]). To check this,
the target expression of the above update operation can be
simply rewritten into: target[UinsertAsFirst[B]]. The same
principle is applied for insertAsLast, insertBefore, and
insertAfter operations.

Insert into. In the following we assume that: if a node n
is concerned by an annotation of type insertInto [B], then
this annotation implies insertAsFirst [B] (resp. inser-

tAsLast [B]) rights for n, and also insertBefore [B] (resp.
insertAfter [B]) rights for children nodes of n (inspired
from [7]). In other words, if one can(not) insert children
nodes of types B at any child position of some node n
as specified by some annotations of type insertInto [B],
then one can(not) insert nodes of type B in the first and
last child position of n and in preceding and following sib-
ling of children nodes of n (unless if there is some anno-
tations of type insertAsFirst [B], insertAsLast [B], in-

sertBefore [B], or insertAfter [B] respectively that spec-
ify otherwise). Thus, one can execute the update operation
“insert source into target” over an XML tree T iff: (i) one
has the right to execute update operations of type insert-

Into [B] on the node n (n ∈ T [target]); and (ii) no anno-
tation explicitly prohibits update operations of type inser-

tAsFirst [B]/insertAsLast [B] on node n (resp. insert-

Before [B]/insertAfter [B] on children nodes of n). When
condition (ii) does not hold (e.g. update operations of type
insertAsFirst is explicitly denied), this leads to situation
where there is a conflict between insertInto and other in-
sert operations.

The first condition is checked using the updatability pred-
icate UinsertInto[B] (whether or not n � UinsertInto[B]). For

the second condition, however, we define the predicate U−1
ut

over an update type ut such that: for a node n, if n � U−1
ut

then update operations of type ut are explicitly forbidden
on node n. An update operation of type ut is explicitly for-
bidden at node n iff at least one of the following conditions
holds: a) the node n is concerned by an invalid annotation of
type ut; b) no annotation of type ut is defined over element
type of n and there is an ancestor node n′ of n such that: n′

is the first ancestor node of n concerned by an annotation of
type ut, and this annotation is invalid at n′; c) there is an
ancestor node of n concerned by an invalid downward-closed
annotation of type ut.

More formally, for an update specification
Sup=(D, annup), we define the predicate U−1

ut := Cnda∨b
∨

Cndc over an update type ut with:3

Cnda∨b := ↑∗::∗[
∨

(annup(A,ut)=Y |N|[Q]|Nh|[Q]h)∈Sut
ε::A]

[1][
∨

(annup(A,ut)=N|Nh)∈Sut
ε::A∨

(annup(A,ut)=[Q]|[Q]h)∈Sut
ε::A[not(Q)]]

3As a special case, if Sut = φ then U−1
ut = false.

Cndc :=
∨

(annup(A,ut)=Nh)∈Sut
↑+::A∨

(annup(A,ut)=[Q]h)∈Sut
↑+::A[not(Q)]

To resolve the conflict between insertInto operation and
other insert types, we define the predicate CRPB (“Conflict
Resolution Predicate”) over an element type B as:

CRPB := U−1
insertAsFirst[B]

∨
U−1
insertAsLast[B]

∨
↓::∗[U−1

insertBefore[B]]
∨
↓::∗[U−1

insertAfter[B]]

Given a node n, if n � CRPB then at least the update oper-
ation insertAsFirst [B] (resp. insertAsLast [B]) is forbid-
den for node n or insertBefore [B] (resp. insertAfter [B])
is forbidden for some children nodes of n. Finally, given the
update operation “insert source into target” over an XML
tree T , one can insert nodes of typeB in source to the node n
(n ∈ T [target]) iff: n � UinsertInto[B]

∧
not(CRPB). Thus,

the target of the insertInto operation can be rewritten
into: target[UinsertInto[B]

∧
not(CRPB)].

The overall complexity time of our rewriting approach of
update operations can be stated as follows:

Theorem 1. For any update specification Sup=(D, annup)
and any update operation op (defined in X), there exists an
algorithm “Updates Rewrite” that translates op into a safe
one op′ (defined in X⇑[n]) in at most O(|annup|) time. 2

5. CONCLUSION
We have proposed a general model for specifying XML

update policies based on the primitives of the XQuery Up-
date Facility. To enforce such policies, we have introduced
a rewriting approach to securely updating XML over arbi-
trary DTDs and for a significant fragment of XPath. To our
knowledge, this paper presents the first work for securely
updating XML data over general DTDs.

6. REFERENCES
[1] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,

M. Kay, J. Robie, and J. Siméon. Xml path language (xpath)
2.0 (second edition). W3C Recommendation, December 2010.

[2] L. Bravo, J. Cheney, and I. Fundulaki. Accon: Checking
consistency of xml write-access control policies. In EDBT,
2008.

[3] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara. A general
approach to securely querying xml. In Computer Standards
and Interfaces, 2008.

[4] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure xml querying
with security views. In SIGMOD, 2004.

[5] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Smoqe: A
system for providing secure access to xml. In VLDB, 2006.

[6] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting
regular xpath queries on xml views. In ICDE, 2007.

[7] I. Fundulaki and S. Maneth. Formalizing xml access control for
update operations. In SACMAT, 2007.

[8] B. Groz, S. Staworko, A.-C. Caron, Y. Roos, and S. Tison. Xml
security views revisited. In DBPL, 2009.

[9] G. Kuper, F. Massacci, and N. Rassadko. Generalized xml
security views. In SACMAT, 2005.

[10] H. Mahfoud and A. Imine. A general approach for securely
querying and updating xml data. INRIA report, January 2012.
http://hal.inria.fr/hal-00664975/en.

[11] N. Rassadko. Policy classes and query rewriting algorithm for
xml security views. In Data and Applications Security, 2006.

[12] N. Rassadko. Query rewriting algorithm evaluation for xml
security views. In VLDB Workshop, 2007.

[13] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and
J. Siméon. Xquery update facility 1.0. March 2011.

[14] B. ten Cate and C. Lutz. The complexity of query containment
in expressive fragments of xpath 2.0. In PODS, 2007.

http://hal.inria.fr/hal-00664975/en

	Motivation
	Preliminaries
	Update Access Control Model
	Update Specifications
	Rewriting Problem

	Securely Updating XML
	Updatability
	Rewriting of Update Operations

	Conclusion
	References

