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ABSTRACT

In this paper, we present our approach used for the CP-JKU sub-
mission in Task 4 of the DCASE-2018 Challenge. We propose a
novel iterative knowledge distillation technique for weakly-labeled
semi-supervised event detection using neural networks, specifically
Recurrent Convolutional Neural Networks (R-CNNs). R-CNNs are
used to tag the unlabeled data and predict strong labels. Further,
we use the R-CNN strong pseudo-labels on the training datasets
and train new models after applying label-smoothing techniques on
the strong pseudo-labels. Our proposed approach significantly im-
proved the performance of the baseline, achieving the event-based
f-measure of 40.86% compared to 15.11% event-based f-measure of
the baseline in the provided test set from the development dataset.

Index Terms— Weakly-labeled, Semi-supervised, Knowledge
Distillation, Recurrent Neural Network, Convolutional Neural Net-
work

1. INTRODUCTION

Motivated by the release of Audioset [1], the task of predicting
strong labels using models trained on weakly-labeled audio data
was introduced in the DCASE-2017 challenge (task 4) [2]. How-
ever, in DCASE-2018, the task has changed and transformed into a
semi-supervised task which adds another dimension of complexity
to this challenge. By leaving the majority of the training data unla-
beled [3], the organizers motivated the participants to leverage the
large sets of unlabeled data in a semi-supervised manner in order
to improve the performance of their systems. Another important
change compared to DCASE-2017 is the evaluation metric, that is
changed from segment-based evaluation to event based evaluation.
In DCASE-2018 task4, the submissions will be evaluated by the
macro average of class-wise event-based F1-scores (explained in
Section 4.3). The new evaluation metric introduces new challenges
to the task, since the systems need to predict the onsets and off-
sets of the events very accurately. In other word, unlike DCASE-
2017, events that are partially detected – with inaccurate onsets and
offsets– do not improve the performance based on the new evalu-
ation metric, but rather worsen it, as it will get evaluated as both
a false positive and a false negative [3]. In this paper, we propose
a novel approach to overcome the difficulties of this new task by
leveraging the unlabeled data via an iterative knowledge distilla-
tion in neural networks. We show that using our method, the per-
formance of a Convolutional Recurrent Neural Network (R-CNN)
can be significanlt improved. We provide experimental results on
DCASE-2018 task 4 dataset and compare it with the baselines we
used. The remainder of the paper is as follows. Section 2 describes

the related work. In Section 3 we explain our proposed method. The
experiments and the empirical results are presented in Section 4 and
finally Section 5 concludes the paper.

2. RELATED WORK

2.1. Weakly Labels Sound event detection

To deal with weak labels, it is important to pay attention to the
power of state-of-the-art tagging systems. By using a R-CNN ar-
chitecture, Xu et al. [4] achieved the best tagging performance in
DCASE 2017 task4. Their architecture uses gated activations of
convolutional and recurrent layers and an attention mechanism to
locate the events. Their architecture consists of multiple gated con-
volutional layers followed by a bi-directional Gated Recurrent Unit
(GRU). Between convolutional blocks, they used max-pooling only
on the frequency dimension, in order to keep the time information
required for event localization.

Lee et al. [5] used an ensemble of multiple deep convolution
neural networks trained on audio clips of different lengths and man-
aged to achieve the best event detection performance in DCASE
2017 task 4. They showed the power of an ensemble model for
such tasks, following an ensemble method proposed by Caruana et
al. [6] by iteratively adding models that increase the performance of
the whole system.

2.2. Knowledge Distillation In Neural Networks

A considerable amount of work has been done in transferring the
knowledge between models either for compressing models while
maintaining their performance [7, 8, 9, 10] or for increasing the
interpretability and explaining the decisions [11, 12, 13]. A pio-
neer idea of knowledge transfer from a large model or an ensemble
of multiple models to a simple model was introduced by Bucila et
al. [7] in the context of compressing large models into small models
that are more suitable for deployment. Ba and Caruana [8] empiri-
cally showed that a similar performance to the state-of-the-art deep
neural network models can be achieved using shallow models. This
performance of shallow models can not be achieved by training on
the original training data, but rather by training shallow model to
mimic the output activations of a deep model. Further work by Hin-
ton et al. [9] showed that these simple models (also known as stu-
dent model) can even perform better than the models they mimic,
by distilling the knowledge from an ensemble of deeper models
(known as teacher models) into a single new model (the student).
They managed to improve the performance of their models, both on
the MNIST dataset [14] and for an Automatic Speech Recognition
task (ASR).
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Furlanello et al. [10] managed to make student models surpris-
ingly outperform their teacher models on many computer vision
and language modeling tasks, by retraining the student models with
identical parameterization to their teachers, but with different ini-
tialization. They trained the student models to predict the correct
labels, and further to match the output distribution of the teacher.

3. THE PROPOSED APPROACH

In this section, we detail the key components of our proposed itera-
tive knowledge distillation method.

3.1. Key Differences With Previous Work

We adopted a deep architecture (described in Table 2) inspired by
the one proposed by Xu et al. [4]. However, We used the ReLu
activation function for the convolutional layers and kept the gated
linear activation only for the recurrent layer. we used the Simple
Recurrent Unit (SRU) [15] as a recurrent unit because of its fast
training. We achieved empirically a better tagging performance us-
ing a global average of the frame level probabilities, instead of the
attention mechanism proposed by Xu et al.. Our shallow model
(Table 3) is inspired by the DCASE-2018 task 4 baseline model [3]
with an adjusment of replacing the recurrent unit in the baseline
system with an SRU.

Unlike the approaches stated in Section 2.2, we trained our
new student models on the smoothed predictions over the time-
dimension of the teacher models. We show that smoothing is an
important step given the nature of our task. Namely, we used me-
dian smoothing with varying window size and with/without Gaus-
sian filter smoothing (Figure 1). We repeated this step a couple of
times, although the improvement was diminishing over the steps.
We also trained deep and shallow models in each iteration, as fol-
lows. We used the predictions of the best model for each class as
the pseudo-labels of the next iteration for knowledge distillation. In
comparison with Furlanello et al. [10], they trained the new models
with the supervision of only the latest iteration of a single model,
while Hinton [9], Bucila [7] and their collaborators used an ensem-
ble of teacher models in a non-iterative manner. And finally, we
used the smoothed labels, while the aforementioned methods use
the probabilities of the teacher to train the students.

3.2. Proposed Approach for Audio Tagging

We train an R-CNN on the weakly-labeled dataset and predicted
pseudo-weak-labels for both in-domain and out-of-domain sets. Ta-
ble 2 shows the configuration of the layers of the model.

3.3. The Proposed Approach for Strong Label Prediction

We follow a multi-pass strategy to get our final predictions, by it-
eratively predicting pseudo-strong-labels for the labeled, in-domain
and out-of-domain sets, and retraining new models on those new
predictions.

3.3.1. The First Pass

We trained a recurrent convolutional neural network with the same
architecture that was used for tagging (Table 2). However, the net-
work is not only trained on the provided labels of the labeled set,
but also on the predicted pseudo labels for both the in-domain and
out-of-domain sets. The result of the first pass are strong labels

Figure 1: Example of strong predictions before/after smoothing.

for the labeled, in-domain and out-of-domain sets. These labels are
presented in the form of frame-level probabilities for every audio
clip.

3.3.2. The Second Pass

In the second pass, we smooth the current predicted pseudo-strong
labels using median/Gaussian filters and we train new models on
them. We observed that the performance of the models varies
among different classes. We achieved better performances in some
classes using a deep model (Table 2), while for other classes shal-
low models (Table 3) performed better. In addition, using median
smoothing with or without Gaussian smoothing resulted in varying
performances for different classes.

3.3.3. Model selection

We train multiple models with/without smoothing. Then, we select
the best trained model for each class to predict new pseudo-strong-
labels for the respected class for the labeled, in-domain and out-of-
domain sets. Using these new prediction, we iteratively repeated
the second pass (Figure 2).

3.3.4. Smoothing for Strong Prediction

The strong predictions of our models trained only on weakly-
labeled data tend to be noisy. Therefore, we smooth those predic-
tions using median and Gaussian filters (Figure 1). We then use
these smoothed probabilities for retraining the network in the next
pass as explained in Section 3.3.
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Table 1: F-score results per class by pass. The average is calculated class-wise (macro-average) [16]. SM: shallow model (Table 3). DM:
Deep model (Table 2). Merge: merging models by taking the prediction of the best model for each class. Note that for pass 1 (marked with
*) the models are trained using weak-labels. From pass 2 onwards, the models are trained on the smoothed strong predictions of the previous
pass.

Pass Config. Average Alarm Blender Cat Dishes Dog Electric.. Frying Runnin.. Speech Vacuum..
1* SM 17.43 7.1 12.3 2.2 4.9 4.8 38.7 36.6 13.0 2.5 52.1
1* DM 24.65 26.0 24.3 26.3 13.2 23.5 33.3 12.4 16.2 41.8 29.4
2 SM 35.18 39.8 33.3 32.1 15.8 25.3 40.0 38.8 22.5 47.3 56.9
2 DM 34.08 33.9 31.9 32.1 15.4 24.9 39.3 37.1 22.5 47.3 56.3
3 SM 34.46 41.8 32.5 33.3 16.1 16.3 40.0 40.0 22.4 47.1 55.1
3 DM 33.59 37.3 33.8 30.0 15.6 20.5 35.7 36.6 20.9 48.3 57.1
4 SM 34.46 41.8 32.5 33.3 16.1 16.3 40.0 40.0 22.4 47.1 55.1
4 DM 34.67 42.5 32.8 32.6 14.0 21.4 42.9 37.7 20.9 46.9 54.9
5 SM 35.48 43.9 38.3 31.1 13.1 21.5 40.6 41.3 22.1 48.2 54.7
5 DM 34.85 40.4 39.5 33.5 14.5 20.6 42.1 39.3 18.1 46.4 54.0
6 Merge 37.89 46.6 38.2 45.6 14.2 24.2 41.3 40.0 28.0 47.6 53.3
7 Merge 39.11 46.0 39.5 41.1 18.1 25.7 43.3 43.1 28.4 48.7 57.1
8 Merge 40.86 49.3 40.0 50.0 18.1 25.7 44.1 43.5 31.0 49.9 57.1

Table 2: Proposed deep architecture for predicting strong labels
and audio tagging. BN: Batch normalization, BIAS: Model uses
bias with no batch normalization, ReLu: Rectified Linear activation
function

Input 240 × 64
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
1 × 1 Conv(pad-1, stride-1)-256-BIAS-ReLu

1 × 4 Max-Pooling
Bi-directional SRU 128 hidden units

1 × 1 Conv(pad-1, stride-1)-10-BIAS-Sigmoid
Output 240 × 10

(Strong predictions) (Weak-label training and tagging)
Output 240 × 10 Global-Average-Pooling

Output 10

4. EXPERIMENTS AND RESULTS

4.1. Dataset

The dataset is split into a training set, a test set and an evaluation
set [3]. The training set contains three subsets, a labeled set, an
unlabeled-in-domain set and an unlabeled-out-of-domain set. In
this paper, they are referred to as labeled, in-domain, out-of-domain
respectively. The test set contains 288 strongly labeled audio clips.
The evaluation set consist of 880 audio clips, for which our system
predicted strong labels for the challenge submission.

Table 3: Proposed shallow architecture for predicting strong labels.
Similar to the baseline [3]. BN: Batch normalization, BIAS: Model
uses bias with no batch normalization, ReLu: Rectified Linear acti-
vation function

Input 240 × 64
3 × 3 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 4 Max-Pooling
3 × 3 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 4 Max-Pooling
3 × 3 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 4 Max-Pooling
Bi-directional SRU 128 hidden units

1 × 1 Conv(pad-1, stride-1)-10-BIAS-Sigmoid
Output 240 × 10

(Strong predictions) (Weak-label training and tagging)
Output 240 × 10 Global-Average-Pooling

Output 10

4.2. Features Extraction

We use log-scaled Mel-bands spectrograms as an input for all our
models. We extracted 64 Mel bands from 64 ms frames with 22.5
ms overlap using Librosa [17]. That resulted in an input size of 240
× 64 for our models.

4.3. Evaluation Metric

The evaluation metric for the task is the event-based F-score [16].
The predicted events are compared with a reference event list, by
comparing the onset and the offset of the predicted event with the
overlapping reference event. The predicted event is considered cor-
rectly detected (true positive), if it’s onset is within 200 ms collar
of the reference event onset and its offset is within 200 ms or 20%
of the event length collar around the reference offset. If a reference
event has no matching predicted event, it is considered a false neg-
ative. If the predicted event doesn’t match any reference event, it
is considered a false positive. Furthermore, if the system partially
predicted an event without accurately detecting its onset and offset,
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Figure 2: The proposed knowledge distillation framework for RC-
NNs.

it will be penalized twice, as a false positive and a false negative.
Equation (1) shows the calculation of the F-score for each class [3].

Fc =
2.TPc

2.TPc + FPc + FNc
, (1)

Where Fc, TPc, FPc, FNc are the F-score, true positives, false
positives, false negatives of the class c respectively. The final eval-
uation metric the average of the F-score for all the classes.

4.4. Results

Table 1 shows the class-wise intermediate results over the train-
ing iterations. In the first pass, the shallow and the deep models
where trained on the given weak labels and on the predicted pseudo
weak labels for the in-domain and out-of-domain sets. We show
that the shallow model works better only for the classes Electric
shaver/toothbrush, frying and vacuum cleaner. We justify that by
the nature of these classes, as they tend to be longer, with the event-
length medians 8.78, 10.00, 9.99 respectively, compared to 1.03 the
event-length median for all the classes (Table 1 in [3]). Therefore,
we conclude that the shallow model fails to localize when trained on
weak labels. However, the shallow models works surprisingly well
when trained on the strong prediction of the previous pass. They
even generalize better in many cases then the deep models (passes 2

to 5 for many classes). By merging the predictions of the best model
for each class iteratively, we managed to push the performance of
the system to 40.86%.

Table 4 shows the final macro-averaged event-based evaluation
results on the test set compared to the baseline system.

Table 4: The performance of our approach compared to the baseline
system [3]. Note that we re-ran the baseline on our machines, hence
the slight difference from the reported values in [3].

F1 Precision Recall
Baseline 15.11 14.20 17.80
Our system 40.86 40.21 44.42

5. CONCLUSION

In this paper we propose a method for detecting sound events from
weakly-labeled data. We proposed iteratively training similar mod-
els with different initialization on the smoothed predictions of the
previous iteration. The goal behind this is to iteratively making the
detected sound events more precise and predicting the onsets and
the offsets of the events more accurately. We provide empirical ev-
idence that this iterative process makes the predicted time bound-
aries for individual events more accurate, in accordance with the
results of [10]. The event-based F-score increases over iterations to
reach 40.86% on the test set, compared to the baseline performance
of 15.11%. We also show empirically that shallow models trained
on the predictions of deep models can even generalize better then
their teachers, in line with the results of [8].
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