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ABSTRACT

In our submission to the DCASE 2019 Task 1a, we have explored
the use of four different deep learning based neural networks archi-
tectures: Vggl2, ResNet50, AcINet, and AclSincNet. In order to
improve performance, these four network architectures were pre-
trained with Audioset data, and then fine-tuned over the develop-
ment set for the task. The outputs produced by these networks, due
to the diversity of feature front-end and of architecture differences,
proved to be complementary when fused together. The ensemble
of these models’ outputs improved from best single model accuracy
of 77.9% to 83.0% on the validation set, trained with the challenge
default’s development split. For the challenge’s evaluation set, our
best ensemble resulted in 81.3% of classification accuracy.

Index Terms— DCASE, Acoustic Scene Classification, Deep
Learning, Neural Networks, Transfer Learning, End-to-End archi-
tectures, Ensemble Averaging.

1. INTRODUCTION

In the Detection and Classification of Acoustic Scenes and Events
2019 challenge (DCASE 2019), acoustic data were provided to
solve different audio related tasks [1]. Task 1 refers to the challenge
of building a model to classify different recordings into predefined
classes corresponding to recordings of different environment set-
tings in several large European cities.

Following the guidelines provided by the challenge in the Task
1 subtask a (Task la), we experimented with four different deep
learning (DL) neural network architectures: Vggl2, ResNet50,
AclNet, and AclSincNet (Figure 1). The Vggl2 and ResNet50 ar-
chitectures are adaptations of well-known computer vision CNNs
adapted to the audio classification task, with 12 and 50 layers, re-
spectively; they both take Mel-filterbank of 64 spectral dimensions
as input features. On the other hand, AcINet is an end-to-end (e2e)
architecture that takes raw audio input into two layers of 1D CNNss,
followed by a VGG-like 2D CNN. AclSincNet is similarly an e2e
approach, with the difference in the 1D convolution layers; the 1D
convolution layers are essentially combinations of sinc functions,
or equivalently band-pass filters, whose cut-off frequencies are the
learnable parameters in the model training process.

2. METHODOLOGY

In this section, we describe in detail the experimentation we fol-
lowed for our submission to the DCASE 2019 Task]1a.
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2.1. Data Processing

The DCASE 2019 Task la dataset consists of 10-second audio
recordings obtained at 10 different acoustic scenes: airport, indoor
shopping mall, metro station, pedestrian sreet, public square, street
with medium level of traffic, traveling by tram, traveling by bus,
traveling by and underground metro, and urban park , recorded at
12 major European cities [2].

The challenge provides as part of this task a 1-fold arrangement
for development, i.e. training and validation data splits. In addi-
tion to the 1-fold defined, we also experimented with 5-fold random
splits over all available data (training/validation), and city held-out
validation sets resulting in 10 training/validation splits (only data
from 10 cities were available in the development set). Additionally,
through the development stage we used Google Audioset data [3] to
pre-train all of our implemented DL architectures.

For the development of e2e DL architectures, the two binaural
channels were averaged into a single one, and the resulting signal
was down sampled from its original 48 kHz to 16 kHz. For the
development of spectral based DL architectures, audio data from
each channel were processed to generate Mel-filterbank represen-
tations with 64 filter bands over a time window of 25 milliseconds
and overlaps of 10 milliseconds, resulting in two Log-Mel filterbank
channels (Figure 1). Because our early experiments of using mul-
tiple channels did not yield improvement over single channel, we
opted to use a randomly selected channel in the training process,
and channel 0 in the testing.

2.2. Neural Network Architectures
2.2.1. AclNet

AclNet is an e2e CNN architecture, which takes a raw time-domain
input waveform as opposed to the more popular technique of us-
ing spectral features like Mel-filterbank or Mel-frequency cepstral
coefficients (MFCC). One of the advantages of e2e architectures
like this is that the front-end feature makes no assumptions of the
frequency response. Its feature representation is learned in a data-
driven manner, thus its features are optimized for the task at hand
as long as there is sufficient training data. We followed the specific
settings corresponding to the AcINet work described in [4], with a
width multplier of 1.0 and conventional convolutions.

The AclNet architecture we developed for this work was pre-
trained with Audioset that resulted in 527 outputs, which in turn
were used as embeddings to train a fully-connected layer classifier
with ReLU activation functions in a transfer learning manner. Raw
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Figure 1: Development of our proposed deep learning architectures for audio scene classification in the DCASE 2019 Task 1a.

audio data at 16 kHz form the DCASE 2019 challenge was fed to
the pre-trained AclNet, and embeddings were used to train the clas-
sifier.

We performed a search for the optimal parameters of this DL
model. We experimented with different values and configurations,
and ended with the best performing model when using the hyper
parameters described in Table 2; cosine annealing for the learning
rate schedule, and the use of mixup for data augmentation [5] were
considered, but it was observed that they did not improve the clas-
sification performance. During the training, 1-second of audio was
randomly selected from mini-batches of 64 training clips. At test
time, we run the inference on 1-second non-overlapping consecu-
tive audio segments, and then average the outputs over the length of
the test audio. The experimental results obtained by this e2e archi-
tecture can be seen in Table 3.

2.2.2. AclSincNet

The AclSincNet architecture consists of two building blocks of the
network: a low-level Spectral like features (SLF), and a high-level
features (HLF).

The SLF is a set of features designed to be similar to the spectral
features used in conventional audio processing. It can be viewed as
areplacement of the spectral feature, but it is fully differentiable and
can be trained with backward propagation. The front-end is inspired
by SincNet [6]. We used the same setup as suggested in the original
work but with a stride length of 16 milliseconds; the authors of
SincNet treat the output of the SincNet layer as a replacement of the
FFT filter bank, and feed it directly into the subsequent CNN layer.
We took a different route, aiming to replicate the output of Mel-
filterbank calculation more closely. We first compute the square of
the output before average pooling over multiple time steps, and then
follow up by the log operation to make the filterbank output less
sensitive to amplitude variations. With the time-domain waveform
as input, the SLF layer produces an output of 256 channels at feature
frame rate of 10 milliseconds after the average pool layer. In our
setup, a 1.280-second input produces an output tensor of dimension
(256, 1, 128).

Taking the output from the SLF block, the high level feature
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Table 1: SLF Architecture used in AclSincNet

Layer | Description
Sincnet1D kernel size 251, stride length 16
BatchNorm

X=X2

100ms window with 50ms stride
X = X.clamp(min=1e-12)
x = log(x)

Calculate energy spectrum
Average pooling

Clamp the min

Calculate log()

layer treats it as a 2D image (e.g. a 256x128 image for the 1.28-
second input) and applies standard VGG-like 2D CNN. The archi-
tecture of the HLF is similar to typical image classification CNNs.
We experimented with a number of different architectures, and
found that a VGG-like architecture provides good classification per-
formance and well-understood building blocks. In our case, each of
the conv layers are a standard building block that comprises a 2D
convolution layer, batch normalization, and PReLU activation.

We did not use fully connected layers as in standard VGG; in-
stead, we simply apply average pooling to output the scores. The
final layers of the AclSincNet is a 1x1 convolution that reduces
the number of channels to the number of classes (10 classes in the
DCASE 2019 challenge). Before the input to the 1x1 convolution
layer, we add a dropout layer for regularization. We found a dropout
probability of 0.9 to work well on this task. Each of the 10 chan-
nels are then average pooled and output directly after SoftMax. The
advantage of these final two layers is that our architecture can incor-
porate arbitrary length inputs for both training and testing, without
any need to modify the number of hidden units of a the fully con-
nected layers.

We pre-trained this model with AudioSet [3] and then fine tuned
it with the DCASE 2019 Task 1la data. During fine-tuning, we use
6-seconds audio data (random crop from each of the 10-second sam-
ple) for training, and 10-second data (the complete clip) for testing.
We experimented with different number of layers, number of chan-
nels, and kernel size on the data set. While the total number of the
parameter is rather big (Table 3), we noticed that the network scales
quite well when we shrink the layer, channel, and kernel size. We
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observed experimentally that the accuracy only drops 1 to 2% when
a network with 18M parameters is used. However, we decided to
stick to the larger network for this challenge.

2.2.3. Vggl2

The Vgg12 model is an adaptation of the well-known VGG archi-
tecture [7]. It has a total of 12 convolutional layers, with the first
one having 64 channel output, and the last one 512 outputs. At the
output of each conv layer, we apply batch normalization followed
by ReLU activation. Through the conv layers, there are 5 max-pool
layers with kernel size of 2. A key architectural difference is that
the network is designed for variable input size (e.g. 64 spectral di-
mensions and arbitrary number of time steps). The output of the
last convolutional layer is average pooled, to always produce a vec-
tor length of 512 values. This vector is then followed up by a fully
connected layer to produce the 10-class output defined by the chal-
lenge.

During the training phase, 5-seconds of audio are randomly se-
lected from the training clip. At test time, we run the inference on
1-second non-overlapping segments, and then average the outputs
over the length of the test audio.

2.2.4. ResNet50

Our audio ResNet50 has exactly the same convolutional layers as
the architecture in the original ResNet paper [8]. Again, we made
the same adaptations as in Vggl2 described in 2.2.3, to take a
variable length input Mel-filterbank spectra into a single 10-class
output. We also used the training and testing sequence selection
scheme applied for the Vggl2.

During the training, we used SpecAugment [9] as a data aug-
mentation scheme. This data augmentation works by masking out
random time and spectral bands of randomly selected width. We
opted to mask only spectral bands, at random positions with width
uniformly sampled from [0, 20] Mel bands. We found that this aug-
mentation gave a 1% improvement over the same network without
SpecAugment.

2.3. Training Strategy

In addition to the default train/validation split provided by DCASE
2019 Task 1a, we used two strategies to train our models for score
averaging: 5-fold cross-validation and leave-one-city-out cross val-
idation. In both cases, we merged the development and validation
data set together and re-split all the labelled data set with the above
two strategies to train models accordingly.

With the 5-fold cross-validation method, all the labelled data
were split into 5 folds with random shuffle, i.e. 4/5 of the data set
is used for training and 1/5 of the data set is used as validation set.
Five models are trained and their scores are averaged as the final
score. i.e. the final output is essentially the ensemble average of 5
individually trained models.

Similarly, the leave-one-city-out method was done in the same
way with a different split methodology. Instead of random split, the
split is done by city. i.e. 9 cities are used for training and 1 city is
held out and used as the validation set. Therefore, 10 models are
trained and their scores are averaged as the final output.

All four architectures were trained with the Adam optimizer.
The training hyper parameters (learning rate LR, LR schedule, num-
ber of epochs E, drop out rate DO, and weight decay WD) of each
of the architectures are listed in Table 2. During the fine-tuning
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Table 2: Training setup values for the four deep learning architec-
tures proposed. The values displayed are the learning rate, learning
rate schedule, number of epochs, weight decay, and drop out rate,
respectively.

Architecture | LR | Schedule | E | WD | DO
AclNet le-4 No schedule 330 | 2e-4 | 0.2
AcLSincNet le-3 | Cosine annealing | 50 | le-6 | 0.9
Vggl2 le-3 | Cosine annealing | 40 | le-5 | 0.8
ResNet50 le-3 | Cosine annealing | 40 | le-5 | 0.5

Table 3: Classification results over the validation set obtained by
the individual deep learning based neural network architectures ex-
plored in this work.

Architecture | Params | Accuracy

AclNet 19.3M 0.7481
AclSincNet 52.2M 0.7608
Vggl2 12.8M 0.7744
ResNet50 24.5M 0.7787

process, we kept the part of the corresponding Audioset pre-trained
network with a LR value that is 1/10th of the LR as the rest of the
network. The validation set were used for model selection, i.e. the
best performing model on the validation set were saved and used for
inference.

2.4. Ensemble Averaging

In order to reduce individual variance of each of the developed DL
models described in the previous subsections, we applied ensemble
averaging technique, which is one of the simplest ensemble learning
methodologies used in machine learning to improve the prediction
performance [10]. This approach consists on the averaging of the
prediction scores obtained by different models, as seen in Figure 2.

By combining the prediction scores from different DL models
that performed above the reported challenge baseline, the intention
is to add a bias that counters the variance of a single trained model.
Having a diversity of DL models helps to achieve this intention. In
our experiments, we have extensively explored different combina-
tion sets of our DL models in order to find the ones that better gen-
eralize over the validation data set. Experimental results obtained
for some of the most obvious combinations are shown in the next
section.

3. RESULTS

The experimental results obtained for our developed DL models
over the validation data set are shown in Table 3. These are the best
experimental validation accuracy results achieved by our individu-
ally trained DL models at the time of the DCASE 2019 submission
deadline. For each one of the developed models, the number of
trainable parameters is listed also in Table 3 to present an idea of
the size of the DL architectures used.

In Table 4, the results from the best combinations of two, three,
and four DL models that were obtained through ensemble averaging
of their output scores. All outputs were defined as softmax scores in
order to have compatible values for averaging across the ensemble.
It can be observed how the experimental results over the validation
set yield into higher accuracy (Table 4) when compared to individ-
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Table 4: Classification results over the validation set obtained from
the ensemble averaging combination of two, three, and four deep
learning based neural networks architectures.

Architecture | Params | Accuracy
AclSincNet+ResNet50 76.8M 0.8127
Vggl12+AclSincNet+ResNet50 89.7M 0.8184
AclINet+Vggl12+AclSincNet+ResNet50 | 109.0M 0.8301

ual models results (Table 3). These results support the idea that
utilizing the combination of predictions from different DL models
results in a reduction of variance, and in more accurate predictions
[10].

For our four allowed submissions to DCASE 2019 Task 1a, we
experimented with the DL architectures described above, developed
with different types of data splits, and combining their output pre-
dictions through ensemble averaging. In the next section we pro-
vide a detailed description of the combinations used as part of our
complete final submission.

4. SUBMISSIONS TO DCASE 2019 TASK 1A

Our four submissions to the DCASE 2019 Task 1a consists of the
ensemble averaging of different predicted scores from different DL
architectures. Below is a detailed description list of the ensemble
models used to generate the submission labels on the evaluation
data set provided:

1. Ensemble averaging obtained from a combination of 40 individ-
uvally trained DL architectures: 1 Vggl2, trained with the default
data split defined by the challenge; 10 Vggl2, each trained with
1 of the 10 leave-one-city-out splits; 5 AclSincNet, trained with
5 different random splits; 10 AclSincNet, each trained with 1 of
the 10 leave-one-city-out splits; 3 Resnet50, each trained with
three different data splits; 10 ResNet50, each trained with 1 of
the leave-one-city-out splits; and 1 AclNet, trained with the de-
fault data split defined by the challenge. Considering each one of
the 40 DL architectures combined, the total number of trainable
parameters resulted in 1,264.4M.

\S}

. Ensemble averaging obtained from a combination of 31 in-
dividually trained DL architectures: 10 Vggl2, each trained
with 1 of the 10 leave-one-city-out splits; 10 AclSincNet, each
trained with 1 of the 10 leave-one-city-out splits; 10 ResNet50,
each trained with 1 of the 10 leave-one-city-out splits; and 1

Softmax é R
Scores
Softmax
Model 2 Ensemble Ensemble
Averaging — Output
. ofn Scores
scores
Scores
N

Figure 2: Ensemble averaging of n independently trained deep
learning models.
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Table 5: Classification results over the evaluation set obtained from
four different ensemble averaging combinations of deep learning
architectures, submitted to the DCASE 2019 challenge Task 1a.

Architecture | Params | Accuracy | Challenge Rank

Ensemble 1 1,264.4M 0.8050 15
Ensemble 2 921.7M 0.8110 12
Ensemble 3 798.6M 0.8130 10
Ensemble 4 374 M 0.7950 22

Resnet50, trained with 1 data split. Considering each one of the
31 DL architectures combined, the total number of trainable pa-
rameters resulted in 921.7M.

3. Ensemble averaging obtained from a combination of 26 individ-
ually trained DL architectures: 10 Vggl2, each trained with 1
of the 10 leave-one-city-out splits; 5 AclSincNet, trained with
5 different random splits; 10 ResNet50, each trained with 1 of
the 10 leave-one-city-out splits; and 1 Resnet50, trained with
1 data split. Considering each one of the 26 DL architectures
combined, the total number of trainable parameters resulted in
798.6M.

4. Ensemble averaging obtained from a combination of 20 individ-
ually trained DL architectures: 10 Vggl2, each trained with 1 of
the 10 leave-one-city-out splits; and 10 ResNet50, each trained
with 1 of the 10 leave-one-city-out splits. Considering each one
of the 20 DL architectures combined, the total number of train-
able parameters resulted in 374.7M.

The final Task 1a challenge results obtained from these four en-
sembles over the evaluation set are shown in Table 5. The best result
obtained of 81.3% ranked 10th across all submissions, and 5th by
team submissions. Our submission consisted on simple ensemble
averaging; part of our ongoing efforts consists of exploring other
ensemble methodologies, e.g. stacking, to increase the predictive
force of the classifiers.

5. CONCLUSIONS

Starting from individually trained DL models, we were able to
achieve above the baseline results as reported in the DCASE 2019
Task 1a challenge. From these, we were able to increase the perfor-
mance of the audio scene classification by combining the prediction
scores of different DL models through ensemble averaging. By do-
ing this ensemble, we obtained significantly higher classification
results over the validation set than the ones obtained by individual
DL models, i.e. 83.0% Vs 77.9% , respectively. Our best ensemble
model resulted in a 81.3% classification accuracy over the evalua-
tion set provided by the challenge.
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