
Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

RECEPTIVE-FIELD-REGULARIZED CNN VARIANTS FOR
ACOUSTIC SCENE CLASSIFICATION

Khaled Koutini1, Hamid Eghbal-zadeh1,2, Gerhard Widmer1,2

1Institute of Computational Perception (CP-JKU) & 2LIT Artificial Intelligence Lab,
Johannes Kepler University Linz, Austria

ABSTRACT

Acoustic scene classification and related tasks have been domi-
nated by Convolutional Neural Networks (CNNs) [2–10]. Top-
performing CNNs use mainly audio spectograms as input and bor-
row their architectural design primarily from computer vision. A
recent study [1] has shown that restricting the receptive field (RF)
of CNNs in appropriate ways is crucial for their performance, ro-
bustness and generalization in audio tasks. One side effect of re-
stricting the RF of CNNs is that more frequency information is lost.
In this paper, we perform a systematic investigation of different RF
configuration for various CNN architectures on the DCASE 2019
Task 1.A dataset. Second, we introduce Frequency Aware CNNs to
compensate for the lack of frequency information caused by the re-
stricted RF, and experimentally determine if and in what RF ranges
they yield additional improvement. The result of these investiga-
tions are several well-performing submissions to different tasks in
the DCASE 2019 Challenge.

Index Terms— Acoustic Scene Classification, Frequency-
Aware CNNs, Receptive Field Regularization

1. INTRODUCTION

Convolutional Neural Networks (CNNs) have shown great promise
as end-to-end classifiers in many tasks such as image classifica-
tion [11, 12] and acoustic scene classification [5, 13]. Although ev-
ery year new architectures are proposed that achieve better image
recognition performance, we showed in a recent study [1] that these
performance gains do not seem to translate to the audio domain.
As a solution, we proposed regularizing the receptive field (RF) of
such CNN architectures in specific ways. The method was applied
to several state-of-the-art image recognition architectures, and the
resulting models were shown to then achieve state-of-the-art per-
formance in audio classification tasks [1].

Although CNNs can learn their own features and build internal
representations from data, the details of how they actually function
is crucial to their success in a specific task. In the image recognition
domain, a recent study [14] shed light on the decision making pro-
cedure of CNNs and showed that using occurrences of small local
image features without taking into account their spatial ordering,
CNNs can still achieve state-of-the-art results. However, while spa-
tial ordering and local neighboring relations might not be crucial for
object recognition in images, this is not the case in audio represen-
tations such as spectrograms. A local pattern in lower frequencies
does not represent the same acoustic event as the same pattern ap-
pearing in higher frequencies. Since CNNs with limited receptive
fields1 are only capable of capturing local features and unlike mod-

1as shown in [1], large RFs result in overfitting in audio classification.

els such as capsule networks [15], they are unable to find spatial re-
lations between these local patterns. As convolution is equivariant,
each filter is applied to the input to generate an output activation,
but the output of the network does not know where exactly each
filter is. This means that if a specific pattern appears in lower fre-
quencies, and a very similar pattern appears in higher frequencies,
later convolutional layers cannot distinguish between the two, and
this can result in vulnerabilities in such cases.

In [16], Liu et al. analyzed a generic inability of CNNs to map a
pixel in a 2D space, to its exact cartesian coordinate. They address
this problem by adding an additional channel to the convolutional
layers that contains only the pixel coordinates. Inspired by this so-
lution, we propose a new convolutional layer for audio processing –
the Frequency-aware Convolutional Layer – to cope with the afore-
mentioned problems in CNNs. We use an additional channel in
the convolutional layer that only contains the frequency informa-
tion which connects each filter to the frequency bin it is applied to.

In this paper, we extend our previous work [1] by modi-
fying the receptive field (RF) of various new architectures such
as Resnet [11], PreAct ResNet [17, 18], Shake-shake [18, 19],
Densenet [12], and our new frequency-aware FAResNet according
to the guidelines provided in [1], aiming at pushing the performance
of these models on acoustic scene classification tasks. Systematic
experiments permit us to determine optimal RF ranges for various
architectures on the DCASE 2019 datasets. We show that configur-
ing CNNs to have a receptive field in these ranges has a significant
impact on their performance. Based on these insights, we config-
ured network classifiers that achieved a number of top results in sev-
eral DCASE 2019 challenge tasks [13], as will be briefly reported
in Section 4.3.

2. REGULARIZING CNN ARCHITECTURES AND
INTRODUCING FREQUENCY AWARENESS

As shown in our previous work [1], the size of the receptive field
(RF) is crucial when applying CNNs to audio recognition tasks.
Following the guidelines in [1], we adapted various ResNet and
DenseNet variants. Using the provided development set for Task
1.A [20], we performed a grid search on the RF of the various
ResNet architectures and show the performance of different CNNs
under different RF setups. The goal of this investigation, reported
in Section 2.1.1, is to introduce a method to systematically push
the performance of a single CNN architecture for acoustic scene
classification. We base on this method our submissions [13] to the
DCASE 2019 challenge [21], especially our top performing single
architecture submission for Task 1.A (cp resnet).

Furthermore, in Section 2.2 we introduce Frequency-aware
CNNs to address the possible shortcomings of models with a smaller
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Table 1: Modified ResNet architectures

RB Number RB Config
Input 5× 5 stride=2

1 3× 3, 1× 1, P
2 x1 × x1, x2 × x2, P
3 x3 × x3, x4 × x4
4 x5 × x5, x6 × x6, P
5 x7 × x7, x8 × x8
6 x9 × x9, x10 × x10
7 x11 × x11, x12 × x12
8 x13 × x13, x14 × x14
9 x15 × x15, x16 × x16

10 x17 × x17, x18 × x18
11 x19 × x19, x20 × x20
12 x21 × x21, x22 × x22

RB: Residual Block, P: 2× 2 max pooling after the block.
xk ∈ {1, 3}: hyper parameter we use to control the RF
of the network. Number of channelds per RB:
128 for RBs 1-4; 256 for RBs 5-8; 512 for RBs 9-12.

Table 2: Mapping ρ values to the maximum RF of ResNet variants
(networks configured as in Table 1). ρ controls the maximum RF
by setting the xk as explained in Eq. (1).

ρ value Max RF ρ value Max RF
0 23× 23 1 31× 31
2 39× 39 3 55× 55
4 71× 71 5 87× 87
6 103× 103 7 135× 135
8 167× 167 9 199× 199

10 231× 231 11 263× 263
12 295× 295 13 327× 327
14 359× 359 15 391× 391
16 423× 423 17 455× 455
18 487× 487 19 519× 519
20 551× 551 21 583× 583

receptive field. Systematic experiments will then show whether, or
in what cases, this actually helps improve the results.

2.1. Adapting the Receptive Field of CNNs

2.1.1. ResNet

ResNet [11] and its variants (such as preact-ResNet [17]) achieve
state-of-the-art results in image recognition. As we show in our
recent study [1], such architectures can be adapted to audio tasks
using RF regularization. We adapt the RF of the ResNet in a sim-
ilar fashion to [1] as explained below. The resulting network ar-
chitectures are detailed in Table 1. We use the hyper-parameters
xk ∈ {1, 3}, corresponding to filter sizes at different CNN levels
(see Fig. 1), to control the RF of the network. In order to simplify
the process of adjusting the RF of the network, we introduce a new

hyper-parameter ρ. We use ρ to control xk as explained in (1).

xk =

{
3 if k ≤ ρ
1 if k > ρ

(1)

For example, setting ρ = 5 will result in a ResNet configured as
in Table 1 with xk = 3 for k ∈ [1, 5] and xk = 1 otherwise. The
resulting ResNet has a RF of 87× 87. Table 2 maps ρ values to the
maximum RF of the resulting network2.

Networks with larger receptive fields degrade in performance
as shown in [1]. For this reason, we present the results of ρ values
in the range ρ ∈ [1, 12]

2.1.2. PreAct ResNet

PreAct ResNet is a ResNet variant where residual branches are
summed up before applying the non-linearity [17]. We specifically
use PreActBN as explained in [18], since it improves the perfor-
mance of vanilla PreAct ResNet with and without Shake-Shake reg-
ularization for speech emotion recognition.

We control the RF of PreAct ResNets in the same manner as
ResNets (Section 2.1.1). Table 1 and Equation 1 explain the config-
urations of our tested networks.

2.1.3. Shake-Shake ResNet

The Shake-Shake architecture [19] is a variant of ResNet that is
proposed for improved stability and robustness. Each residual block
has 3 branches; an identity map of the input and 2 convolutional
branches, which are summed with random coefficients (in both the
forward and backward pass) [19]. This regularization technique has
shown empirically to improve the performance of CNNs on many
tasks. We also specifically use Shake-Shake regularized PreActBN
from [18]. In Shake-Shake regularized ResNets, each residual block
only has a new branch that is added to the sum. Therefore, the
resulting maximum RF of the network is not changed. In result, we
use the same techniques to control the RF (Section 2.1.1). Table 1
shows the configuration of both branches of the residual blocks.

Although, Shake-Shake ResNet is not performing well in the
classic acoustic scene classification problem (as shown in Sec-
tion 4), it excels in the case of domain mismatch (Task 1.B [20,21])
and noisy datasets (Task 2 [22]) [13].

2.1.4. DenseNet

We adapted DenseNet [12] in a similar fashion to DN1 in [1]. We
report on two DenseNet configurations with maximum RF of 87×
87 and 71× 71 pixels (Section 4).

2.2. Frequency-aware Convolution

In CNNs that have a large enough RF, deeper convolutional lay-
ers can infer the frequency information of their input feature maps.
However, CNNs with large RF degrade in performance and fail to
generalize in acoustic scene classification as shown in [1]. On the
other hand, in high-performing fully convolutional CNNs, learned
CNN filters are agnostic to the frequency range information of the
feature maps. In other words, the spectrograms and feature maps

2We will release the source code used to produce these networks
and replicate the experiments at https://github.com/kkoutini/
cpjku_dcase19
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Figure 1: Testing Loss/Accuracy of the provided development split of Task 1 a dataset, for ResNet variants with different receptive fields over
the input without mix-up.

can be rolled over both the time and frequency dimension with a
minor impact on the network predictions. This is one side effect of
limiting the receptive field of CNNs on spectograms. We propose a
new convolutional layer, which we call Frequency-aware Convolu-
tion, to make filters aware and more specialized in certain frequen-
cies by concatenating a new channel containing the frequency infor-
mation of each spatial pixel to each feature map. This technique is
similar to CoordConv [16], where the network input is padded with
the pixels’ coordinates. In our case, we pad all feature maps with a
real number indicating the frequency context of each pixel.3

The CNN models that incorporate our frequency-aware layer
will be called the Frequency-Aware Convolutional Neural Networks
(FACNNs). Similarly, we call the frequency-aware ResNet FARes-
Net. We denote the value of the pixel with spatial index (f, t) in the
new channel as V (f, t); it is calculated as

V (f, t) = f/F (2)

where F is the size of the frequency dimension of the feature map, f
is the pixel index in the frequency dimension, and t is the pixel index
in the time dimension. This new channel gives the convolutional
filters a frequency context.

Since making CNNs frequency-aware (by adding the new chan-
nel) does not alter the maximum RF of the network, we control the
maximum RF of FAResNets similar to ResNet (Section 2.1.1) by
changing ρ.

3. EXPERIMENTAL SETUP

3.1. Data Preparation and Training

We extracted the input features using a Short Time Fourier Trans-
form (STFT) with a window size of 2048 and 25% overlap. We
perceptually weight the resulting spectrograms and apply a Mel-
scaled filter bank in a similar fashion to Dorfer et al. [5]. This
preprocessing results in 256 Mel frequency bins. The input is first

3In this paper, we used a number between −1 and 1, where −1 repre-
sents the lowest and 1 the highest frequency in the spectrogram. But this
range can be adapted according to the value range of the input.

down-sampled to 22.05 kHz. We process each input channel of the
stereo audio input independently and provide the CNN with a two-
channel-spectrogram input. The input frames are normalized using
the training set mean and standard deviation.

We used Adam [23] with a specific scheduler. We start training
with a learning rate of 1 × 10−4. From epoch 50 until 250, the
learning rate decays linearly from 1× 10−4 to 5× 10−6. We train
for another 100 epochs with the minimum learning rate 5×10−6 in
a setup similar to [1].

3.2. Testing Setup

We use the provided development split of DCASE 2019 task 1A [20,
21]. We train our models on the provided training set and treat the
provided test set as unseen set. In other words, we don’t select best
models based on their performance on the test set. Instead, for each
model, we report the average results of the last 25 training epochs
of two runs on the test set.

3.3. Data Augmentation

Mix-Up: Mix-up [24] is an effective augmentation method that
works by linearly combining two input samples and their targets.
It was shown to have a great impact on the performance and the
generalization of the models.
Spectogram Rolling: We roll the spectograms randomly over the
time dimension.

4. RESULTS

Table 3 shows the ρ and Max RF configuration that achieves the top
accuracy (mean/std over the last 25 epochs) for each architecture,
with and without mix-up. It is also worth noting that the maximum
RF is different from the effective RF as explained in [1, 25]. We
control the maximum RF using ρ, while the effective RF is depen-
dent on the architecture, the initialization and the data [25]. This is
one possible explanation for why different architectures may have a
slightly shifted optimal maximum RF range (for example, PreAct in
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Figure 2: Testing Loss/Accuracy of the provided development split of Task 1 a dataset, for ResNet variants with different receptive fields over
the input with mix-up.

Table 3 and Figure 2). Likewise, using mix-up can alter the optimal
maximum RF range for the networks.

4.1. Without Mix-up

Figure 1 shows the testing loss and accuracy for different archi-
tectures over a range of ρ values and – consequently (see Eq. (1)) –
maximum RF values. The plots summarize the results for the last 25
epochs of 2 runs. We notice that FAResNet excels mostly in smaller
RF networks (ρ < 8) where frequency context is more valuable.
The figure also shows the best-performing maximum RF range for
different architectures to correspond to ρ values in the range [3, 8].
In this range, FAResNet outperforms other ResNet variants.

4.2. With Mix-up

Figure 2 shows the testing loss and accuracy when we use mix-up
data augmentation. We note that when using mix-up, ResNet out-
performs the other variants. Further experiments and investigation
are still needed to fully understand the effect of mix-up on these
architectures. The figure shows that the best-performing maximum
RF range for architectures corresponds to ρ values in the range [3, 5]
for ResNet and FAResNet, and [4, 6] for PreActResnet. Shake-Shake
achieves its best performance for ρ = 4. We see that performance
degrades outside these maximum RF ranges for different architec-
tures, in accordance with [1].

4.3. Performance at DCASE 2019

Our receptive field regularized networks achieved the second
place [13] (team ranking) in Task 1.A of the DCASE 2019 chal-
lenge [20, 21]. We averaged ResNet, PreAct and FAResNet con-
figured with ρ = 5 to achieve 83.8% accuracy on the evaluation
set. Our ResNet configured with ρ = 5 (our single architecture
submission cp resnet) achieved 82.8% accuracy when trained on
the whole development set; we averaged the prediction of the last
training epochs [13]. When instead averaging the predictions of
the same architecture trained on a 4-fold cross-validation of the de-
velopment data, it achieves 83.7% accuracy on the evaluation set.
Furthermore, the submission achieved the highest accuracy on the
unseen cities in the evaluation set (78.1%).

Table 3: Configurations with top accuracy per network architecture
and its corresponding ρ and max RF values with/without mix-up

Network ρ Max RF M/U Accuracy
ResNet 4 71× 71 3 82.85%± .36
PreAct 5 87× 87 3 82.62%± .37

Shake-Shake 4 71× 71 3 80.47%± .32
FAResNet 4 71× 71 3 82.66%± .27
DenseNet 71× 71 3 81.53%± .26
ResNet 5 87× 87 7 80.97%± .46
PreAct 7 135× 135 7 80.6%± .61

Shake-Shake 5 87× 87 7 79.98%± .27
FAResNet 5 87× 87 7 81.17 % ± .7
DenseNet 87× 87 7 79.9%± .3

M/U: using Mix-Up

The generality and robustness of the proposed RF regulariza-
tion strategy is demonstrated by the fact that our highly-performing
submissions to DCASE 2019 Tasks 1.B and 2 [13] are also based
on these architectures.

5. CONCLUSION

In this paper, we have investigated different configurations of deep
CNN architectures that correspond to different maximum receptive
fields over audio spectograms. We showed that this helps to bet-
ter design deep CNNs for acoustic classification tasks, and to adapt
CNNs performing well in other domains (notably, image recogni-
tion) to acoustic scene classification. The good results achieved
with this basic strategy in several DCASE 2019 tasks suggest that
this is a very general and robust approach that may prove beneficial
in various other audio processing tasks.
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