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ABSTRACT
This paper proposes a deep learning technique and network model
for DCASE 2019 task 3: Sound Event Localization and Detection.
Currently, the convolutional recurrent neural network is known as
the state-of-the-art technique for sound classification and detection.
We focus on proposing TrellisNet-based architecture that can re-
place the convolutional recurrent neural network. Our TrellisNet-
based architecture has better performance in the direction of ar-
rival estimation compared to the convolutional recurrent neural net-
work. We also propose reassembly learning to design a single net-
work that handles dependent sub-tasks together. Reassembly learn-
ing is a method to divide multi-task into individual sub-tasks, to
train each sub-task, then reassemble and fine-tune them into a sin-
gle network. Experimental results show that the proposed method
improves sound event localization and detection performance com-
pared to the DCASE 2019 baseline system.

Index Terms— DCASE 2019, sound event localization and
detection, TrellisNet, convolutional recurrent neural network, re-
assembly learning

1. INTRODUCTION

A sound event localization and detection (SELD) [1, 2] is a new es-
timation problem that combines sound event detection (SED) and
direction of arrival estimation (DOAE) into a single task. Hirvo-
nen [3] suggested a classification approach for DOAE using convo-
lutional neural networks (CNN). The disadvantage of DOAE using
classification is that only discrete direction of arrival (DOA) can
be predicted. Besides, applying this method to polyphonic sound
events increases the number of target classes and requires a large
amount of dataset to train the network. Therefore, the DCASE 2019
baseline [1, 2] tried to overcome these disadvantages using multi-
output regression.

Multi-output regression is a method to fit regressors for all tar-
get classes. So the DCASE 2019 baseline estimates DOA for both
active and inactive sound events. As a result, multi-output regres-
sion interrupts training for DOAE because of unnecessary inactive
events. Multi-output regression forces the DOA label to have az-
imuth and elevation values for all classes. Therefore, DOA labels
have true DOA values for active events and default DOA values for
inactive events. Multi-output regression loss includes both DOA
loss for active events and DOA loss for inactive events. As a result,
the network output is trained to be closer to the true DOA for active
events and to the default DOA for inactive events. In short, SELD
with multi-output regression operates to estimate the array contain-
ing the default DOA values, rather than estimating DOA only for

active events. To overcome this problem, Cao et al. [4] proposed a
two-stage learning method to avoid loss from inactive events. The
two-stage learning excludes DOA prediction for inactive events by
masking using ground-truth event labels. As a result, the two-stage
learning makes significant performance improvement.

The two-stage learning solves the problem of multi-output re-
gression by excluding the inactive events from the DOA loss. How-
ever, the two-stage learning still has a problem with inactive events
at the inference stage. The two-stage learning derives the final
SELD output prediction by concatenating SED network prediction
and DOA network prediction. Here, the DOA network of two-stage
learning excludes the inactive events in training. Therefore, the
DOA prediction values of the inactive events are random. As a
result, there is a problem in the Hungarian algorithm used to cal-
culate the DOA error for polyphonic sound events. This problem
occurs when the SED network incorrectly predicts the event. Since
the Hungarian algorithm is a method to find a combination that re-
duces the pair-wise cost, the DOA error is derived from the random
DOA output of the inactive sound event in the above case. In short,
the two-stage learning causes the irony that DOAE for mispredicted
events is made with random DOA predictions excluded from train-
ing.

In this paper, we propose a reassembly learning method to par-
tially alleviate the problem from inactive sound events. This method
is based on the two-stage learning [4]. Reassembly learning is a
method of reassembling pre-trained SED network and DOA net-
work into a single SELD network, and training the reassembled
SELD network. The key idea of reassembly learning is to reduce
the influence of inactive sound events through fine-tuning.

A recurrent neural network (RNN) is widely used for sequence
modeling. Theoretically, RNN can train an infinite length of the
sequence. However, in actual RNN, the vanishing gradient occurs
while repeating the sequential operation. It means that the stability
of the RNN structure is not guaranteed. Therefore gating mecha-
nism has been proposed such as LSTM [5] and GRU [6]. But the
instability problem was not completely solved. There have been
attempts to process sequence data using TCN, which is based on
1D convolution and showed good performance [7, 8]. Bai et al. [9]
proposed TrellisNet, a new architecture that takes advantage of two
advantages of CNN and RNN. TrellisNet is a special form of TCN
structure that stacks multiple layers of TCNs and acts like a trun-
cated RNN at a specific weight. TrellisNet outperforms several
benchmarks, such as language modeling and long-term memory re-
tention [9].

CRNN is used in DCASE 2019 baseline. Furthermore, many
SED and DOAE studies [1,2,4,10] choose CRNN as basic network
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architecture. CRNN is currently state-of-the-art in sound classifi-
cations and detection. CRNN architecture uses CNN for local fea-
ture extraction and RNN for a temporal summary of the output of
the CNN. In this paper, we propose a new network architecture for
sound classification and detection using a TrellisNet [9] based on
the temporal convolutional network (TCN). The key idea of the pro-
posed architecture is to take advantage of both CNN and RNN by
replacing RNN with TrellisNet.

2. DATASET

DCASE 2019 challenge task 3 provides audio dataset for 11 classes
of sound events. The sound event of DCASE 2019 dataset is synthe-
sized using spatial room impulse response recorded in five indoor
locations. The development dataset consists of 400 files. Each audio
file is a one-minute duration with a sampling rate of 48000 Hz. The
development dataset is provided as two different types: four chan-
nel tetrahedral microphone arrays and a first-order ambisonic (FOA)
format. Besides, DCASE challenge task 3 targets polyphonic sound
events with a maximum of two sound events overlap.

3. FEATURE

Our models use log mel-band energy (4 channels), mel-band acous-
tic active intensity (3 channels) and mel-band acoustic reactive in-
tensity (3 channels). Log mel-band energy is extracted from the
tetrahedral microphone dataset. On the other hand, mel-band acous-
tic active and reactive intensity are extracted from FOA dataset. The
input feature configuration used in this paper is shown in Table 1.

3.1. Log mel-band energy

In the DCASE 2018 challenge task 4, many participants used the
log mel-band energy as an input feature for SED [11–16]. Mel-band
energy is a feature that applies a mel filter to an energy spectrogram.
The mel filter mimics the non-linear human auditory perceptions.
The results of DCASE 2018 challenge proved that this non-linear
feature has strength for SED. Also, we expect to obtain information
of time difference, loud difference for sound localization from a
multi-channel log mel-band energy feature.

3.2. Mel-band acoustic intensity

Ambisonic is a coefficient of the spatial basis of the audio signal.
Each spatial basis is expressed as spherical harmonics. Zero-order
ambisonic signal (W) represents the component that is omnidirec-
tional. First-order ambisonic signals (X, Y, Z) represent three polar-
ized bidirectional components. In the presence of multiple sources
or reverberant environments, it is impossible to express complex
sound fields using FOAs (W, X, Y, Z). Therefore, we need addi-
tional methods to extract spatial information from FOAs for the re-
verberant environment. Acoustic intensity is one of these methods
that extract spatial information from FOAs [17].

Acoustic intensity is one of the physical quantities represent-
ing the sound field. The acoustic intensity vector I(t, f) can be
expressed by using FOA as equation (1). Active acoustic inten-
sity vector Ia is a real part of acoustic intensity that represents the
flow of sound energy. It is a physical quantity directly related to
DOA. The active acoustic intensity is expressed as a real part of
the product of the pressure p(t, f) and the particle velocity v(t, f).
Reactive intensity Ir is an imaginary part of acoustic intensity that

Table 1: Input features for single networks
Name Feature configuration
MIC 8 channels, magnitude and phase spec-

trogram (Mic)
FOA 8 channels, magnitude and phase spec-

trogram (Foa)
Log-Mel 4 channels, log mel-band energy (Mic)
Log-Mel + Ia 7 channels, log mel-band energy (Mic)

+ mel-filtered active intensity
Log-Mel + Ia + Ir 10 channels, log mel-band energy (Mic)

+ mel-filtered active intensity + mel-
filtered reactive intensity

represents a dissipative local energy transfer. It is a physical quan-
tity dominated by direct sound from a single source. We expect to
obtain spatial decomposed information and phase information from
acoustic intensities of 6 channels of mel-band acoustic intensity.

I(t, f) = p(t, f)v∗(t, f) = −W (t, f)



X∗(t, f)
Y ∗(t, f)
Z∗(t, f)


 (1)

Finally, it is important that the size of the acoustic intensity
feature and the size of mel-band energy feature are equal to deal
with those features in the single network. Therefore, mel filter is
applied to resize acoustic intensity features.

4. NETWORK ARCHITECTURE

4.1. CNN Layers

In Figure 1(a), the CNN layers consist of two gated linear unit
(GLU) blocks and global average pooling that compresses the fre-
quency (mel-bin) axis. Both the SED network and the DOA net-
work use the same CNN layers. The details of the GLU block are
shown in Figure 1(b).

4.2. Temporal feature extractor

There are two different types of temporal feature extractors for the
proposed model. One is Bidirectional-GRU, one of RNNs. The
other is Bidirectional-TrellisNet which is a special form of TCNs.
The details of the RNN block and the TrellisNet block are shown in
Figure 1(b).

TrellisNet [9] tried to combine CNNs and RNNs through direct
input injection and weight sharing among TCN layers. The key idea
of TrellisNet is to implement a CNN that behaves like an RNN un-
der certain conditions. When RNN is unfolded, a new input comes
in every step and the same weight is applied. In TrellisNet, the tem-
poral convolution layer with kernel size 2 corresponds to one RNN
step. TrellisNet can replace the recurrent structure of the RNNs
by stacking of multiple temporal convolution layers and adding the
input injection and weight sharing techniques. Therefore Trellis-
Net can take advantage of both structural and algorithmic elements
of CNN and RNN. In TrellisNet, LSTM is applied between each
temporal convolution layer. We set the receptive field of TrellisNet
to cover the input frame length for performance comparison with
RNN.

4.3. Reassembly learning

We propose a reassembly learning to design a single network for
a multi-task problem which consists of dependent sub-tasks. Re-
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(a) Network architecture (b) Block specification (c) Process of reassembly learning

Figure 1: Proposed system for DCASE2019 task 3; B: batch size, C: channel, T: time, M: number of mel-bin, F: filters, N: number of classes

Table 2: Hyper-parameters for proposed system
Name Value

Epoch for SED network 25
Epoch for DOA network 100
Epoch for SELD network 10

Learning rate for SED/DOA network 0.001
Learning rate for SELD network 0.0001

Weight for SELD network SED:DOA = 0.2:0.8
Batch size (B) 32

Frame length (T) 200
Step size between two segment 100

Number of Mel-bin (M) 96
Number of the FFT 1024

assembly learning consists of three stages. The first stage is train-
ing the SED network. After then CNN layers of the trained SED
network are transferred to the DOA network. In the second stage,
the loss of the DOA network is calculated with masking inactive
event by the ground truth SED labels. The last stage is the SELD
stage. The SELD network initializes the whole parameter from the
pre-trained SED network and the DOA network as shown in Figure
1(c). At this stage, we use estimated SED for masking instead of
ground truth SED labels.

As mentioned in the introduction, using the ground truth SED
label masking causes an irony that DOAE for mispredicted events
is made with random DOA predictions excluded from training. Re-
assembly learning is a technique to make the random DOA value of
the mispredicted event closer to the default value through additional
training. In short, the reassembly learning is a learning method
that reduces randomness through additional fine-tuning. The trained
SED network has more than 98% F-score for the training dataset.

Therefore, reassembly learning plays a role in adjusting less than
2% outliers that are not detected correctly.

5. EVALUATION RESULT

In this section, we will describe network architectures using the pro-
posed technique and network layers in the previous section and its
performance. The hyper-parameters for training are summarized in
Table 2.

5.1. Single network

Table 3 shows the experimental results for single networks by using
pre-defined four-fold cross-validation split for DCASE 2019. We
combined training and validation split for training proposed models.
The system name and its description stand for following,

• Baseline: Baseline network model for DCASE 2019 challenge
task 3 by task organizers

• Reassembly ‘SED-DOA’: Proposed architecture as shown in
Figure 1(a); ‘SED-DOA’ specifies the network that corre-
sponds to the temporal feature extractor in SED and DOA net-
works. Candidates for temporal feature extractor are RNN and
TrellisNet. For example, RNN-TrellisNet means RNN block
used as SED temporal feature extractor and TrellisNet block
used as DOA temporal feature extractor

• SELD RNN-TrellisNet: Proposed network structure without
reassembly learning

• Two-stage RNN-TrellisNet: Proposed network structure with
two-stage learning

• Reassembly v1: 4 GLU block for CNN layers of proposed
model; DCASE challenge submission model
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Table 3: Experimental results for DCASE 2019 task 3 development dataset; ER: error rate, F: F-score, DOA: DOA error, FR: frame recall
System Feature ER F DOA FR
Baseline FOA 34 79.9 28.5 85.4
Baseline MIC 35 80.0 30.8 84.0

Reassembly RNN-TrellisNet Log-Mel 16 90.9 10.2 88.1
Reassembly RNN-TrellisNet Log-Mel + Ia 15 91.4 7.6 88.2
Reassembly RNN-TrellisNet Log-Mel + Ia + Ir 15 91.4 6.4 88.4

Reassembly RNN-RNN Log-Mel + Ia + Ir 15 91.4 8.8 88.4
Reassembly TrellisNet-RNN Log-Mel + Ia + Ir 30 84.5 10.4 86.6

Reassembly TrellisNet-TrellisNet Log-Mel + Ia + Ir 29 84.6 7.0 86.6
SELD RNN-TrellisNet with ground truth masking Log-Mel + Ia + Ir 18 89.7 10.3 87.5

SELD RNN-TrellisNet with estimated SED masking Log-Mel + Ia + Ir 19 89.3 9.4 86.9
Two-stage RNN-TrellisNet Log-Mel + Ia + Ir 15 91.4 6.7 88.4

Reassembly v1 (Development dataset) Log-Mel + Ia + Ir 16 90.6 6.4 85.7
Reassembly v1 (Evaluation dataset) Log-Mel + Ia + Ir 15 91.9 5.1 87.4

Avg ensemble (SED + DOA), Reassembly RNN-TrellisNet Log-Mel, Log-Mel + Ia, Log-Mel + Ia + Ir 13 92.7 7.7 88.9
Avg ensemble (SED), Reassembly RNN-TrellisNet Log-Mel, Log-Mel + Ia, Log-Mel + Ia + Ir 13 92.7 6.4 88.9

Table 3 shows the results of applying three different input fea-
tures to Reassembly RNN-TrellisNet. As a result, the higher the di-
mension of the input feature used, the higher the DOA result. These
results show that spatial information and phase information from
FOA were important for DOAE. On the other hand, SED results
showed no significant change. This means that the log mel-band
energy feature has been used primarily for SED. While the inten-
sity vector feature does not help improve SED performance. This is
because the direction does not need to be considered for SED.

SED is a problem that infers time-varying patterns. While
DOAE for static events is a problem for estimating static phase dif-
ference. Therefore, we assumed that RNN would be advantageous
in inferring the time-varying pattern for SED. On the other hand,
we assumed that CNN would be more appropriate than RNN for es-
timating the static phase difference. These assumptions are proved
in the results of Table 3. RNN is strong for SED and TrellisNet has
strong point for DOAE. This result is that the TCN based network
has an advantage in DOAE and is the possibility of being applied to
a variety of sound classification and detection applications.

Reassembly RNN-TrellisNet system using Log-Mel + Ia + Ir
is the best performance in a single model in Table 3. We submitted
a single network, Reassembly v1, using 4 GLU blocks on CNN
layers for Reassembly RNN-TrellisNet to DCASE 2019 challenge
task 3. Reassembly v1 ranked 10th in DCASE 2019 challenge task
3 challenge. The model proposed in this paper has slightly changed
the DCASE challenge submission model. By reducing the number
of GLU blocks, the time pooling is reduced. So it brings 1%, 1%,
and 3% performance gain for error rate, F-score and frame recall
respectively.

The proposed system has achieved performance improvement
over DCASE 2019 baseline. Compared to the performance of the
proposed network without reassembly learning, pre-training sub-
task networks has proven to significantly improve the performance
of all metrics. In Table 3 the reassembly learning showed a 0.4◦ im-
provement in DOA error compared to the two-stage learning. Re-
assembly learning has led to a small improvement since it plays a
role in reducing randomness for mispredicted outliers.

5.2. Ensemble network

We use the simple and powerful ensemble method, average ensem-
ble, to Reassembly RNN-TrellisNet model of the three different in-

put features used in Table 3. Following is descriptions of the en-
semble systems:

• Avg ensemble (SED + DOA): Average ensemble for both SED
and DOA prediction results of Reassembly RNN-TrellisNet.

• Avg ensemble (SED): Average ensemble for SED prediction
results of Reassembly RNN-TrellisNet + DOA prediction re-
sults from Log-Mel + Ia + Ir feature.

Table 3 shows that the Avg ensemble (SED) has better perfor-
mance than the Avg ensemble (SED + DOA). In the case of SED,
the performance improvement was achieved by using the average
value of probability used for classification. However, the DOA
value is directly obtained from the regression, so the performance
of the average ensemble for DOAE is almost equal to the average
error of the three systems. The overall performance was improved
by using the average ensemble. For the development dataset, the
Avg ensemble network makes 3%, 2%, and 3% performance gain
for error rate, F-score, and frame recall compared to Reassembly
v1.

6. CONCLUSION

We proposed reassembly learning to solve the sound event localiza-
tion and detection problem which consists of two dependent sub-
tasks. Reassembly learning is a way to retrain network that consists
of pre-trained sub-task networks. Through reassembly learning, we
tried to alleviate the problem of multi regression loss used for con-
tinuous polyphonic SELD. As a result, the proposed models sig-
nificantly improved both SED and DOAE performance compared
to the baseline. Also, we proved that the log mel-band energy and
mel-band intensity are helpful input features for SED and DOAE.
Moreover, the DOAE network using TrellisNet showed better per-
formance than CRNN. Thus TCN based architecture demonstrated
the possibility for other sound classification and detection applica-
tions.
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