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ABSTRACT 

This paper presents deep learning approach for sound events de-

tection and localization, which is also a part of detection and clas-

sification of acoustic scenes and events (DCASE) challenge 2019 

Task 3. Deep residual nets originally used for image classification 

are adapted and combined with recurrent neural networks (RNN) 

to estimate the onset-offset of sound events, sound events class, 

and their direction in a reverberant environment. Additionally, 

data augmentation and post processing techniques are applied to 

generalize and improve the system performance on unseen data. 

Using our best model on validation dataset, sound events detec-

tion achieves F1-score of 0.89 and error rate of 0.18, whereas 

sound source localization task achieves angular error of 8° and 

90% frame recall.  

Index Terms— Sound events detection, directional of arrival, 

residual net, recurrent neural networks 

1. INTRODUCTION 

Sound events localization and detection (SELD) system allows 

one to have automated annotation of a scene in spatial dimension 

and can assist stakeholders to make informed decisions. It is an 

important tool for various applications like identifying critical 

events like gunshots, accidents, noisy vehicles, mixed reality audio 

where spatial scene information enhanced the augmented listening, 

robots that listens just like humans and tracks the sound source of 

interest, smart homes and surveillance systems [1-5]. The three 

main objectives of SELD system are namely, (1) first, to detect 

presence of sound events, (2) second, to classify active sound 

events as textual labels, and (3) third, to estimate directions of ac-

tive sound events. 

The first key component of the SELD system is sound event 

detection (SED), which assigns pre-defined labels to the active 

sound events every frame [6]. In the past, many signal processing 

and machine learning methods have been extensively applied to 

the SED problem using supervised classification approach. The 

most popular methods include, dictionary learning [7], gaussian or 

and hidden markov model [8-9], non-negative matrix factorization 

(NMF) [10-11], principal component analysis [12], and deep 

learning methods like fully connected neural network (FCNN) 

[13], convolutional neural network (CNN) [14-15], recurrent neu-

ral networks (RNN) [16], residual network (ResNet) [17].  Most 

recently, combination of the CNN, RNN and FCNN networks 

were also proposed to improve the SED performance and present 

state-of-art results [18-20]. Furthermore, multi-channel audio in-

puts as well as ambisonics data has been employed in SED task to 

exploit the spatial nature of the data [20-21].  

The second key component of SELD system is direction of ar-

rival (DoA), which estimates the directions of active sound events 

in terms of azimuth and/or elevations angles. DoA problem is 

commonly dealt using various traditional signal processing based 

methods: time-difference [22], subspace methods such as multiple 

signal classification (MUSIC) [23], cross-correlation methods 

such as generalized cross-correlation with phase transform (GCC-

PHAT) [24], steered response with phase transform (SRP-PHAT) 

[25], multichannel cross-correlation coefficient (MCCC) [26]. 

However, some of the common practical challenges with these 

methods is performance degradation in presence of noisy and re-

verberant environment as well as high computational cost. Re-

cently, deep learning based methods is also being extensively em-

ployed to improve the DoA performance and outperforms the tra-

ditional methods in challenging environments [27-35]. DNN based 

approaches vary in terms of microphone array geometry- circular, 

linear, binaural, ambisonics. In addition, different input features 

like GCC [33], magnitude and phase transform [21] [31], eigen 

vectors [34], inter-aural cross-correlation features [32] and most 

recently raw temporal features [35] have been used to improve the 

DoA performance. Furthermore, most of these works have been 

shown to work on only azimuthal plane sources and/or single static 

sources except [31], which demonstrates working in both azimuth 

and elevation as well as for overlapping sound sources. 

There are very few works jointly solving the SELD task using 

deep learning. Hirvonen [28] used spectral power of the multi-

channel audio signals from circular array and used CNN based 

classifier to predict one of the 8 source directions on azimuthal 

plane for each sound event. In contrast, Adavanne [21] employed 

regression based continuous DoA output in both azimuth and ele-

vation for 11 different type of overlapping sound classes. The au-

thors employed a joint network using CRNN network with two 

branches each for SED and DoA to perform the combined SELD 

task. 

In this paper, we employ a ResNet architecture combined with 

RNN, referred as ResNet RNN, for the joint estimation of respec-

tive labels for SED and DoA for sound events in a reverberant 

scene with one or two active sound sources. In contrast to the base-

line model [21], a classification-based output is employed for DoA 

and additional post-processing techniques are employed for both 

SED and DoA to further improve the overall SELD performance. 

The proposed model significantly outperforms the baseline model 

[21] using convolutional recurrent neural network (CRNN) specif-

ically for the DoA task. In the next section, we give a detailed de-

scription of the proposed methodology and training set up.
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2. METHODOLOGY 

For the SELD task, two different configurations using a modified 

version of ResNet architecture combined with RNN are em-

ployed. Figure 1 shows overview block diagrams of the two sys-

tem configurations. First system is using individually trained 

models for SED and DoA, where input is log mel magnitude spec-

trogram for the SED task, while log mel magnitude and linear mel 

phase spectrogram for the DoA as shown in Figure 1(a). Second 

system is using a jointly trained model, where ResNet RNN ar-

chitecture is common for both SED and DoA and subsequently, 

divided into two branches using FCNN layers as shown in Figure 

1(b). One key advantage of joint model in this work is that they 

share the common resources of ResNet RNN and therefore, would 

need less computational resource when implementing on embed-

ded devices. DoA branch for both the configurations is further di-

vided into two parallel branches consisting of FCNN layers and 

the two network outputs are combined as post-processing step to 

enhance the DoA accuracy. For both the systems, SED and DoA 

is predicted as continuous output in range [0 1] as probabilities for 

11 distinct sound events and 324 unique directions, respectively. 

In the next subsections, we explain the dataset, feature extraction, 

model architecture, training set up, data augmentations and post-

processing techniques used. 

2.1. Development Dataset 

The development dataset is taken from detection and classifica-

tion of acoustic scenes and events (DCASE) challenge 2019 task 

3 for SELD task [36]. It consists of 4 splits and each split contains 

100 audio files of length 60 sec and contains overlapping as well 

as non-overlapping sound events. Audio files is synthesized using 

11 isolated sound labels taken from [37] and convolved with im-

pulse responses (IR) measured from 5 different rooms at 504 

unique combinations of azimuth-elevation-distance and finally, 

mixed with natural ambient noise collected at IR recording loca-

tions. In terms of unique target directions, there are 36 azimuths 

and 9 elevations resulting in total 324 directions. All the IRs were 

recorded using Eigenmike [38], a 32 microphone spherical array 

with only 4 of the microphones forming a tetrahedral shape were 

used for synthesis of DCASE 2019 task 3 dataset. 

2.2. Feature Extraction 

Each of the audio file is sampled at 48kHz and short-time Fourier 

transform (STFT) is applied with hop size of 20 msec. Next, STFT 

spectrogram is converted to log mel magnitude spectrogram from 

amplitude of STFT and linear mel phase spectrogram from phase 

component of STFT using dot product of STFT component and 

mel-filter banks. After converting into mel spectrogram features, 

low and high frequency components are removed and finally, 

resized to match the input shape of the neural network before 

training. 

2.3. Model Architecture 

Figure 2(a) shows the architecture of proposed modified ResNet 

combined with RNN. The ResNet model is adapted from residual 

net model originally designed for image recognition and de-

scribed in [39]. As shown in the figure, output of the feature ex-

traction is fed to the ResNet RNN model with feature dimension 

of 𝑁𝑐ℎ × 𝐾 ×  𝑁𝑚𝑒𝑙 , where 𝑁𝑐ℎ  is the number of channels (= 4 

when only magnitude is used and 8 when both magnitude and 

phase is used as input feature), 𝐾 is the number of frames used as 

 

 

 

 
 

(a) ResNet RNN (b) SED model 

 
(c) DoA model 

 

Figure 2: Model architectures (a) ResNet RNN (b) SED: FCNN 

(c) DoA: Two parallel FCNN branch 

 

  
(a) (b) 

Figure 1: Proposed system overview (a) Individually trained models for SED and DoA (b) Jointly trained model 
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sequence, and 𝑁𝑚𝑒𝑙 is the number of mel filter banks. The ResNet 

architecture consists of many 2D convolutional (conv) layers, 

however the distinct feature of ResNet architecture is the use of 

identity and convolutional block with skip connection to solve the 

vanishing gradient problem in deeper networks [39]. In this work, 

ResNet is a 2-stage architecture with first stage being a 2D conv 

layer with 64 filters, followed by batch normalization of outputs 

[40], ‘ReLU’ activation function and dimensionality reduction us-

ing max pooling of 2 along the mel frequency axis. Second stage 

consists of one convolutional block with three filters with output 

size as (64, 64, 256), and 4 identity blocks with three filters and 

same number of filters as in convolutional block. Finally, average 

pooling of size 16 is applied along the mel frequency axis. Subse-

quently, output from stage 2 is reshaped on the last two dimen-

sions before feeding to two RNN layers to learn the contextual 

information from temporal sequence data of K frames. Each RNN 

layer consists of 128 nodes of either gated recurrent units (GRU) 

or long short-term memory (LSTM) with ‘tanh’ activation func-

tion. RNN block is followed by fully connected dense layers for 

both SED and DoA as shown in Figure 2(b) and (c). First FC layer 

in both the tasks consists of 128 nodes with linear activation func-

tion and dropout of 0.5 to improve the generalization ability of 

network. Final FC layer in SED consists of 11 nodes correspond-

ing to 11 unique target sound classes with sigmoid activation 

function as shown in Figure 2(b). DoA, however, consists of two 

parallel branches of FC layers with one branch estimating number 

of active sources and other branch estimating actual direction es-

timates as probabilities. Final FC layer in first branch consists of 

𝑁𝑠𝑟𝑐 nodes corresponding to maximum number of active sources 

with ‘softmax’ activation function. For the second DoA branch, 

final FC layer consists of 324 nodes corresponding to 324 unique 

directions with ‘sigmoid’ activation function.  

2.4. Model Training 

For model development, 4 cross-fold sets from DCASE challenge 

2019 task 3 dataset [4] is used with 3 of the splits used for training 

and one split for validation as shown in Table 1. During training, 

each processed audio feature file is split into sequence length of 

128 frames and resized with fixed batch size of 96. For SED, bi-

nary cross-entropy loss function is used for model weights adap-

tation. For DoA second branch, weighted binary cross-entropy 

loss function is used to strongly penalize the false negatives be-

cause at most only two out of 324 DoA labels are true at any time 

frame in the ground truth. For both SED and DoA, adam optimizer 

is used with learning rate of 0.0005. Best model is saved using the 

combined SELD loss metric computed using the evaluation met-

rics provided by DCASE task 3 organizers and briefly explained 

in sub-section 2.7. 

2.5. Data Augmentation 

To improve model generalization capability on unseen test data, 

data augmentation using frame shifting is applied to each of the 

processed audio file. Each audio feature set is shifted in negative 

time by 32, 64 and 96 frames across temporal dimension before 

splitting into sequence of 128 frames. In this way, we create 3 

shifted copies of audio segments, which helps in generalizing the 

model performance. Therefore, total data after augmentation is 4 

times larger than the original dataset size and each audio feature 

file including shifted copies are selected randomly for training in 

each epoch. 

2.6. Output Post-processing 

First post-processing technique applied to both SED and DoA out-

puts is by predicting on frame shifted audio feature sequences and 

then, taking geometric mean of the shifted probability estimates: 

𝐩𝑎𝑣𝑔 = √𝐩(𝑡0) ∙ 𝐩(𝑡1) ∙ 𝐩(𝑡2)3  . (1) 

where 𝐩(𝑡𝑖) is the probabilities predicted using the final trained 

model weights for each audio feature file 𝐗(𝑡)  shifted by 𝑡𝑖 

frames and padding zeros in front and excluding first 𝑡𝑖 frames 

from the predicted probabilities as final estimates: 

𝐩(𝑡𝑖) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡([𝟎(𝑡𝑖) 𝐗(𝑡 − 𝑡𝑖)]). (2) 

Above averaging method helps in averaging out the spurious out-

liers in the final prediction. It is also found that geometric mean 

gives slightly better results than arithmetic mean and thus, were 

used to compute SED and DoA output probabilities. 

Final SED labels were obtained frame wise by comparing the 

output probabilities for each label with a given threshold. Those 

labels with probabilities more than the threshold are selected as 

active sound events and in the case of none of the labels’ proba-

bilities more than threshold no activity, i.e., ambience is assigned. 

For DoA estimations, we merge the outputs of two branches as 

explained in following sub subsection.  

2.6.1. DoA Post-processing 

As explained earlier in sub-section 2.3 and Figure 2(c), there are 

two outputs from DoA model as number of active sources and 324 

direction labels probabilities. To obtain final estimated directions 

per frame, we take the following steps: 

1. Convert the DoA output 324 probabilities estimate into 

2D array with size 36 azimuths × 9 elevations 

2. Find the local peaks in the 2D array above a given 

threshold and a minimum neighboring distance between 

two peaks 

3. Compute 𝑛𝑠𝑟𝑐 as number of active sources by selecting 

label with maximum probability in the first DoA branch. 

4. Select 𝑛𝑠𝑟𝑐 peaks from the output of second step as final 

DoA estimate. 
By using above post-processing steps of peak finding with mini-

mum neighboring constraint, we filter out the redundant DoA 

peaks which are close by and also improve the DoA frame recall 

by capping the number estimated DoAs based on first branch out-

put. Finally, both SED and DoA outputs are combined together 

frame wise based on the presence of active sound events or direc-

tions in any of the SED or DoA outputs. In the case of multiple 

sources, to match the DoA and SED outputs, we take into account 

the precedence of single source SED and DoA outputs in previous 

time frames and use this prior information to match the second 

source outputs in current time frame. 

Table 1: Cross-fold configuration for model evaluation 

Fold Training sets Validation sets 

1 Split 2, 3, 4 Split 1 

2 Split 3, 4, 1 Split 2 

3 Split 1, 2, 4 Split 3 

4 Split 1, 2, 3 Split 4 
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2.7. Evaluation Metrics 

Model performance is evaluated using 4 metrics, 2 each for SED 

and DoA. SED is evaluated using error rate (ER) and F-score. ER 

is the total error based on total number of insertions (I), deletions 

and substitutions [41]. F-score is calculated as harmonic mean of 

precision and recall [41]. DoA is evaluated using average angular 

error and frame recall (FR). DoA error is defined as average angu-

lar error in degrees between estimated and ground truth directions 

and computed using Hungarian algorithm [42] to account for the 

assignment problem of matching the individual estimated direc-

tion with respective reference direction. DoA FR is defined as per-

centage of frames where number of estimated and reference direc-

tions are equal out of total frames. In addition, combined SED, 

DoA and SELD metrics were computed using mean of respective 

error metrics and used for evaluating models. 

3. RESULTS 

Table 2 shows the performance of two proposed models: individu-

ally trained models (Proposed-I) and jointly trained models (Pro-

posed-J). Clearly, the Proposed-I models outperforms the baseline 

model in terms of all the 4 metrics and for all validation splits. Spe-

cifically, there is significant overall improvement in terms of DoA 

angular error from 31°  for baseline to 8.2°  for the individually 

trained models. However, jointly trained models do not perform as 

good as the Proposed-I models but yet provides noticeable improve-

ment over baseline, especially for DoA. Poor performance for Pro-

posed-J model can be explained by the fact that by using shared 

ResNet layers’ trained weights may not be optimal for either SED 

and DoA because of joint training. On the other hand, for individual 

models, respective weights for both SED and DoA ResNet layers 

are optimally trained and thus, giving better performance. Addition-

ally, joint model incurred around 1.4 million parameters against 3 

million parameters for combined individual SED and DoA model.  

Clearly as mentioned earlier, joint models require less computa-

tional resource and therefore, would ensure faster prediction time 

as compared to individual models for an SELD system running in 

real-time on an embedded device.  

Table 3 shows the proposed models performance for single 

source (Ov1) and two overlapping sources (Ov2). Proposed models 

performs much better for single source scenario as compared to two 

sources, especially with DoA error as low as 3.9°  and FR as high 

as 97 %.  Proposed model performance for 5 different room impulse 

responses is also summarized in Table 4. Except for the IR5 and 

IR3 in terms of SED ER, proposed models perform similar across 

all the IRs.  

4. CONCLUSION 

In this paper, a 2-stage ResNet architecture combined with RNN 

is used for both sound events classification and localization task. 

With data augmentation and post-processing techniques, the pro-

posed model performance is significantly improved, especially 

for the DoA task with error as low as 8o and frame recall of 90 %. 

The proposed work is also demonstrated in DCASE challenge 

2019 Task 3 and showed superior performance over baseline on 

evaluation dataset. Jointly trained model is useful for edge imple-

mentations because of lower complexity but at the cost of sub-

optimal performance. This needs to be further investigated and 

has been identified as future work to further improve the perfor-

mance of joint model.  
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