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ABSTRACT

The system we used for Task 6 (Automated Audio Captioning)
of the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2020 Challenge combines three elements, namely, data
augmentation, multi-task learning, and post-processing, for audio
captioning. The system received the highest evaluation scores, but
which of the individual elements most fully contributed to its perfor-
mance has not yet been clarified. Here, to asses their contributions,
we first conducted an element-wise ablation study on our system
to estimate to what extent each element is effective. We then con-
ducted a detailed module-wise ablation study to further clarify the
key processing modules for improving accuracy. The results show
that data augmentation and post-processing significantly improve
the score in our system. In particular, mix-up data augmentation
and beam search in post-processing improve SPIDEr by 0.8 and 1.6
points, respectively.

Index Terms— Automated audio captioning, data augmenta-
tion, multi-task learning, beam search decoding

1. INTRODUCTION

Automated audio captioning (AAC) is a crossmodal translation task
in which input audio is translated into a description of the audio us-
ing natural language [1-6]. Whereas automatic speech recognition
(ASR) converts speech to text, AAC converts environmental sounds
to text. Generating meaningful captions for environmental sounds
requires the incorporation of higher contextual information, includ-
ing concepts, physical properties, and high-level knowledge, though
such information is not necessarily needed for tagging scenes [7,8],
events [9], and conditions [10].

For the AAC task of the Detection and Classification of Acous-
tic Scenes and Events (DCASE) Challenge 2020, Drossos et al. set
up Task 6 [11], which prohibited the use of external resources and
pre-trained models. Thus, participants were required to solve task-
specific problems for audio captioning, rather than provide com-
putational generic solutions using large amounts of training data or
large-scale pre-trained models such as VGGish [12] and BERT [13].
This is because, even though image or video captioning is being ac-
tively studied, AAC is still an emerging research field, and because
there has not been an exhaustive study on methods for improving
accuracy.

Here, we address three research questions in AAC. The first
is how to augment the limited data for effective training. There-
fore, we discuss data augmentation that makes effective use of small
amounts of data. The second is how to decide the best description
for given audio. As described in [5, 6], information contained in
audio signals can be much more ambiguous than that in images or
videos. Moreover, the validity of the description generally depends
on the situation or context as well as the sound itself. Therefore, we
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Table 1: The three elements and their component modules used in
our system [14]

(1) Data augmentation (a) Mix-up [15]
(b) TF-IDF-based word placement [16]
(c) IDF-based sample selection

(i1) Multi-task learning (a) Sentence length estimation
(b) Keyword estimation [6]

(a) Beam search decoding [17, 18]
(b) Test time augmentation [19]

(iii) Post-processing
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Figure 1: System overview.

introduce a deep neural network (DNN) architecture for estimat-
ing keywords and sentence length along with caption generation
as multi-task learning. The third is whether post-processing such
as beam search decoding is effective in AAC. This is because it
has been found that post-processing can correct obviously incorrect
output in machine translation and image captioning.

Figure 1 shows an overview of our system which incorporates
data augmentation, a DNN architecture with multi-task learning,
and post-processing, as summarized in Table 1. Although the sys-
tem yielded the best score at the challenge, the effectiveness of each
module has not yet been clarified.

This paper is organized as follows. In Section 2, we describe
in detail the research questions that were raised through this chal-
lenge and explain our motivation for adopting each module. As
described in Section 3, we carried out an ablation study. First, we
roughly divide our system into three processing elements for abla-
tion, (i) data augmentation, (ii) multi-task learning, and (iii) post-
processing. Based on the result showing that (i) and (iii) mainly
contribute to the accuracy, we then conducted a finer ablation study
for each component module of (i) and (iii). Our findings are sum-
marized as follows:

1. Data augmentation and post-processing significantly im-
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proved the performance of AAC.

2. Multi-task learning did not improve the performance under
the task rules, even though it was effective in more computa-
tionally rich scenarios, i.e., with pre-trained models [6].

3. Mix-up data augmentation was effective as with acoustic
event detection and acoustic scene classification.

4. Beam search decoding was effective for AAC as well as
other text generation tasks including ASR [20] and image
captioning [21].

2. SYSTEM DESCRIPTION

This section describes our research questions and their solutions.
See our technical report for the implementation details.

2.1. Research questions in AAC
We identified three research questions in AAC:

Data augmentation: In AAC, unlike other language processing
tasks such as machine translation, it is difficult to collect train-
ing data from the Web. Therefore, the amount of training data
available is inevitably less than that for other natural language pro-
cessing tasks. In fact, there are only 14,465 training captions in
the Clotho dataset [2], whereas there are 36M in the WMT 2014
English-French dataset for machine translation. This leads to the
first research question: how to augment the limited data for effec-
tive training.

Multi-task training for resolving indeterminacy: As described in
our previous studies, AAC has two indeterminacy problems. One is
the indeterminacy in word selection [6], and the other is that in the
degree of detail and sentence length [5]. The first problem arises
because one acoustic event/scene can be described in several dif-
ferent ways using different sets of words, such as {car, automobile,
vehicle, wheels} and {road, roadway, intersection, street} [6]. The
second problem appears because a sound can be explained briefly or
in detail with a long expression, such as “car sounds,” or “‘small cars
and large trucks are driving on a roadway and they are making very
loud engine noises” [5]. Such indeterminacy leads to a combinato-
rial explosion of possible answers, making it almost impossible to
estimate the best description and appropriately train AAC systems.

Post-processing: Post-processing such as beam search decoding is
effective for improving accuracy. Post-processing in natural lan-
guage processing can correct obviously incorrect output based on
some explicit criteria. In DNN-based text generation, some post-
processing methods also modify the output of the DNN to improve
accuracy. Since AAC is a crossmodal text generation task with au-
dio input, it is worth investigating whether post-processing is also
effective in AAC and what kind of post-processing is effective.

2.2. Data augmentation

IDF-based sample selection: Since the objective metrics for cap-
tioning such as CIDEr [22] and SPIDEr [23] focus on the accuracy
of infrequent words and idioms, we adopt two tricks for selecting
the training samples based on IDF.

The first one is used for selecting an audio sample & from the
training dataset. First, we concatenate five ground-truth captions
corresponding to each audio clip « in the training dataset and use
the concatenated captions as a “sentence”. Then, we calculate the
IDFs for all words in all sentences and the average IDF of each
sentence. Finally, each average IDF is normalized by the sum of the
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Figure 2: Architecture of captioning DNN.
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average IDFs. We regard the normalized IDF as the parameter of
the categorical distribution and select  based on this probability.
Since data with a high average IDF contain low frequency words
in the dataset, it is assumed that the data contain low frequency
topics. Increasing the probability of selecting low frequency topics
is expected to prevent over-fitting on high frequency topics.

The second trick is used for selecting a ground-truth caption
w from five captions corresponding to the selected . The basic
strategy is the same as in the first trick. First, we calculate the IDFs
of all words in the five captions. The document used here comprises
the five captions, while the document used in the first trick consists
of all sentences of the dataset. Then, we calculate the normalized
IDF and use that as the parameter of categorical distribution. The
target caption w is selected based on this probability. By increasing
the probability that low frequency words are selected, we expect to
avoid over-fitting on high frequency words.

TF-IDF-based word placement: Considering the limited number
of sentences that can be used for training AAC systems, sentences
in the dataset should be augmented in some way. One simple data
augmentation method is to replace the words randomly. However,
the meaning of sentences can change dramatically if informative
words are replaced, and the correspondence between the caption
and the audio clip will collapse. To cope with this problem, we
need to control the words to be replaced. Thus, we adopt the TF-
IDF based word placement method [16] to augment texts. This
method avoids replacing informative words by limiting the words
to be replaced to those with low TF-IDF and augments text data
without largely changing the meaning of sentences.

Mix-up: For audio augmentation, we also investigate whether the
mix-up that has been validated in past DCASE challenge tasks is
effective. Since text is input as a set of class labels, direct mixing
of w is not suitable. Thus, the embedded word tokens are mixed by
multiplying the mixing parameters [24].

2.3. Multi-task training for resolving indeterminacy

To solve the indeterminacy problems, we build a DNN architecture
and loss functions based on multi-task learning to simultaneously
estimate the caption keywords, meta keywords and sentence length.
Figure 2 shows the architecture of the captioning DNN. The pink
area in Fig. 2 is a basic sequence-to-sequence (Seq2Seq)-based
captioning model [25] using bidirectional long short-term memory
(BLSTM)-LSTM. The output and final cell state of the encoder
BLSTM are used for the initial hidden state and cell state of the
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decoder LSTM. Then, the decoder LSTM estimates the posterior
probability of the nth word given the audio signal o and the 1st to
(n—1)-th words p(wn|x, w1,...,n—1) using embedded word tokens.
In addition, we use sub-blocks for keyword and sentence length es-
timation to solve the indeterminacy problems in AAC. The follow-
ing describes an overview of these sub-blocks. Please refer to our
technical report [14] for the details of their implementations.

Meta keyword estimation: The meta keyword estimation block
also follows the audio embedding block, and its output is passed
to the encoder. We expect this block to estimate keywords that hu-
mans associate with sounds, such as information from vision and
the surrounding environment and thus avoid the indeterminacy of
word selection.

In this study, the meta keywords were extracted from the
file_name and keyword provided in the metadata CSV file,
because they indicate their content, and a short textual description.
We extracted the keywords using a keyword vocabulary that was
manually created beforehand. The procedure for creating the key-
word vocabulary is as follows. First, file_name and keyword
were split at spaces and punctuation marks. Next, words that seem
to be nouns, verbs, adjectives, and adverbs were converted to their-
lemmas. Finally, all those were counted, and lemmas that appeared
more than ten times were appended in the keyword vocabulary,
which is a hash table that maps the original word to its lemma.

The meta keyword estimation block is used to avoid the indeter-
minacy of word selection in the same way that the caption keyword
estimation block is used. This block estimates meta keyword prob-
abilities from the output of the audio embedding block. The weight
of these losses are based on the prior probability of the ith keyword
calculated by

# of ith keyword in training samples
# of training samples '

ey

By using the inverse of this prior probability as the weight, the word
and topic frequencies are considered in the training phase.

Caption keyword estimation: The caption keyword estimation
block follows the audio embedding block. In contrast to the meta
keyword estimation block, this block is not used in the testing phase.
We expect this block to guide the training of the audio embedding
block so that its output includes information about the keywords of
the ground-truth caption. This also results in avoiding the indeter-
minacy of word selection.

This block estimates the caption keyword probabilities from the
output of the audio embedding block. The caption keywords are the
lemma of words frequently used in the provided meta data. The
loss function for this block is the weighted binary-cross entropy.
The weight of the loss is Eq. (1).

Sentence length estimation: The sentence length estimation is
used to avoid the indeterminacy of sentence length. This block esti-
mates sentence length probability and its embedding from the out-
put and final cell state of the encoder BLSTM. The sentence length
embedding is passed to the decoder to generate the sentence using
the length information as a part of the initial hidden state and the
cell state of the decoder LSTM.

We use the softmax cross entropy as the loss for the sentence
length estimation block. By using these losses for multi-task learn-
ing, we expect the common audio embedding block to be learned as
a more general representation for any task and that the AAC scores
are improved.
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Keyword co-occurrence loss: To prevent the decoder from out-
putting words obviously unrelated to the meta keywords, we ad-
ditionally use the keyword co-occurrence loss between words in a
caption and its meta keywords. For example, when meta keywords
are {car, sing, bird}, words not related to keywords such as {people,
children, talking, talk, speak} may not be included in the correct
caption. To prevent the decoder from outputting such words, we
adopt a penalty based on the decoder outputs p(wn|@, w1,....n—1).
To implement this loss, we create a hash-table of the co-occurrence
lists before training. Then, in the training phase, we add the penal-
ties of the decoder outputs to the whole loss value.

2.4. Post-processing

We use beam search decoding for making word decisions process
from p(wn|@, w1,....,n—1). The beam size is 5, and n-gram block-
ing size is 2, i.e., a hypothesis in a beam is discarded if a bi-gram
appears more than once within it. In addition, we use test time aug-
mentation (TTA) for audio input. This is because the audio input is
randomly cropped to limit the length of time in the training phase.
If changing the length of the audio input in the testing phase could
have a bad influence on the batch normalization layers. Therefore,
in the testing phase, we also randomly crop and zero-pad the audio
input so that all the inputs have the same length. We generate five
input audio clips by this process, and take the average of the five
outputs of the decoder.

3. EXPERIMENTS
3.1. Experimental setup

As the training and test dataset, we used the Clotho dataset [2],
which consists of audio clips from the Freesound platform [26] and
whose captions were annotated via crowdsourcing [27]. We used
the development split of 2,893 audio clips with 14,465 captions (i.e.,
one audio clip has five ground-truth captions) for training and the
evaluation split of 1,045 audio clips with 5,225 captions for testing.
From the development split, 96 audio clips and their captions were
randomly selected as the validation split. The setups of the DNN
architecture and training were the same as in [14]

To evaluate our system, we use the same metrics as Task
6: BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, METEOR,
CIDETr [22], SPICE [28], and SPIDEr [23]. Among these scores, the
scores developed for captioning task are CIDEr, SPICE, and SPI-
DEr. CIDEr evaluates TE-IDF weighted n-gram similarity between
the output sentence and the reference sentences, which ensures gen-
erated captions are syntactically fluent, and SPICE compares gram-
matically parsed generated and references sentences, which ensures
generated captions are semantically faithful to the audio. SPIDEr is
the linear combination of CIDEr and SPICE, and it was used as the
target metric in this challenge.

3.2. Experiment-I: Element-wise ablation study

We first conducted an element-wise ablation study; the three pro-
cessing elements (i) data augmentation, (ii) multi-task learning, and
(iii) post-processing were excluded one each, and the accuracy with
the remaining two was compared. In addition, we also evaluated the
performance when all the three elements were excluded, namely,
the performance of a pure seq2seq model. We trained each model
three times with different initial values, and calculated the average
scores. We expected this experiment to clarify which processing el-
ements have a significant impact on accuracy and help us find the
processing element to focus on in future AAC studies.



Detection and Classification of Acoustic Scenes and Events 2020

2-3 November 2020, Tokyo, Japan

Table 2: Results of element-wise ablation study

Model ‘ B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE SPIDEr
Baseline of DCASE2020 Task6 [11] \ 38.9 13.6 5.5 1.5 26.2 8.4 7.4 33 54
Proposed 51.2 325 215 14.0 34.3 14.5 29.0 8.9 19.0
w/o (i) Data augmentaion 52.0 31.2 20.0 12.7 33.7 14.0 26.1 8.2 17.2
w/o (ii) Multi-task learning 51.8  33.0 217 14.1 34.6 14.7 29.1 9.2 19.2
w/o (iii) Post-processing 518 30.1 18.0 10.8 33.8 13.9 25.3 9.0 17.2
w/o all three elements ‘ 52.1 2904 17.4 10.3 33.5 13.8 232 8.5 15.8
Table 3: Results of module-wise ablation study
Model ‘ B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE SPIDEr
(i) Data augmentation
w/o (a) Mix-up 515 315 204 13.1 33.6 14.3 27.9 8.4 18.2
w/o (b) TF-IDF-based word placement| 51.9 32.6 214 13.9 34.5 14.6 28.9 8.8 18.8
w/o (c) IDF-based sample selection 51.1 324 21.6 14.2 34.2 14.5 29.3 8.9 19.1
(iii) Post-processing
w/o (a) Beam search decoding 52.1 30.3 18.1 10.8 339 14.0 25.6 9.2 17.4
w/o (b)TTA 515 328 218 14.3 34.2 14.5 29.4 8.9 19.2

Table 2 shows the results of the element-wise ablation study.
Baseline means the scores of the baseline model for the DCASE
2020 Challenge Task 6 [1], and Proposed is the full model used in
our submission. These results suggest the following:

Effective elements: (i) Data augmentation and (iii) post-processing
elements significantly contributed to the performance of our sub-
mission. When one of these elements was removed, the SPIDEr
score decreased by 1.8 points. In addition, the SPIDEr score de-
creased by 3.2 points when all the elements were removed. Thus, it
can be considered that the effects of these elements are independent
of each other and that the combination of these elements is effective.

Non-effective element: (ii) Multi-task learning element was not
very effective under this primitive rule. Surprisingly, even though
this element has been proven to be effective in more computation-
ally intensive scenarios, such as ones with pre-trained models [6],
it became clear that it was not effective in our submission. Since
we simultaneously trained all the DNN modules from scratch using
multi-task losses, they were probably not trained effectively. For
these modules to be effective, pre-training might be required, es-
pecially when the number of the trainable parameters is large, as it
was in our submission.

3.3. Experiment-II: Module-wise ablation study

Next, we conducted a module-wise ablation study to assess the con-
tribution of each module.We calculated the scores of the models that
any of the modules in processing blocks (i) and (iii) were excluded
one each, where (i) data augmentation and (iii) post-processing
blocks include modules {mix-up, TF-IDF-based word placement,
IDF-based sample selection} and {beam search decoding, TTA},
respectively. As in Experiment-I, we trained each model three times
with different initial values, and calculated the average scores.

Table 3 shows the results of the module-wise ablation study,
and which written in the same manner of the Experiment-1. These
results suggest us the following three things:

(I) The mix-up was effective, as used in acoustic event detection
and acoustic scene classification.

(II) The beam search decoding worked well, as used in other

text generation tasks. Especially the CIDEr score, which depends
on TF-IDF, increased. Since the AAC system without beam search
decoding maximizes the posterior probability of each word, most of
the output word sequences is high-frequency words in the dataset,
not an optimal sentence sequence. Therefore, it can be considered
that the beam search decoding has little impact on uni-gram-based
metrics such as BLEU-1 and SPICE and improves the metrics that
evaluate from the perspective of the whole sentence such as BLEU-
4 and CIDEr.

(II) The use of the IDF-based sample selection and TTA did
not improve or worsen the performance. The reason for this may
be that the parameters we used in these methods in our implemen-
tation had little effect on the statistics of the augmented data. In
TTA, the length of cropped samples was 20 sec, although that of
training/testing samples was also around 20 sec. Thus, all the mul-
tiple cropped inputs have almost the same statistics as the origi-
nal one, and in which would explain why TTA did not work effec-
tively. In addition, in the Clotho dataset, to keep reference captions
consistent, the words that appear in captions are intentionally de-
signed lowly diverse. Therefore, simple sample or word replace-
ment would not have been sufficient to augment training samples.
To drastically vary the statistics of the augmented data, we may
need to use para-phrase generation [29,30] or thesaurus-based word
placement [31].

4. CONCLUSIONS

In this paper, we presented an audio captioning system with data
augmentation, multi-task learning, and post processing, and con-
ducted a detailed ablation study to clarify which elements are effec-
tive. From the results, mix-up data augmentation and beam search
decoding were effective in improving the accuracy of AAC. In par-
ticular, since beam search decoding selects output from the perspec-
tive of the whole sentence, BLEU-4 and CIDEr, which reflect n-
gram accuracy, were significantly improved. Future works include
the use of data augmentation that maintains grammatical structure
such as para-phrase generation for sufficient augmentation of train-
ing samples.
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