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ABSTRACT

This report presents the dataset and baseline of Task 3 of the
DCASE2021 Challenge on Sound Event Localization and Detection
(SELD). The acoustical synthesis remains the same as in the previ-
ous iteration of the challenge, however the new dataset brings more
challenging conditions of polyphony and overlapping instances of
the same class. The most important difference is the introduction of
directional interferers, meaning sound events that are localized in
space but do not belong to the target classes to be detected and are
not annotated. Since such interfering events are expected in every
real-world scenario of SELD, the new dataset aims to promote sys-
tems that deal with this condition effectively. A modified SELDnet
baseline employing the recent ACCDOA representation of SELD
problems accompanies the dataset and it is shown to outperform the
previous one. The new dataset is shown to be significantly more
challenging for both baselines according to all considered metrics.
To investigate the individual and combined effects of ambient noise,
interferers, and reverberation, we study the performance of the base-
line on different versions of the dataset excluding or including com-
binations of these factors. The results indicate that by far the most
detrimental effects are caused by directional interferers.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

Sound event localization and detection (SELD) is an audio process-
ing task that aims to jointly detect temporally target classes of sound
events and localize them in space when active. In that sense it differs
from the classic sensor array task of sound source localization (SSL)
which utilizes only spatial information to detect, localize, and track
sources independently from their signal content [1]. It also differs
from the popular sound event detection (SED) task which is focused
on the temporal detection and classification part, omitting the spa-
tial information of the scene. The spatiotemporal characterization
of the scene produced by SELD makes it suitable for a range of ap-
plications such as robot audition and machine listening in general
[2, 3], acoustic monitoring [4, 5], smart home environments [5, 6],
improved human-machine interaction [7], speech recognition [8],
and sonic information visualization [9], among others.

Research interest in SELD grew quickly during the last couple
of years, with deep learning methods handling the task jointly [10],
or fusing information from solving individual subtasks of SED and
SSL [11, 12]. This interest culminated in the task becoming part
of the DCASE Challenge in 2019, with participants bringing novel
approaches to the problem, summarized in [13]. The dataset used in

the challenge [14] included sound scenes from two different array
formats with sound events spatialized in both azimuth and eleva-
tion using spatial room impulse responses (SRIRs) of real rooms.
Additionally, spatial ambient noise captured in situ was added to
the recordings. For the next iteration of the task in the DCASE
Challenge 2020, a new dataset was generated based on SRIRs from
additional rooms with more realistic and challenging conditions be-
yond the limitations of the first one [14]. More specifically, the
discrete grid of potential directions-of-arrival (DOAs) of the older
dataset was replaced with continuous DOA trajectories and, apart
from static events, moving sources using interpolated SRIRs were
emulated at different speeds. Furthermore, the newer SRIRs were
captured in rooms of more diverse acoustical properties and from
a wider range of distances, resulting in longer reverberation times
and more challenging direct-to-reverberant ratios (DRRs).

The second iteration of the SELD task in DCASE2020 brought
additional innovations, with participants experimenting with homo-
geneous joint loss functions [15, 16], self-attention layers [16, 17],
advanced spatial augmentation strategies [15, 17], combinations of
model-based localization with learning-based SED [18, 19], data-
based fusion of individual SSL and SED systems [18, 20], and
event- or track-based prediction modeling, instead of class-based
prediction [21, 19]. The latter development specifically tried to
address the case of same-class events occurring simultaneously
[12, 21, 22], a case that distinguishes the SELD task from SED
and becomes possible mainly due to spatial information. Research
following the DCASE2020 challenge investigated fusion of pre-
trained SED and SSL models [20], or parameter sharing between
joint, semi-joint SELD models, and models fusing SSL and SED
subsystems [22].

This report introduces the new TAU-NIGENS Spatial Sound
Events 20211 dataset and the baseline2 of the SELD challenge task
in DCASE20213. The major difference of this dataset with the pre-
vious one is the introduction of localized interfering events outside
of the target classes. This condition, naturally encountered in a real
environment, introduces new challenges to the task. Apart from the
dataset and baseline description, we present an extensive evaluation
of the baseline on different versions of the dataset with and without
the presence of ambient noise, directional interferers, and reverber-
ation.

1https://doi.org/10.5281/zenodo.4844825
2https://github.com/sharathadavanne/

seld-dcase2021
3http://dcase.community/challenge2021/

task-sound-event-localization-and-detection
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2. DATASET

Similarly to the dataset of the previous iteration, the current one
consists of 800 one-minute spatial recordings, of which 600 consti-
tute the development set of the dataset, and the other 200 the evalua-
tion set. The recordings are sampled at 24kHz, and they are offered
in two 4-channel spatial audio formats, the raw signals of a tetra-
hedral microphone array and first-order Ambisonics, abbreviated as
MIC and FOA for the rest of the paper. Detailed descriptions of
the formats in terms of their directional encoding properties can be
found in the previous challenge dataset report [14].

2.1. Sound events

The sound event samples are sourced from the NIGENS general
sound events database [23], which consists of 14 classes of specific
sound types, and an additional general one with disparate sounds
not belonging to any of the other classes. We use the sounds in the
12 classes alarm, crying baby, crash, barking dog, female scream,
female speech, footsteps, knocking on door, male scream, male
speech, ringing, phone, piano as target events, and the sounds in the
classes running engine, burning fire and the general class as direc-
tional interferers. This division results in about 500 distinct sound
samples distributed across the target events of the dataset, and about
400 across the interfering events.

2.2. Dataset synthesis

The synthesis of the spatial sound reccordings are based on a col-
lection of SRIRs acquired continuously along measurement trajec-
tories inside 13 enclosures of Tampere University. The RIR collec-
tion and synthesis process is described in more detail in [14]. We
summarize briefly the acoustical properties of the dataset. SRIRs
are extracted along the measurement trajectories with an approxi-
mate resolution of 1 degree, resulting on about 1184 to 6480 pos-
sible RIRs/DOAs per room, depending on the type (circular/linear)
and number of measurement trajectories. Events added in a single
recording can be static or moving. The source position for a static
event is drawn randomly from the pool of SRIRs of a single room
used in that recording, while moving events are synthesized for one
of the measured trajectories in the room. Moving events are synthe-
sized to have an approximate speed of 10◦/sec, 20◦/sec, or 40◦/sec,
drawn randomly. The dataset is split into 8 folds with distinct rooms
and samples in each of them. Distinct rooms result in different re-
verberation conditions, and even though similar ranges of DOAs
may occur between rooms, the source distance, DRR, and reverber-
ation conditions are distinct between folds for a certain DOA.

The events are laid out in layers in each recording, with the
total number of layers determining the maximum polyphony pos-
sible. The parameter determining the density of events per layer
and, hence, the average per-frame polyphony is the total gap time
distributed between events in each layer. A larger gap time re-
sults in fewer events per layer and a lower average polyphony,
while a smaller gap time results in higher event density and aver-
age polyphony. The last event per layer is truncated to fit the total
1 minute duration. For the present dataset there are three layers of
target events and an additional layer of interfering events, resulting
in a total maximum polyphony of 4. In addition to the spatialized
reverberant events, multichannel ambient noise that was collected in
each room with the same recording setup as the SRIRs is truncated
to 1 minute segments and added to the event mixtures. The noise
is scaled to result in signal-to-noise ratios (SNRs) drawn uniformly

Figure 1: A graphic depiction of an emulated recording, with col-
ored objects indicating target classes, gray objects indicating inter-
ferers and ambient noise, and arrows indicating moving events.

from noiseless (30dB) to noisy (6dB) conditions, with respect to the
total energy of the target events excluding silences. An example of
the layering of events in one recording is shown in Fig. 1.

2.3. Differences with DCASE2020 task 3 dataset

Even though the acoustical and synthesis characteristics of the new
dataset are similar to the dataset of the previous DCASE2020 Chal-
lenge, the following differences make it more challenging:

1. Directional interferers, out of the target classes of a detec-
tion system, are common in real conditions and they add to
the challenge by forcing a strong joint modeling and training
strategy that can learn to ignore them.

2. The overall maximum polyphony is increased from 2 to 3
target events.

3. The recordings are not anymore divided into recordings with
no overlap (polyphony 1), and recordings with two simulta-
neous events (polyphony 2). Instead all recordings have the
maximum level of polyphony, with all intermediate levels
(from silence to 3 simultaneous target events + interference)
varying during the duration of the recording. This choice
reflects more natural recording conditions in a real dataset.

4. Even though the dataset of DCASE2020 had instances of
the same class occurring at the same time, such occurrences
were fairly rare. In the present dataset, these occurences have
been increased in order to give a clear advantage to systems
that can resolve this difficult but realistic case.

3. BASELINE

Similar to the previous iterations of the challenge, we adopt a modi-
fied version of SELDnet [10] as the baseline method, due to its con-
ceptual simplicity. Its architecture remains a convolutional recur-
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Figure 2: Convolutional recurrent neural network with ACCDOA
loss for SELD.

rent neural network (CRNN) receiving multichannel log-mel spec-
trograms as inputs, together with acoustic intensity vectors [24] for
the FOA dataset, and generalized cross-correlation (GCC-PHAT)
sequences for the MIC dataset, added as extra channels. The base-
line implementation extracts log-mel spectrograms in 64 mel-bands
from 1024-point FFTs, using a 40 ms window and 20 ms hop length
at 24kHz. The intensity vectors are similarly extracted for every
FFT bin and aggregated in the same number of mel-bands as the
spectrograms, while the GCC sequences are also truncated to the
same number of lag values as the mel-bands, adopted from [11].
More details on the architecture and features can be found in [14].

The only difference of the current SELDnet baseline with re-
spect to the previous DCASE challenge iteration is the output for-
mat and the respective loss function. The original SELDnet archi-
tecture employs separate output branches for detection and localiza-
tion, with as many classification outputs and as many localization
regressors as the number of classes. In the current baseline, we
adopt the activity-coupled cartesian direction of arrival representa-
tion (ACCDOA) introduced in DCASE2020 Challenge by Shimada
et al. [15], which unifies the SED and SSL losses into a single
homogeneous regression loss, simplifying the overall architecture
while simultaneously improving its performance. Using the ACC-
DOA representation, the network receives a sequence of T STFT
frames of multichannel features and outputs T/5×3 Cartesian vec-
tor coordinates for each of the target classes, with the direction of
each vector indicating DOA and the vector length indicating class
activity probability. A value of 0.5 on the length is used as the class
activity threshold. The reduction in temporal resolution is intended
to match the 100 ms resolution of annotations in the challenge. A
block diagram of the current baseline is shown in Fig. 2.

4. EVALUATION

The dataset and baseline are delivered to the challenge participants
at the commencement of the challenge, along with the development
set of the dataset consisting of the 6 first folds, while the last two
folds are made available during the evaluation phase of the chal-
lenge. Participants are required to report results on the test set of
the development set using the predefined split of Table 1, so that
conclusions can be drawn among the submissions on the same con-
figuration. The evaluation split on Table 1, however, applies only
to the evaluation results of the baseline presented herein, since dur-
ing the evaluation phase participants have to report results on the
testing folds (7–8) using the development dataset (folds 1–6) for
training and validation in any way they see fit.

Table 1: Evaluation setup
Splits

Dataset Training Validation Testing
Development 1,2,3,4 5 6
Evaluation 2, 3, 4, 5, 6 1 7, 8

The submissions are evaluated using the same combination of
joint detection/localization metrics studied in [25, 13] and intro-
duced in DCASE2020. Closer to SED evaluation, the localization-
dependent error rate (ERX ) and F1-score (FX ) express detection
performance but they penalize correct detections that occur further
from the reference than some threshold distance X . On the other
hand, the class-dependent localization error (LECD) and localiza-
tion recall (LRCD) are inspired by classical localization metrics,
but are computed for each class individually before being averaged.
The LECD is a mean angular localization error after pairing the
predicted DOAs to their closest reference DOAs, while LRCD is
a simple recall metric on the detected localized events without any
spatial threshold. Since in the SELD case there can be multiple si-
multaneous references of the same class, the detection metrics are
modified to consider multiple instances of the same class and pe-
nalize cases where, e.g., only one of the predictions belong to that
class. For the exact formulation of the metrics the reader is referred
to [13]. The submissions are first ranked for each of the four metrics
individually, and the final rank of each system is determined by the
sum of the four individual ranks.

5. RESULTS

In order to evaluate the performance of the new baseline utilizing
the ACCDOA loss, we compare it against the previous SELDnet
baseline of DCASE2020, on the development set of DCASE2020
and the current one. Table 2 shows a clear improvement of the AC-
CDOA version in all metrics. Especially in the more challenging
new dataset, the ACCDOA loss brings large gains in detection and
improves localization accuracy by about 25%. A significant de-
crease of performance for both methods is also observed from the
DCASE2020 dataset to the DCASE2021 dataset. This suggests that
the new dataset is more challenging, as intended.

To get a more detailed picture on the effect of the various
components in the scene, namely reverberation, ambient noise,
and directional interferers, we generate various versions of the
dataset including those components in various combinations. More
specifically, the targets, targets+ambience, targets+interferers, tar-
gets+ambience+interferers develop from the presence of targets
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Table 2: Comparison between the DCASE2020 baseline (2020-multi) and the current one (2021-accdoa) on the development set of
DCASE2020 and the current development set.

FOA MIC
ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑

DCASE2020 development set
2020-multi 0.70 44.4% 24.3◦ 61.9% 0.71 40.4% 25.4◦ 55.4%
2021-accdoa 0.60 51.9% 17.9◦ 59.8% 0.61 48.5% 19.3◦ 55.2%
DCASE2021 development set
2020-multi 0.77 24.7% 32.1◦ 44.8% 0.81 19.1% 41.6◦ 47.4%
2021-accdoa 0.73 30.7% 24.5◦ 40.5% 0.75 23.4% 30.6◦ 37.8%

Table 3: Performance of the DCASE2021 baseline for different versions of the dataset with increasingly adverse conditions. The highlighted
row corresponds to the version of the dataset used in the challenge.

Development set Evaluation set
FOA MIC FOA MIC

ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑
Non-reverberant results
targets 0.49 62.0% 16.3◦ 65.7% 0.54 55.4% 20.8◦ 63.7% 0.45 64.7% 15.8◦ 69.2% 0.50 58.7% 19.0◦ 67.0%
targets+ambience 0.49 61.2% 16.4◦ 65.6% 0.57 51.2% 20.8◦ 58.9% 0.47 62.7% 16.4◦ 67.6% 0.49 59.6% 18.6◦ 66.1%
targets+interferers 0.69 36.9% 24.1◦ 45.2% 0.72 27.7% 30.5◦ 42.2% 0.61 45.8% 21.2◦ 53.2% 0.69 31.5% 27.8◦ 44.9%
targets+ambience+
interferers 0.66 40.3% 22.7◦ 46.9% 0.73 26.7% 30.4◦ 42.5% 0.63 44.5% 22.0◦ 52.8% 0.70 32.1% 28.2◦ 46.6%

Reverberant results
targets 0.55 53.7% 19.9◦ 61.3% 0.59 47.0% 22.0◦ 57.3% 0.52 56.4% 19.6◦ 64.7% 0.53 54.6% 20.8◦ 61.2%
targets+ambience 0.57 50.3% 20.2◦ 59.3% 0.62 44.2% 22.8◦ 53.6% 0.52 56.4% 19.0◦ 62.7% 0.56 51.6% 21.0◦ 58.5%
targets+interferers 0.71 32.7% 26.7◦ 44.2% 0.76 24.0% 32.6◦ 39.4% 0.69 34.8% 24.7◦ 43.7% 0.75 24.8% 32.7◦ 40.4%
targets+ambience+
interferers 0.73 30.7% 24.5◦ 40.5% 0.75 23.4% 30.6◦ 37.8% 0.67 37.2% 23.9◦ 45.8% 0.73 27.1% 30.8◦ 40.6%

only, to the inclusion of ambient noise or interferers separately, to
the full dataset combining all components. Excluding the effect of
reverberation is less straightforward due to the use of real SRIRs for
the synthesis. In order to generate reverberation-free versions of the
dataset, the sound events for each recording in the original dataset
are spatialized with anechoic IRs of the same Eigenmike spherical
microphone array used to capture the SRIRs. The anechoic array
IRs are computed for the same measurement trajectories and DOAs
as the measured SRIRs in each room, and stored in a similar data
structure. Additionally, each IR is delayed and scaled according to
the source distance of the respective measured SRIR, following an
inverse distance law and a speed of sound of c = 343m/sec. De-
laying and scaling ensures that the events between the reverberant
and non-reverberant versions are approximately time-aligned and
with comparable distance-dependent attenuation. The Eigenmike
responses were measured in an equirectangular grid of 5◦ azimuth
and 5◦ elevation in the large anechoic chamber of Aalto University,
as described in [26]. Since the DOAs in the reverberant dataset do
not necessarily coincide with the measurement grid of the array, ar-
ray response interpolation is performed to recover anechoic IRs at
the DOAs of the measured SRIRs, based on a spherical harmonic
expansion of the array steering vectors, as in [26].

The results are presented in Table 3. As expected, reverbera-
tion affects negatively all combinations, increasing error rates and
decreasing F-scores and localization recall in a consistent manner
between the same scenarios. Additionally, it decreases localization
accuracy by 2◦–4◦. Inclusion of the ambient noise has a small but
noticeable effect when added to the targets, without interferers. The
small effect may be due to the large range of possible positive SNRs
(6–30dB) distributed uniformly across the recordings. Interestingly,
together with directional interference, inclusion of ambient noise
seems to improve certain results slightly. This may be due to poten-
tial regularization effects of noise and is worth further investigation.

The most detrimental effects happen with the inclusion of the

directional interferers, proving that this challenging case will need
to be taken into account for future SELD systems. Error rate ER
increases up to about 40% in the non reverberant case for the FOA
recordings, and up to about 33% for the MIC recordings. Simi-
larly, in reverberant scenarios, the ER increases up to about 28%
for both FOA and MIC formats. F-scores decrease by up to 40%
on the FOA dataset and up to 50% on the MIC dataset, for both
anechoic and reverberant conditions. The localization recall (LR)
also drops by about 30% for both formats and both anechoic and
reverberant conditions. Finally, localization errors increase by up to
about 7◦ in the case of FOA recordings and up to 10◦ in the case of
MIC recordings, for both anechoic and reverberant conditions. In
general, the MIC dataset exhibits a worse performance than FOA
in all cases. This fact may be attributed to the input features em-
ployed in the baseline for each format. GCC sequences for the MIC
format may become very noisy in complex scenes with multiple
simultaneous events, while the intensity vectors of the FOA format
can potentially retain robustness due to their narrowband nature and
sparsity of the event signals in the time-frequency domain.

6. CONCLUSIONS

In this report we describe the new dataset and baseline for the SELD
task of the DCASE2021 challenge. The differences with the dataset
of DCASE2020 challenge are highlighted; namely, inclusion of di-
rectional interferers, higher polyphony, and more frequent simul-
taneous same-class event occurences. The evaluation task setup is
also described, including a predefined fixed split on the develop-
ment data for straightforward comparison of submissions. The new
baseline using the ACCDOA representation shows improved per-
formance compared to the previous one. A detailed analysis of the
baseline on various versions of the dataset shows that between re-
verberation, ambient noise, and directional interferers, the latter has
the most detrimental effect in all evaluation metrics.
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