„Chang’e 4“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 19: Zeile 19:
}}
}}


'''Chang’e 4''' ({{zh|v=嫦娥四号|t=嫦娥四號|p=Cháng'é Sìhào}}) ist eine [[Raumsonde]] der [[Nationale Raumfahrtbehörde Chinas|Nationalen Raumfahrtbehörde Chinas]] (CNSA), die am 7. Dezember 2018 gestartet wurde und aus einem [[Lander]] mit einem [[Mondrover|Rover]] besteht. Chang’e 4 ist [[Volksrepublik China|Chinas]] zweiter Mondlander und Rover. Nach der erfolgreichen Landung von [[Chang’e-3]] wurde Chang’e-4, ursprünglich eine baugleiche Reservesonde für die Vorgängermission, an neue wissenschaftliche Ziele angepasst.<ref name="gov.cn-5018965">{{Internetquelle |autor= 雷丽娜 |url= http://www.gov.cn/xinwen/2015-12/02/content_5018965.htm |titel= 我国嫦娥四号任务将实现世界首次月球背面软着陆 |werk= http://www.gov.cn |datum= 2015-12-02 |zugriff=2019-05-07 |sprache=zh}}</ref> Wie seine Vorgänger ist das Raumfahrzeug nach ''[[Chang’e]]'', der chinesischen [[Mondgöttin]], benannt.
'''Chang’e 4''' ({{zh|v=嫦娥四号|t=嫦娥四號|p=Cháng'é Sìhào}}) ist eine [[Raumsonde]] der [[Nationale Raumfahrtbehörde Chinas|Nationalen Raumfahrtbehörde Chinas]] (CNSA), die am 7. Dezember 2018 gestartet wurde und aus einem [[Lander]] mit einem [[Mondrover|Rover]] besteht. Chang’e 4 ist [[Volksrepublik China|Chinas]] zweiter Mondlander und Rover. Nach der erfolgreichen Landung von [[Chang’e-3]] wurde Chang’e 4, ursprünglich eine baugleiche Reservesonde für die Vorgängermission, an neue wissenschaftliche Ziele angepasst.<ref name="gov.cn-5018965">{{Internetquelle |autor= 雷丽娜 |url= http://www.gov.cn/xinwen/2015-12/02/content_5018965.htm |titel= 我国嫦娥四号任务将实现世界首次月球背面软着陆 |werk= http://www.gov.cn |datum= 2015-12-02 |zugriff=2019-05-07 |sprache=zh}}</ref> Wie seine Vorgänger ist das Raumfahrzeug nach ''[[Chang’e]]'', der chinesischen [[Mondgöttin]], benannt.


Die Sonde landete am 3. Januar 2019 um 3:26 Uhr [[Mitteleuropäische Zeit|MEZ]] erfolgreich im Mondkrater [[Von Kármán (Mondkrater)|Von Kármán]] im [[Südpol-Aitken-Becken]] auf der [[Mondrückseite]].<ref>[https://www.tagesschau.de/ausland/mond-155.html Erste Landung auf Mond-Rückseite geglückt], [[Tagesschau.de]] vom 3. Januar 2019; abgerufen am 3. Januar 2019</ref>
Die Sonde landete am 3. Januar 2019 um 3:26 Uhr [[Mitteleuropäische Zeit|MEZ]] erfolgreich im Mondkrater [[Von Kármán (Mondkrater)|Von Kármán]] im [[Südpol-Aitken-Becken]] auf der [[Mondrückseite]].<ref>[https://www.tagesschau.de/ausland/mond-155.html Erste Landung auf Mond-Rückseite geglückt], [[Tagesschau.de]] vom 3. Januar 2019; abgerufen am 3. Januar 2019</ref>


== Übersicht ==
== Übersicht ==
Das [[Mondprogramm der Volksrepublik China|chinesische Mondforschungsprogramm]] hat drei Phasen: Die erste Phase bestand im Erreichen des Mondorbits – vollbracht durch die Missionen von [[Chang’e-1]] im Jahr 2007 und [[Chang’e-2]] im Jahr 2010. Die zweite war das Landen und Aussetzen eines Rovers auf dem Mond, wie es durch [[Chang’e-3]] im Jahr 2013 und nun von Chang’e-4 im Januar 2019 erfolgte. In der dritten Phase sollen Mondproben von der erdzugewandten Seite gesammelt werden und zur Erde geschickt werden – eine Aufgabe für die zukünftigen Missionen [[Chang’e 5|Chang’e-5]] und [[Chang’e-6]]. Das Programm soll in den 2030er Jahren bemannte Mondlandungen ermöglichen, mit dem Ziel, einen Außenposten in der Nähe des Südpols zu errichten.<ref>{{Internetquelle |autor=Sputnik |url=https://sputniknews.com/science/201712311060451579-china-change4-moon-landing/ |titel=China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018 |zugriff=2018-12-10 |sprache=en}}</ref><ref>{{Internetquelle |autor=Echo Huang, Echo Huang |url=https://qz.com/1262581/china-lays-out-its-ambitions-to-colonize-the-moon-and-build-a-lunar-palace/ |titel=China lays out its ambitions to colonize the moon and build a “lunar palace” |zugriff=2018-12-10 |sprache=en}}</ref><ref>{{Literatur |Autor=Stuart Clark |Titel=China’s moon mission to boldly go a step further |Sammelwerk=The Guardian |Datum=2017-12-31 |ISSN=0261-3077 |Online=http://www.theguardian.com/science/2017/dec/31/china-mission-to-far-side-of-the-moon-space-discovery |Abruf=2018-12-10}}</ref>
Das [[Mondprogramm der Volksrepublik China|chinesische Mondforschungsprogramm]] hat drei Phasen: Die erste Phase bestand im Erreichen des Mondorbits – vollbracht durch die Missionen von [[Chang’e 1]] im Jahr 2007 und [[Chang’e 2]] im Jahr 2010. Die zweite war das Landen und Aussetzen eines Rovers auf dem Mond, wie es durch [[Chang’e 3]] im Jahr 2013 und nun von Chang’e 4 im Januar 2019 erfolgte. In der dritten Phase sollen Mondproben von der erdzugewandten Seite gesammelt werden und zur Erde geschickt werden – eine Aufgabe für die zukünftigen Missionen [[Chang’e 5|Chang’e-5]] und [[Chang’e-6]]. Das Programm soll in den 2030er Jahren bemannte Mondlandungen ermöglichen, mit dem Ziel, einen Außenposten in der Nähe des Südpols zu errichten.<ref>{{Internetquelle |autor=Sputnik |url=https://sputniknews.com/science/201712311060451579-china-change4-moon-landing/ |titel=China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018 |zugriff=2018-12-10 |sprache=en}}</ref><ref>{{Internetquelle |autor=Echo Huang, Echo Huang |url=https://qz.com/1262581/china-lays-out-its-ambitions-to-colonize-the-moon-and-build-a-lunar-palace/ |titel=China lays out its ambitions to colonize the moon and build a “lunar palace” |zugriff=2018-12-10 |sprache=en}}</ref><ref>{{Literatur |Autor=Stuart Clark |Titel=China’s moon mission to boldly go a step further |Sammelwerk=The Guardian |Datum=2017-12-31 |ISSN=0261-3077 |Online=http://www.theguardian.com/science/2017/dec/31/china-mission-to-far-side-of-the-moon-space-discovery |Abruf=2018-12-10}}</ref>


Die Chang’e-4-Mission wurde am 30. November 2015 im Rahmen der zweiten Phase des chinesischen Mondforschungsprogramms gestartet. [[Xu Dazhe]], Direktor der [[China National Space Administration]], sagte in der Eröffnungsrede, dass die Chang’e-4 Mission eine Plattform für internationale Kooperationen und gemeinsame Neuentwicklungen auf vielen Ebenen sein sollte.<ref name="gov.cn-5018965" />
Die Chang’e-4-Mission wurde am 30. November 2015 im Rahmen der zweiten Phase des chinesischen Mondforschungsprogramms gestartet. [[Xu Dazhe]], Direktor der Nationalen Raumfahrtbehörde, sagte in der Eröffnungsrede, dass die Mission eine Plattform für internationale Kooperationen und gemeinsame Neuentwicklungen auf vielen Ebenen sein sollte.<ref name="gov.cn-5018965" />


Das chinesische Monderkundungsprogramm bewilligte für Chang’e-4 erstmals private Investitionen von Einzelpersonen und Unternehmen. Ziel sei es, Innovationen in der [[Luft- und Raumfahrttechnik|Luft- und Raumfahrt]] zu beschleunigen, Produktionskosten zu senken und militärisch-zivile Beziehungen zu fördern.<ref>{{Internetquelle |autor=Leonard David, Space com's Space Insider Columnist {{!}} March 17, 2015 08:00am ET |url=https://www.space.com/28809-china-rocket-family-moon-plans.html |titel=China Outlines New Rockets, Space Station and Moon Plans |zugriff=2018-12-10}}</ref> Um die Nutzlasten von ausländischen Partnern zu integrieren, mussten die Ziele der Mission angepasst werden. Dies trug dazu bei, dass die Mission komplizierter wurde und sich verzögerte. Das Ziel der Mission ist die Erforschung von Alter und Zusammensetzung des Gesteins in einer unerforschten Mondregion. Ein weiteres Ziel ist die Entwicklung und Erprobung der erforderlichen Technologien für die folgenden Phasen des Programms. Nach Chang’e-4 soll eine Reihe weiterer roboterbasierter Mondmissionen folgen. Diese sollen, unter anderem mit der Erprobung von Techniken zur [[Mondprogramm der Volksrepublik China#Errichtung von Gebäuden|Errichtung von Gebäuden]], eine bemannte Mondlandung vorbereiten.<ref>{{Internetquelle |autor=Paul D. Spudis |url=https://www.airspacemag.com/daily-planet/chinas-moon-missions-are-anything-pointless-180961633/ |titel=China’s Moon Missions Are Anything But Pointless |zugriff=2018-12-10 |sprache=en}}</ref>
Das chinesische Monderkundungsprogramm bewilligte für Chang’e-4 erstmals private Investitionen von Einzelpersonen und Unternehmen. Ziel sei es, Innovationen in der [[Luft- und Raumfahrttechnik|Luft- und Raumfahrt]] zu beschleunigen, Produktionskosten zu senken und militärisch-zivile Beziehungen zu fördern.<ref>{{Internetquelle |autor=Leonard David, Space com's Space Insider Columnist {{!}} March 17, 2015 08:00am ET |url=https://www.space.com/28809-china-rocket-family-moon-plans.html |titel=China Outlines New Rockets, Space Station and Moon Plans |zugriff=2018-12-10}}</ref> Um die Nutzlasten von ausländischen Partnern zu integrieren, mussten die Ziele der Mission angepasst werden. Dies trug dazu bei, dass die Mission komplizierter wurde und sich verzögerte. Das Ziel der Mission ist die Erforschung von Alter und Zusammensetzung des Gesteins in einer unerforschten Mondregion. Ein weiteres Ziel ist die Entwicklung und Erprobung der erforderlichen Technologien für die folgenden Phasen des Programms. Nach Chang’e-4 soll eine Reihe weiterer roboterbasierter Mondmissionen folgen. Diese sollen, unter anderem mit der Erprobung von Techniken zur [[Mondprogramm der Volksrepublik China#Errichtung von Gebäuden|Errichtung von Gebäuden]], eine bemannte Mondlandung vorbereiten.<ref>{{Internetquelle |autor=Paul D. Spudis |url=https://www.airspacemag.com/daily-planet/chinas-moon-missions-are-anything-pointless-180961633/ |titel=China’s Moon Missions Are Anything But Pointless |zugriff=2018-12-10 |sprache=en}}</ref>

Version vom 4. Dezember 2020, 16:05 Uhr

Chang’e 4

NSSDC ID 2018-103A
Missions­ziel ErdmondVorlage:Infobox Sonde/Wartung/Missionsziel
Auftrag­geber CNSAVorlage:Infobox Sonde/Wartung/Auftraggeber
Träger­rakete Changzheng 3B/EVorlage:Infobox Sonde/Wartung/Traegerrakete
Startmasse Lander: 1.200 kg
Rover: 140 kgVorlage:Infobox Sonde/Wartung/Startmasse
Verlauf der Mission
Startdatum 7. Dezember 2018Vorlage:Infobox Sonde/Wartung/Startdatum
Startrampe Kosmodrom XichangVorlage:Infobox Sonde/Wartung/Startrampe
Vorlage:Infobox Sonde/Wartung/Verlauf
 
20. Mai 2018 Start von Queqiao
 
7. Dez. 2018 Start von Chang’e 4
 
12. Dez. 2018 Erreichen der Mondumlaufbahn
 
3. Jan 2019 Landung auf dem Mond, Von Kármán/Südpol-Aitken-Becken
 
? Missionsende

Chang’e 4 (chinesisch 嫦娥四號 / 嫦娥四号, Pinyin Cháng'é Sìhào) ist eine Raumsonde der Nationalen Raumfahrtbehörde Chinas (CNSA), die am 7. Dezember 2018 gestartet wurde und aus einem Lander mit einem Rover besteht. Chang’e 4 ist Chinas zweiter Mondlander und Rover. Nach der erfolgreichen Landung von Chang’e-3 wurde Chang’e 4, ursprünglich eine baugleiche Reservesonde für die Vorgängermission, an neue wissenschaftliche Ziele angepasst.[1] Wie seine Vorgänger ist das Raumfahrzeug nach Chang’e, der chinesischen Mondgöttin, benannt.

Die Sonde landete am 3. Januar 2019 um 3:26 Uhr MEZ erfolgreich im Mondkrater Von Kármán im Südpol-Aitken-Becken auf der Mondrückseite.[2]

Übersicht

Das chinesische Mondforschungsprogramm hat drei Phasen: Die erste Phase bestand im Erreichen des Mondorbits – vollbracht durch die Missionen von Chang’e 1 im Jahr 2007 und Chang’e 2 im Jahr 2010. Die zweite war das Landen und Aussetzen eines Rovers auf dem Mond, wie es durch Chang’e 3 im Jahr 2013 und nun von Chang’e 4 im Januar 2019 erfolgte. In der dritten Phase sollen Mondproben von der erdzugewandten Seite gesammelt werden und zur Erde geschickt werden – eine Aufgabe für die zukünftigen Missionen Chang’e-5 und Chang’e-6. Das Programm soll in den 2030er Jahren bemannte Mondlandungen ermöglichen, mit dem Ziel, einen Außenposten in der Nähe des Südpols zu errichten.[3][4][5]

Die Chang’e-4-Mission wurde am 30. November 2015 im Rahmen der zweiten Phase des chinesischen Mondforschungsprogramms gestartet. Xu Dazhe, Direktor der Nationalen Raumfahrtbehörde, sagte in der Eröffnungsrede, dass die Mission eine Plattform für internationale Kooperationen und gemeinsame Neuentwicklungen auf vielen Ebenen sein sollte.[1]

Das chinesische Monderkundungsprogramm bewilligte für Chang’e-4 erstmals private Investitionen von Einzelpersonen und Unternehmen. Ziel sei es, Innovationen in der Luft- und Raumfahrt zu beschleunigen, Produktionskosten zu senken und militärisch-zivile Beziehungen zu fördern.[6] Um die Nutzlasten von ausländischen Partnern zu integrieren, mussten die Ziele der Mission angepasst werden. Dies trug dazu bei, dass die Mission komplizierter wurde und sich verzögerte. Das Ziel der Mission ist die Erforschung von Alter und Zusammensetzung des Gesteins in einer unerforschten Mondregion. Ein weiteres Ziel ist die Entwicklung und Erprobung der erforderlichen Technologien für die folgenden Phasen des Programms. Nach Chang’e-4 soll eine Reihe weiterer roboterbasierter Mondmissionen folgen. Diese sollen, unter anderem mit der Erprobung von Techniken zur Errichtung von Gebäuden, eine bemannte Mondlandung vorbereiten.[7]

Ziele

Zu den wissenschaftlichen Zielen gehören:[8]

  • Messung der Mondoberflächentemperatur über die Dauer der Mission
  • Messung der chemischen Zusammensetzung von Mondgesteinen und -böden
  • niederfrequente radioastronomische Beobachtungen und Untersuchungen
  • Studium der kosmischen Strahlung
  • Beobachtung der Sonnenkorona, Untersuchung ihrer Strahlungseigenschaften und -mechanismen und Untersuchen der Entwicklung und des Transports koronaler Massenauswürfe (CME) zwischen Sonne und Erde

Komponenten

Relais-Satellit Queqiao

Kommunikation mit Chang’e-4

Da eine direkte Funkverbindung mit der Mondrückseite nicht möglich ist, wurde am 21. Mai 2018 um 05:28 Ortszeit der Relais-Satellit Elsternbrücke (Queqiao) vom Kosmodrom Xichang gestartet[9] und im Halo-Orbit um den Erde-Mond Lagrange-Punkt L2 hinter dem Mond stationiert.[10] Der Name des Satelliten leitet sich aus der chinesischen Geschichte vom Kuhhirten und der Weberin ab. Queqiao kann Funksignale zwischen der Erde und Rückseite des Mondes weiterleiten und ermöglicht damit die Kommunikation und Kontrolle während der Mission.

Mikrosatelliten

Im Rahmen der Mission Chang’e 4 wurden zusammen mit Queqiao zwei Mikrosatelliten gestartet. Die beiden Mikrosatelliten haben jeweils die Größe 50 × 50 × 40 cm und ein Gewicht von 45 kg und wurden Longjiang-1 und Longjiang-2 (龙江 – „Drachenfluss“) genannt. Longjiang-1 konnte jedoch nicht in den Mondorbit eintreten,[10] während Longjiang-2 erfolgreich war und 14 Monate lang im Mondorbit operierte, bis er am 31. Juli 2019 um 22:20 Peking-Zeit auf der Rückseite des Mondes kontrolliert zum Absturz gebracht wurde.[11] Diese Mikrosatelliten hatten die Aufgabe, den Himmel in den Frequenzen von 1 MHz bis 30 MHz, entsprechend Wellenlängen von 300 m bis 10 m, zu beobachten, um energetische Phänomene kosmischen Ursprungs zu untersuchen.[12][13][14] Dies war ein langgehegtes Ziel der Wissenschaft, da aufgrund der Ionosphäre der Erde keine Beobachtungen in diesem Frequenzbereich im Erdorbit durchgeführt werden können. Geplant war ein Gruppenflug der zwei Sonden, um Interferometrie betreiben zu können.[12]

Bildmosaik der Mondrückseite, aufgenommen durch LRO. Links oben das Mare Moscoviense, links unten der dunkle Krater Tsiolkovskiy, im unteren Bilddrittel die fleckige große Beckenregion von Mare Ingenii, Leibnitz, Apollo und Poincaré.

Lander und Rover

Der Lander und der Rover wurden sechs Monate nach dem Start des Relaissatelliten am 8. Dezember 2018 um 02:23 Ortszeit mit einer Changzheng-3B/E-Trägerrakete vom Kosmodrom Xichang ins All befördert.[15] Es war die erste Landung überhaupt auf der Rückseite des Mondes. Sie fand in einer unerforschten Region des Mondes statt, die als Südpol-Aitken-Becken bezeichnet wird.

Die Gesamtlandemasse der Einheit betrug 1340 kg, davon entfielen 1200 kg auf den Lander und 140 kg auf den Rover.[16] Nach der Landung fuhr der Lander eine Rampe aus, um den Rover Jadehase 2[17] auf die Mondoberfläche zu bringen. Der Rover misst 1,5 m × 1,0 m × 1,0 m und hat eine Masse von 140 kg.[18]

Wissenschaftliche Nutzlasten

Sowohl Lander und Rover als auch Queqiao und die den Mond umkreisenden Mikrosatelliten tragen wissenschaftliche Nutzlasten. Der Relaissatellit stellt die Kommunikation sicher, während Lander und Rover die Geophysik der Landezone untersuchen sollen. Diese Nutzlasten werden zum Teil von internationalen Partnern in Schweden, Deutschland, den Niederlanden und Saudi-Arabien geliefert.

Lander

Der Lander und der Rover transportieren wissenschaftliche Nutzlasten, um die Geophysik der Landezone mit einer sehr begrenzten chemischen Analysefähigkeit zu untersuchen.

Der Lander ist mit folgenden Instrumenten ausgestattet:

  • Landekamera (LCAM)[19][20]
  • Terrain-Kamera (TCAM)
  • Niederfrequenzspektrometer (VLFRS)[13] zur Erforschung von Sonnenbursts etc.[21]
  • Neutronen- und Strahlungsdosis-Detektor (Lunar Neutron and Radiation Dose Detector; LND), ein von Wissenschaftlern des Instituts für Experimentelle und Angewandte Physik der Universität Kiel unter der Leitung von Robert Wimmer-Schweingruber entwickeltes Neutronendosimeter, das neben der Messung der für Menschen besonders gefährlichen Neutronenstrahlung, für die es bislang nur stark differierende Modellrechnungen gibt, auch dazu dient, den Wassergehalt des Bodens zu ermitteln.[22] Die ersten Ergebnisse wurden Sönke Burmeister vom Institut am 18. April 2019 bei einer feierlichen Zeremonie in Peking überreicht.[23][24][25] Als im Mai/Juni 2020 im Zuge der Vorbereitung auf die Mars-Mission Tianwen-1 die Ressourcen des Chinesischen Tiefraum-Netzwerks zum Teil vom Mondprogramm abgezogen werden mussten, war der Neutronen- und Strahlungsdosis-Detektor das einzige Gerät der Chang’e-4-Mission, das weiter betrieben wurde.[26][27]
  • Der Lander trägt auch einen 2,6 kg schweren Behälter mit Samen und Insekteneiern, um zu testen, ob Pflanzen und Insekten in Synergie schlüpfen und gemeinsam wachsen können. Das Experiment umfasste Samen von Kartoffeln, Raps, Baumwolle und Arabidopsis thaliana, dazu noch Hefe und Taufliegeneier.[28] Am 7. Januar 2019 spross als erstes die Baumwolle.[29][30] Wenn die Larven geschlüpft wären, hätten sie Kohlendioxid produziert, während die gekeimten Pflanzen durch Photosynthese Sauerstoff freisetzten. Die Wissenschaftler um Xie Gengxin und Liu Hanlong von der Chongqing-Universität hofften, dass die Pflanzen und Tiere zusammen eine einfache Synergie innerhalb des Behälters schaffen könnten. Eine Miniaturkamera machte jedes Wachstum sichtbar. Als jedoch am 13. Januar am Landeplatz von Chang’e-4 die Mondnacht einbrach, sank die Temperatur in dem Behälter auf −52 °C und die Lebewesen starben 212,75 Stunden nachdem sie kurz nach der Landung mittels Bewässerung aus der Hibernation geweckt wurden.[31] 1982 züchtete die Besatzung der sowjetischen Raumstation Saljut 7 einige Arabidopsis; es waren die ersten Pflanzen, die im Weltraum blühten und Samen produzierten. Sie hatten eine Lebensdauer von 40 Tagen.

Rover

  • Panoramakamera (PCAM)[13]
  • Lunar Penetrating Radar (LPR) ist ein Bodenradar[13]
  • Visible und Near-Infrared Imaging Spectrometer (VNIS) für die Bildgebungsspektroskopie[32][33][34]
  • Advanced Small Analyzer for Neutrals (ASAN) ist ein energetischer Analysator für neutrale Atome des schwedischen Instituts für Weltraumphysik (IRF). Es wird aufzeigen, wie Sonnenwind mit der Mondoberfläche interagiert und vielleicht sogar den Prozess der Entstehung von Mondwasser.[35]

Queqiao

Landezone

Landeplatz ist der Von-Kármán-Krater[39] (180 km Durchmesser) im Südpol-Aitken-Becken auf der erdabgewandten Seite des Mondes.[39] Der Von-Kármán-Krater ist von bis zu 10 km hohen Bergen umgeben, und der Landeplatz liegt auf einer „Meereshöhe“ von 5935 m.[40] Die Fläche, auf der eine Landung möglich war, betrug nur 1/8 der Zielfläche, die die Vorgängersonde Chang’e-3 im Dezember 2013 zur Verfügung hatte. Daher musste Chang’e-4 praktisch senkrecht landen, ein recht riskantes Manöver.[41] Wie bei der Vorgängersonde unterbrach Chang’e-4 eine Minute vor der Landung für etwa 13 Sekunden den Abstieg, um sich 99 m über dem Boden mit Hilfe eines vom Shanghaier Institut für technische Physik der Chinesischen Akademie der Wissenschaften (中国科学院上海技术物理研究所) entwickelten und gebauten Laser-Entfernungsmessers und eines dreidimensional abbildenden Laserscanners desselben Instituts selbstständig einen ebenen und von Felsbrocken freien Platz zu suchen,[42][43] auf den sie sich dann langsam absenkte.[44] Eines der Hauptprobleme hierbei war, dass der während der letzten Phase des Abstiegs der vom Triebwerk aufgewirbelte, elektrostatisch aufgeladene Mondstaub die Systeme der Sonde gefährden konnte.[45][46] Daher hatte die Gruppe Weltraummechanik (空间力学团队) des Instituts für Maschinenbau der Tianjin-Universität unter der Leitung von Cui Yuhong (崔玉红) und Wang Jianshan (王建山) in aufwendigen Computersimulationen und praktischen Experimenten einen möglichst sanften Landeablauf entwickelt.[47] Das Aufsetzen auf den Boden am 3. Januar 2019 um 02:26 UTC erfolgte dann auch ohne Probleme.[48]

Noch im Januar 2019 beantragte China bei der Internationalen Astronomischen Union, die Landestelle 天河基地 (Pinyin Tiānhé Jīdì), also „Basis Milchstraße“ zu nennen, ein Bezug zu der Sage vom Kuhhirten und der Weberin, wo die Milchstraße die beiden Liebenden trennt und nur einmal im Jahr von einem eine Brücke bildenden Schwarm Elstern (der heutige Relaissatellit Elsternbrücke) überbrückt wird. Am 4. Februar 2019 wurde dem Antrag von der IAU stattgegeben, der lateinische Name der Landestelle lautet „Statio Tianhe“.[49][50]

In den folgenden Monaten analysierten Forscher vom Labor für Mond- und Tiefraumerkundung der Nationalen Astronomischen Observatorien, der Fakultät für Astronomie und Weltraumwissenschaften an der Universität der Chinesischen Akademie der Wissenschaften sowie von der Chinesischen Akademie für Weltraumtechnologie, der Herstellerfirma der Sonde, die von der Landekamera und der Terrain-Kamera des Landers und der Panoramakamera des Rovers aufgenommenen Fotos und setzten sie in Bezug zu den von Chang’e-2 sowie dem Lunar Reconnaissance Orbiter der NASA erstellten Mondkarten. Nach photogrammetrischer Auswertung der Bilder konnte die Landestelle auf 177,5991° östlicher Länge und 45,4446° südlicher Breite bestimmt werden, was eine Abweichung von 348 m in der Länge und 226 m in der Breite, also insgesamt 415 m im Vergleich zu den LRO-Daten bedeutet. Zu erklären ist dies mit Messfehlern bei der Bestimmung des Orbits der NASA-Sonde, mit dem unregelmäßigen Gravitationsfeld des Mondes auf seiner Rückseite und in der Kamera begründeten Faktoren. Daher soll nun der Lander von Chang’e-4 als geodätischer Referenzpunkt für die Navigation von Jadehase 2 und für zukünftige Landungen auf der Mondrückseite verwendet werden.[51]

Panoramaaufnahme des Landegebietes

Ergebnisse

Impaktbrekzie

Zu Beginn des achten Arbeitstags auf dem Mond (25. Juli bis 7. August 2019) entdeckte und fotografierte Jadehase 2 in einem frischen Einschlagkrater eine dunkelgrüne, zähflüssig wirkende Masse. Daraufhin entwarfen die für die Steuerung des Rovers zuständigen Ingenieure einen neuen Kurs, um die Tiefe des Kraters und die Verteilung des Auswurfmaterials näher zu bestimmen.[52] Jadehase 2 näherte sich dem Krater vorsichtig und untersuchte die Substanz und das umliegende Material mit seinem Infrarotspektrometer, dasselbe Instrument, mit dem er zu Beginn der Mission bereits das Mantelmaterial aus den Tiefen des Mondes gefunden hatte.[53] Eine Auswertung der hierbei gemachten Fotos und Spektrogramme durch Experten des Nationalen Schwerpunktlabors für Fernerkundung (遥感科学国家重点实验室) am Institut für Informationsgewinnung durch Luft- und Raumfahrt (空天信息创新研究院) der Chinesischen Akademie der Wissenschaften ergab, dass der Krater mit einem Durchmesser von rund 2 m etwa 30 cm tief war, die unbekannte Masse in der Grube bildete einen länglichen Fleck von 52 × 16 cm. Viele der graubraunen Brocken im Umfeld des Kraters, die man zunächst für Felstrümmer gehalten hatte, wurden im Laufe der Untersuchung von den Rädern des 140 kg schweren Rovers zerquetscht. Es handelte sich also um zusammengebackenen Regolith, der, wie eine spektrographische Analyse zeigte, zu einem beträchtlichen Teil aus Feldspat bestand, dazu noch Olivine und Pyroxene in etwa gleichem Anteil. Das Material wurde zunächst als „verwittertes Norit“ klassifiziert. Die glänzende Masse im Inneren des Kraters wurde – auch durch Vergleich mit Bodenproben, die von den Astronauten der Apollo-Missionen genommen worden waren – als Impaktbrekzie identifiziert. Es konnte allerdings bislang noch nicht geklärt werden, ob es sich hierbei um Material handelt, das aus einem nahegelegenen Krater in den untersuchten Krater hineingeschleudert wurde, oder ob es bei dem Impaktereignis gebildet wurde, das letzteren Krater hervorgerufen hatte.[54] Am 15. August 2020 werden die Ergebnisse in den Earth and Planetary Science Letters im Detail vorgestellt.[55]

Strahlenbelastung

Das Dosimeter der Universität Kiel auf dem Lander von Chang’e-4 misst im Dauerbetrieb die Strahlenbelastung knapp über der Mondoberfläche. Diese schwankt stark, sowohl was die Intensität als auch die Zusammensetzung der Strahlung (Neutronenstrahlung und Gammastrahlung) betrifft. Da sich auf dem Lander auch eine Radionuklidbatterie mit einer Leistung von 5 W sowie mehrere Radionuklid-Heizelemente befinden, waren die Ergebnisse trotz vorheriger Kalibrierung zunächst schwierig zu interpretieren.[56] Bei einer ersten Abschätzung im Februar 2020 konnten die Wissenschaftler in Kiel jedoch bereits sagen, dass die Hintergrundstrahlung auf der Mondoberfläche intensiver ist als auf dem Mars – die Strahlenbelastung bei einem sechsmonatigen Aufenthalt auf dem Mond entspricht etwa der eines einjährigen Aufenthalts auf dem Mars.[57] Nach genauerer Auswertung stellte sich heraus, dass in etwa Mannshöhe über der Mondoberfläche die Belastung durch Neutronenstrahlung zwei- bis dreimal so hoch ist wie im Inneren der Raumstationen Tiangong 1 und Tiangong 2, die sich in einem erdnahen Orbit von knapp 400 km Höhe im Schutz des Van-Allen-Gürtels bewegten, die Belastung durch Gammastrahlen immer noch doppelt so hoch.

Wie die Wissenschaftler um Robert Wimmer-Schweingruber auf der Basis von Messungen des amerikanischen Lunar Reconnaissance Orbiter bereits 2019 vermutet hatten,[22] gibt es neben dem Sonnenwind auch eine durch das Auftreffen von kosmischer Strahlung auf den Mondboden erzeugte, „reflektierte“ Sekundärstrahlung aus Protonen. Dieser Effekt, der für Raumfahrer ein beträchtliches Sicherheitsrisiko darstellt, konnte nun durch In-situ-Messungen mit dem Dosimeter eindeutig nachgewiesen werden.[58] Während des ersten Jahres wurde von dem Dosimeter eine durchschnittliche Strahlenexposition von 1,4 mSv/Tag gemessen. Dies entspricht etwa der effektiven Strahlungsdosis pro Jahr auf einem irdischen Berg von 3500 m Höhe. Wenngleich ein realer Raumfahrer nur wenige Stunden pro Tag im Freien verbringen würde (dort wo das Dosimeter auf dem Lander angebracht ist) und den Rest der Zeit in einer besser geschützten Unterkunft, stellt dies eine nicht zu vernachlässigende Gesundheitsgefährdung dar.[59] Hier ein Vergleich der stündlichen Belastung allein durch die galaktische kosmischen Strahlung im Januar/Februar 2019 an verschiedenen Orten:[60]

Mars 29 μSv/h
Mond 57 μSv/h
ISS 22 μSv/h
Köln 0,05 μSv/h

Am 25. September 2020 veröffentlichten Robert Wimmer-Schweingruber, Zhang Shenyi (张珅毅, * 1978) vom Nationalen Zentrum für Weltraumwissenschaften[61] und ihre Kollegen die Messergebnisse in der amerikanischen Fachzeitschrift Science Advances, wobei sie darauf hinwiesen, dass sich die Sonne 2019/2020 in einer Phase minimaler Aktivität befand, dass die Strahlenbelastung also nur höher werden kann.[62]

Siehe auch

Einzelnachweise

  1. a b 雷丽娜: 我国嫦娥四号任务将实现世界首次月球背面软着陆. In: http://www.gov.cn. 2. Dezember 2015, abgerufen am 7. Mai 2019 (chinesisch).
  2. Erste Landung auf Mond-Rückseite geglückt, Tagesschau.de vom 3. Januar 2019; abgerufen am 3. Januar 2019
  3. Sputnik: China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018. Abgerufen am 10. Dezember 2018 (englisch).
  4. Echo Huang, Echo Huang: China lays out its ambitions to colonize the moon and build a “lunar palace”. Abgerufen am 10. Dezember 2018 (englisch).
  5. Stuart Clark: China’s moon mission to boldly go a step further. In: The Guardian. 31. Dezember 2017, ISSN 0261-3077 (theguardian.com [abgerufen am 10. Dezember 2018]).
  6. Leonard David, Space com's Space Insider Columnist | March 17, 2015 08:00am ET: China Outlines New Rockets, Space Station and Moon Plans. Abgerufen am 10. Dezember 2018.
  7. Paul D. Spudis: China’s Moon Missions Are Anything But Pointless. Abgerufen am 10. Dezember 2018 (englisch).
  8. Leonard David, Space com's Space Insider Columnist | June 9, 2016 04:14pm ET: To the Far Side of the Moon: China's Lunar Science Goals. Abgerufen am 10. Dezember 2018.
  9. 付毅飞: 嫦娥四号中继星发射成功 人类迈出航天器月背登陆第一步. In: http://news.china.com.cn. 22. Mai 2018, abgerufen am 3. Januar 2019 (chinesisch).
  10. a b Luyuan Xu: How China's lunar relay satellite arrived in its final orbit. In: The Planetary Society. 25. Juni 2018, archiviert vom Original am 17. Oktober 2018; abgerufen am 10. Dezember 2018 (englisch).
  11. “龙江二号”微卫星圆满完成环月探测任务,受控撞月. In: clep.org.cn. 2. August 2019, abgerufen am 8. August 2019 (chinesisch).
  12. a b Pioneering astronomy. Abgerufen am 10. Dezember 2018.
  13. a b c d The scientific objectives and payloads of Chang’E−4 mission. In: Planetary and Space Science. Band 162, 1. November 2018, ISSN 0032-0633, S. 207–215, doi:10.1016/j.pss.2018.02.011 (sciencedirect.com [abgerufen am 10. Dezember 2018]).
  14. Chang'e-4 lunar far side satellite named 'magpie bridge' from folklore tale of lovers crossing the Milky Way. Abgerufen am 10. Dezember 2018.
  15. 赵磊: 探月工程嫦娥四号探测器成功发射,开启人类首次月球背面软着陆探测之旅. In: http://cn.chinadaily.com.cn. 8. Dezember 2018, abgerufen am 6. Januar 2019 (chinesisch).
  16. Chang’e 3, 4 (CE 3, 4) / Yutu. Abgerufen am 10. Dezember 2018.
  17. Roboter an Bord der "Chang'e 4": Chinas Mond-Rover rollt los - spiegel.de
  18. 倪伟: “嫦娥四号”月球车首亮相面向全球征名 年底奔月. In: http://www.xinhuanet.com. 16. August 2018, abgerufen am 6. Januar 2019 (chinesisch).
  19. 祝梅: 浙江大学光电科学与工程学院教授徐之海—我向宇宙奔跑不停步. In: zjnews.zjol.com.cn. 8. Februar 2019, abgerufen am 29. April 2019 (chinesisch).
  20. 光电科学与工程学院2018年度“我为学科添光彩”突出案例出炉. In: zju.edu.cn. 22. März 2019, abgerufen am 29. April 2019 (chinesisch).
  21. 纪奕才、吴伟仁 et al.: 在月球背面进行低频射电天文观测的关键技术研究. In: jdse.bit.edu.cn. 28. März 2017, abgerufen am 30. Juli 2019 (chinesisch).
  22. a b 侯东辉, Robert Wimmer-Schweingruber, Sönke Burmeister et al.: 月球粒子辐射环境探测现状. In: jdse.bit.edu.cn. 26. Februar 2019, abgerufen am 28. August 2020 (chinesisch).
  23. Denis Schimmelpfennig: Raketenstart erfolgreich: Chinesische Sonde mit Kieler Experiment auf dem Weg zum Mond. In: uni-kiel.de. 7. Dezember 2018, abgerufen am 12. Mai 2019.
  24. Robert Wimmer-Schweingruber et al.: The Lunar Lander Neutron & Dosimetry (LND) Experiment on Chang’E4. In: hou.usra.edu. Abgerufen am 12. Mai 2019 (englisch).
  25. 国家航天局交接嫦娥四号国际载荷科学数据 发布月球与深空探测合作机会. In: clep.org.cn. 18. April 2019, abgerufen am 12. Mai 2019 (chinesisch).
  26. 郭超凯: 嫦娥四号、玉兔二号进入第十八月夜 科学成果揭示月背着陆区月壤成分. In: chinanews.com. 29. Mai 2020, abgerufen am 29. Mai 2020 (chinesisch).
  27. 李季: 嫦娥四号和玉兔二号自主唤醒 进入第十九月昼工作期. In: chinanews.com. 15. Juni 2020, abgerufen am 15. Juni 2020 (chinesisch).
  28. Change-4 Probe lands on the moon with “mysterious passenger” of CQU
  29. 李依环、白宇: “太空棉”长出嫩芽 嫦娥四号完成人类首次月面生物试验. In: scitech.people.com.cn. 15. Januar 2019, abgerufen am 17. Januar 2019 (chinesisch).
  30. 蒋云龙: 月球上的第一片绿叶. In: scitech.people.com.cn. 16. Januar 2019, abgerufen am 17. Januar 2019 (chinesisch). Enthält Trickfilm mit Erläuterung des Biosphärenexperiments.
  31. 郭泽华: 月球上的嫩芽现在咋样了? In: chinanews.com. 15. Januar 2019, abgerufen am 17. September 2020 (chinesisch).
  32. Lin Honglei, Lin Yangting et al.: In Situ Photometric Experiment of Lunar Regolith With Visible and Near‐Infrared Imaging Spectrometer On Board the Yutu‐2 Lunar Rover. In: agupubs.onlinelibrary.wiley.com. 11. Februar 2020, abgerufen am 9. Mai 2020 (englisch).
  33. 林杨挺 et al.: 科研人员对玉兔二号光谱的光照作几何校正. In: spaceflightfans.cn. 9. Mai 2020, abgerufen am 9. Mai 2020 (chinesisch).
  34. Huang Jun et al.: Diverse rock types detected in the lunar South Pole–Aitken Basin by the Chang’E-4 lunar mission. In: spaceflightfans.cn. 12. März 2020, abgerufen am 9. Mai 2020 (englisch).
  35. Sweden joins China's historic mission to land on the far side of the Moon in 2018. Abgerufen am 10. Dezember 2018.
  36. Discovering the Sky at the Longest Wavelengths. In: astron.nl. Abgerufen am 30. Juli 2019 (englisch).
  37. Heino Falcke, Hong Xiaoyu et al.: DSL: Discovering the Sky at the Longest Wavelengths. In: astron.nl. Abgerufen am 30. Juli 2019 (englisch).
  38. Marc Klein Wolt: Netherlands-China Low-Frequency Explorer (NCLE). In: ru.nl. Abgerufen am 30. Juli 2019 (englisch).
  39. a b Paul D. Spudis: China’s Journey to the Lunar Far Side: A Missed Opportunity? Abgerufen am 10. Dezember 2018 (englisch).
  40. 嫦娥四号任务圆满成功 北京航天飞行控制中心致信空天院. In: aircas.cas.cn. 12. Januar 2019, abgerufen am 31. Mai 2019 (chinesisch).
  41. 刘锟: “玉兔二号”月球车顺利踏上月球背面!后续还将完成哪些使命? In: jfdaily.com. 4. Januar 2019, abgerufen am 7. Mai 2019 (chinesisch).
  42. 嫦娥四号成功实现人类探测器首次月球背面软着陆 上海技物所3台载荷均工作正常. In: sitp.ac.cn. 7. Januar 2019, abgerufen am 17. Mai 2019 (chinesisch).
  43. 叶培建院士带你看落月. In: cast.cn. 3. Januar 2019, abgerufen am 17. Mai 2019 (chinesisch).
  44. 嫦娥四号探测器实拍降落视频发布. In: clep.org.cn. 11. Januar 2019, abgerufen am 11. Mai 2019 (chinesisch). Enthält von der Landekamera aufgenommenes Video der letzten 6 Minuten des Abstiegs und Schaubild mit Erläuterung der einzelnen Phasen der Landung.
  45. Helga Rietz: Schwebender Staub auf dem Mond. In: deutschlandfunk.de. 1. August 2012, abgerufen am 14. Mai 2019.
  46. Forscher warnen vor Kurzschlüssen auf dem Mond. In: spiegel.de. 5. Februar 2007, abgerufen am 14. Mai 2019.
  47. 刘晓艳: 天津大学空间力学团队助“力”国家空间探测工程 多项科研成果应用于“嫦娥”系列和火星探测计划. In: tju.edu.cn/. 30. Januar 2019, abgerufen am 13. Mai 2019 (chinesisch). Die von der Gruppe Weltraummechanik entwickelte Methode soll auch Ende 2019 bei Chang'e-5 sowie im April 2021 bei der Landung der Marssonde Yinghuo-2 zum Einsatz kommen.
  48. 唐艳飞: 嫦娥四号成功着陆月背!传回世界首张近距拍摄月背影像图. In: guancha.cn. 3. Januar 2019, abgerufen am 6. Januar 2019 (chinesisch).
  49. 陈海波: 月球上多了5个中国名字. In: xinhuanet.com. 16. Februar 2019, abgerufen am 26. September 2019 (chinesisch).
  50. Planetary Names: Landing site name: Statio Tianhe on Moon. In: planetarynames.wr.usgs.gov. 18. Februar 2019, abgerufen am 26. September 2019 (englisch).
  51. Liu Jianjun, Li Chunlai et al.: Descent trajectory reconstruction and landing site positioning of Chang’e-4 on the lunar farside. In: nature.com. 24. September 2019, abgerufen am 26. September 2019 (englisch).
  52. 嫦娥四号着陆器和“玉兔二号”巡视器完成自主唤醒,开始第十月昼工作. In: clep.org.cn. 24. September 2019, abgerufen am 26. September 2019 (chinesisch).
  53. Andrew Jones: China's Lunar Rover Has Found Something Weird on the Far Side of the Moon. In: space.com. 30. August 2019, abgerufen am 12. Dezember 2019 (englisch).
  54. “玉兔二号”揭示月球背面“不明胶状物质”可能成因. In: clep.org.cn. 23. Juni 2020, abgerufen am 24. Juni 2020 (chinesisch).
  55. Gou Sheng et al.: Impact melt breccia and surrounding regolith measured by Chang'e-4 rover. In: sciencedirect.com. Abgerufen am 9. Juli 2020 (chinesisch).
  56. Robert F. Wimmer-Schweingruber et al.: The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang’E 4. In: arxiv.org. 29. Januar 2020, abgerufen am 8. August 2020 (englisch).
  57. Johan von Forstner: Lunar Lander Neutrons & Dosimetry auf Chang'E 4. In: physik.uni-kiel.de. 8. Februar 2020, abgerufen am 8. August 2020.
  58. 嫦娥四号600天科学成果归纳. In: clep.org.cn. 26. August 2020, abgerufen am 28. August 2020 (chinesisch).
  59. Robert Wimmer-Schweingruber: Chinesische Mondmission Chang'e 4. In: youtube.com. 26. Januar 2020, abgerufen am 30. August 2020.
  60. Robert F. Wimmer-Schweingruber et al.: Erste Messungen der Strahlendosis auf dem Mond. In: uni-kiel.de. 25. September 2020, abgerufen am 27. Oktober 2020.
  61. 张珅毅. In: sourcedb.nssc.cas.cn. Abgerufen am 27. Oktober 2020 (chinesisch).
  62. Zhang Shenyi, Robert Wimmer-Schweingruber et al.: First measurements of the radiation dose on the lunar surface. In: advances.sciencemag.org. 25. September 2020, abgerufen am 27. Oktober 2020 (englisch).