„Gewinnmaximierung“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Die letzte Textänderung von 46.140.62.14 wurde verworfen und die Version 194035464 von Nighttrain wiederhergestellt.
Wowo2008 (Diskussion | Beiträge)
Artikel erweitert +Quellen +Disku berücksichtigt +Kat.
Zeile 1: Zeile 1:
'''Gewinnmaximierung''', auch '''Profitmaximierung''', ist in der [[Wirtschaftswissenschaft]] ein [[Unternehmensziel]], nach dem in einer [[Marktwirtschaft]] [[Unternehmer]] ihre [[Produktion]]smenge anpassen, damit ein [[Marktgleichgewicht]] erreicht wird. Das Unternehmensziel der Gewinnmaximierung wird in der wirtschaftswissenschaftlichen Fachliteratur häufig vorausgesetzt, möglich sind jedoch auch andere Ziele wie die Kostendeckung oder Renditemaximierung. In der Situation maximalen [[Gewinn]]s entsprechen die [[Grenzkosten]] dem [[Grenzerlös]].
'''Gewinnmaximierung''' ist in der [[Wirtschaftswissenschaft]] ein [[Unternehmensziel]], bei welchem das [[Extremwert|Maximum]] des [[Gewinn]]s erreicht werden soll. Pendant ist die [[Nutzenmaximierung]] des [[Nachfrager]]s.


== Allgemeines ==
Nachdem ein Unternehmen in den [[Markt]] eingetreten ist, wird es in der Regel versuchen durch optimale [[Produktionsplanung]] seinen [[Gewinn]] zu maximieren. Auf welche Weise ein Unternehmen seinen Gewinn maximieren kann, hängt dabei von der Art des Marktes ab, in dem das Unternehmen agiert, und von der Stellung des Unternehmens im Markt.
In [[Marktwirtschaft]]en streben [[Unternehmer]] meist das Ziel der Gewinnmaximierung an, doch anstelle dieser können auch [[Kostendeckung]] oder [[Rendite]]maximierung als Ziele dienen. Für die traditionelle [[Betriebswirtschaftslehre]] ist das Prinzip langfristiger Gewinnmaximierung das oberste [[Formalziel]], an dem unternehmerische [[Entscheidung]]en ausgerichtet werden.<ref>[[Günter Wöhe]]/[[Ulrich Döring]], ''Einführung in die Allgemeine Betriebswirtschaftslehre'', 25. Auflage, 2013, S. 34</ref> Dagegen strebt die [[Sozialwissenschaften|verhaltenswissenschaftliche]] Betriebswirtschaftslehre – im Rahmen des [[Stakeholder Value|Stakeholder-Ansatzes]] – nach Maximierung des [[Gemeinwohl]]s.<ref>Günter Wöhe/Ulrich Döring, ''Einführung in die Allgemeine Betriebswirtschaftslehre'', 25. Auflage, 2013, S. 9</ref>


Die Gewinnmaximierungshypothese gehört neben dem ausschließlich [[Rationalität|rational]] agierenden [[Homo oeconomicus]] und dem [[vollkommener Markt|vollkommenen Markt]] zu den wichtigsten [[Prämisse]]n bei theoretischen [[Modell]]en.
Im Folgenden soll zunächst der Mechanismus der Gewinnmaximierung eines [[Monopolist]]en in einer [[Marktwirtschaft]] erläutert werden. Anschließend wird die Gewinnmaximierung im Gleichgewicht erklärt.


== Berechnung ==
== Gewinnmaximierung bei einem Monopolisten ==
Ausgangspunkt ist der Gewinn <math>G(x)</math> als die positive Differenz zwischen [[Umsatzerlös]]en <math>U(x)</math> und [[Kosten]] <math>K(x)</math>:<ref>[https://books.google.de/books?id=9CokBAAAQBAJ&pg=PA120&dq=grenzgewinn+lexikon&hl=de&sa=X&ved=2ahUKEwjppbTErYXtAhVJDOwKHcVgBrUQuwUwAnoECAQQBg#v=onepage&q=grenzgewinn%20lexikon&f=false Springer Fachmedien Wiesbaden (Hrsg.), ''Kompakt-Lexikon Wirtschaftstheorie'', 2013, S. 120]</ref>
Charakteristisch für diese Situation ist, dass es eine [[Preis-Absatz-Funktion]] gibt, die beschreibt, welche Menge eines Produktes bei einem bestimmten Preis abgesetzt werden kann. Man kann generell davon ausgehen, dass bei sinkenden Preisen eine größere Menge des Produktes abgesetzt werden kann.
:<math>G(x) = U(x) - K(x)</math> ([[Gewinnfunktion]]).
Die erste [[Ableitung (Mathematik)|Ableitung]] dieser [[Funktion (Mathematik)|Funktion]] nennt man [[Grenzgewinn]]:<ref>[https://books.google.de/books?id=VcYdIYDKLecC&pg=PA246&dq=Grenzgewinn&hl=de&sa=X&ved=2ahUKEwjb4fWY9YztAhWDLewKHeqXBj8QuwUwAXoECAIQBw#v=onepage&q=Grenzgewinn&f=false Jürgen Tietze, ''Einführung in die angewandte Wirtschaftsmathematik'', 2006, S. 246]</ref>
:<math>G'(x) = U'(x) - K'(x)</math>.
Ist der Grenzgewinn <math>G' = 0</math>, so kann durch den zusätzlichen Einsatz von [[Produktionsfaktor]]en keine Gewinnsteigerung mehr erwartet werden, das ''Gewinnmaximum'' als Zielgröße der Gewinnmaximierung ist erreicht.<ref>Jürgen Tietze, ''Einführung in die angewandte Wirtschaftsmathematik'', 2006, S. 340</ref> Hier entsprechen die [[Grenzkosten]] den [[Grenzerlös]]en. Der Grenzgewinn ist auch die Differenz aus Grenzerlös <math>E'</math> und Grenzkosten <math>K'</math>:
:<math>G' = E' - K'</math>.
Das Gewinnmaximum liegt im [[Monopol]] dort, wo der positive Abstand zwischen der [[Erlösfunktion]] und der [[Kostenfunktion]] am größten ist.<ref>Günter Wöhe/Ulrich Döring, ''Einführung in die Allgemeine Betriebswirtschaftslehre'', 25. Auflage, 2013, S. 423</ref>


== Gewinnmaximierung bei einem Monopol ==
Das Unternehmen wählt dann für sein Produkt den Preis, bei dem der maximale Gewinn erzielt werden kann. Der Preis ist also nicht, wie bei einem Markt mit [[Vollständige Konkurrenz|vollkommener Konkurrenz]], an dem die Unternehmen als [[Preisnehmer]] bzw. [[Mengenanpasser]] auftreten, gegeben, sondern wird vom Monopolisten gewählt.
Charakteristisch für diese Situation ist, dass es eine [[Preis-Absatz-Funktion]] gibt, die beschreibt, welches [[Absatzvolumen]] eines Produktes bei einem bestimmten Preis abgesetzt werden kann. Man kann generell davon ausgehen, dass bei sinkenden Preisen eine größere Menge des Produktes abgesetzt werden kann.
Das Unternehmen wählt dann für sein Produkt den Preis, bei dem der maximale Gewinn erzielt werden kann. Der Preis ist also nicht, wie bei einem Markt mit [[Vollständige Konkurrenz|vollkommener Konkurrenz]], an dem die Unternehmen als [[Preisnehmer]] bzw. [[Mengenanpasser]] auftreten, als [[Datenparameter]] gegeben, sondern wird vom Monopolisten als [[Aktionsparameter]] festgesetzt.


Der Punkt auf der Preis-Absatz-Funktion, bei dem ein Monopolunternehmen den maximalen Gewinn erzielt, wird [[Cournotscher Punkt]] genannt.
Der Punkt auf der Preis-Absatz-Funktion, bei dem ein Monopolunternehmen den maximalen Gewinn erzielt, wird [[Cournotscher Punkt]] genannt.


== Formeln zur Gewinnmaximierung eines Monopolisten ==
== Formeln zur Gewinnmaximierung im Monopol ==
Eine besonders einfach zu handhabende Version einer Gewinnfunktion formuliert den Gewinn als Funktion von der Ausbringungsmenge <math>x</math> eines bestimmten Gutes, das heißt für die Gewinnfunktion <math>G</math> gilt:
Eine besonders einfach zu handhabende Version einer Gewinnfunktion formuliert den Gewinn als Funktion von der [[Ausbringungsmenge]] <math>x</math> eines bestimmten Gutes, das heißt für die Gewinnfunktion <math>G</math> gilt:
:<math>G(x)=E(x)-K(x)</math>
:<math>G(x)=E(x)-K(x)</math>
mit <math>E(x)</math> der Erlös- und <math>K(x)</math> der Kostenfunktion (jeweils in Abhängigkeit von der abgesetzten Menge <math>x\geq 0</math>).
mit <math>E(x)</math> der Erlös- und <math>K(x)</math> der Kostenfunktion (jeweils in Abhängigkeit von der abgesetzten Menge <math>x\geq 0</math>).
Zeile 23: Zeile 32:
:(2’) Eine stationäre Stelle <math>x_0</math> ist eine lokale Maximalstelle der Gewinnfunktion, wenn ein <math>a<x_0</math> existiert, sodass <math>G'(x)\geq 0 </math> für alle <math>x\in (a,x_0)</math>, und ein <math>b>x_0</math> existiert, sodass <math>G'(x)\leq 0 </math> für alle <math>x\in (x_0,b)</math>.</ref>
:(2’) Eine stationäre Stelle <math>x_0</math> ist eine lokale Maximalstelle der Gewinnfunktion, wenn ein <math>a<x_0</math> existiert, sodass <math>G'(x)\geq 0 </math> für alle <math>x\in (a,x_0)</math>, und ein <math>b>x_0</math> existiert, sodass <math>G'(x)\leq 0 </math> für alle <math>x\in (x_0,b)</math>.</ref>


Beachte, dass aus (1) mit der Definition der Gewinnfunktion unmittelbar folgt,<ref>Vgl. den Artikel ''[[Summenregel]].''</ref> dass <math>E'(x_0)-K'(x_0)=0</math>, das heißt der Grenzerlös entspricht den Grenzkosten. Dies erschließt sich intuitiv:<ref>Siehe nur Breyer 2015, S. 71 f.</ref> Wenn der Grenzerlös die Grenzkosten übersteigt, könnte man den Gewinn mit der Produktion einer (marginalen) Mehreinheit erhöhen, weil der damit erzielte Mehrerlös die dafür anfallenden Mehrkosten überwöge. Wenn umgekehrt die Grenzkosten den Grenzerlös übersteigen, könnte man den Gewinn durch Verringerung der Produktion um eine (marginale) Einheit erhöhen, weil die damit erzielte Kostenersparnis den damit bewirkten Erlösrückgang überkompensieren würde.
Zu beachten ist, dass aus (1) mit der Definition der Gewinnfunktion unmittelbar folgt,<ref>Vgl. den Artikel ''[[Summenregel]].''</ref> dass <math>E'(x_0)-K'(x_0)=0</math>, das heißt der Grenzerlös entspricht den Grenzkosten. Dies erschließt sich intuitiv:<ref>Friedrich Breyer, ''Mikroökonomik. Eine Einführung'', 2015, S. 71 f.</ref> Wenn der Grenzerlös die Grenzkosten übersteigt, könnte man den Gewinn mit der Produktion einer (marginalen) Mehreinheit erhöhen, weil der damit erzielte Mehrerlös die dafür anfallenden Mehrkosten überwöge. Wenn umgekehrt die Grenzkosten den Grenzerlös übersteigen, könnte man den Gewinn durch Verringerung der Produktion um eine (marginale) Einheit erhöhen, weil die damit erzielte Kostenersparnis den damit bewirkten Erlösrückgang überkompensieren würde.


=== Beispiel ===
=== Beispiel ===
Zeile 41: Zeile 50:
auch hinreichend. Über die Preis-Absatz-Funktion ergibt sich, dass der Preis bei dieser Produktionsmenge <math>p_0=90</math> beträgt.
auch hinreichend. Über die Preis-Absatz-Funktion ergibt sich, dass der Preis bei dieser Produktionsmenge <math>p_0=90</math> beträgt.


== Gewinnmaximierung im Gleichgewicht ==
== Gewinnmaximierung im Marktgleichgewicht ==
Für ein Unternehmen in einem Markt mit [[Vollständige Konkurrenz|vollkommener Konkurrenz]] und im Gleichgewicht stellt sich die Maximierung des Gewinns ganz anders dar als bei einem Monopolisten: bei vollkommener Konkurrenz ist der Gewinn im Gleichgewicht gleich Null! Hier besteht das für ein Unternehmen erreichbare Maximum darin, dass keine Verluste erzielt werden.<ref>Lawrence Boland: Foundations of Economic Method: A Popperian Perspective. 2. Auflage 2003. S. 149, 150</ref>
Für ein Unternehmen in einem Markt mit [[Vollständige Konkurrenz|vollkommener Konkurrenz]] und im [[Marktgleichgewicht]] stellt sich die Maximierung des Gewinns ganz anders dar als bei einem Monopolisten: bei vollkommener Konkurrenz ist der Gewinn im Gleichgewicht gleich Null. Hier besteht das für ein Unternehmen erreichbare Maximum darin, dass keine Verluste erzielt werden.<ref>Lawrence Boland, ''Foundations of Economic Method: A Popperian Perspective'', 2. Auflage, 2003, S. 149 f.</ref>


Das erscheint auf den ersten Blick nicht sinnvoll zu sein, da man annimmt, dass kein Unternehmer in den Markt eintritt, ohne Gewinn erzielen zu können. Will er nicht für seine Arbeit im Unternehmen (Planung, Organisation etc.) und für das Risiko, das er eingeht, 'bezahlt' werden?
Das erscheint auf den ersten Blick nicht sinnvoll zu sein, da man annimmt, dass kein Unternehmer in einen [[Markteintritt|Markt eintritt]], ohne dort Gewinn erzielen zu können. Er will für seine Arbeit im Unternehmen (Planung, Organisation etc.) und für das Risiko, das er eingeht, ''belohnt'' werden.


Auch auf einem Markt mit vollkommener Konkurrenz, wie er z.&nbsp;B. von [[Arrow-Debreu-Gleichgewichtsmodell|Arrow & Debreu]] behandelt wird, taucht der Unternehmer auf, allerdings als normaler Konsument, der einerseits seine Arbeitskraft zur Verfügung stellt und andererseits dafür das vom Markt für ihn bestimmte höchst-präferierte Güterbündel erhält, genau so wie jeder andere Marktteilnehmer auch.
Auch auf einem Markt mit vollkommener Konkurrenz, wie er z.&nbsp;B. von [[Arrow-Debreu-Gleichgewichtsmodell|Arrow & Debreu]] behandelt wird, taucht der Unternehmer auf, allerdings als normaler Konsument, der einerseits seine [[Arbeitskraft]] zur Verfügung stellt und andererseits dafür das vom Markt für ihn bestimmte höchst-präferierte Güterbündel erhält, genau so wie jeder andere [[Marktteilnehmer]] auch.


Der Unternehmer erhält also ein virtuelles Gehalt für seine Arbeit. Ein Risiko besteht für ihn an diesem Markt nicht, er steht nur mit seiner Arbeitskraft ein. Für Gebäude, Maschinen etc. hat er Kapital aufgenommen, für das er Zinsen zu zahlen hat, die ganz normal in der Kostenrechnung auftauchen und vom Markt berücksichtigt werden.
Der Unternehmer erhält also ein virtuelles Gehalt für seine Arbeit. Ein Risiko besteht für ihn an diesem Markt nicht, er steht nur mit seiner Arbeitskraft ein. Für Gebäude, Maschinen etc. hat er Kapital aufgenommen, für das er Zinsen zu zahlen hat, die ganz normal in der [[Kostenrechnung]] auftauchen und vom Markt berücksichtigt werden.


Eine hypothetische Frage lautet, wie es an einem Markt mit vollständiger Konkurrenz dazu kommt, dass Unternehmen keine Gewinne erzielen. Dazu muss man sich noch einmal vor Augen halten, dass es an einem Markt mit vollständiger Konkurrenz theoretisch viele Anbieter für das gleiche Produkt ([[Polypol|homogenes Polypol]]) gibt und dass alle relevanten Informationen jedem bekannt sind. Daraus folgt zunächst, dass kein Konsument einen höheren Preis als den niedrigsten Preis akzeptieren würde.
Eine hypothetische Frage lautet, wie es an einem Markt mit vollständiger Konkurrenz dazu kommt, dass Unternehmen keine Gewinne erzielen. Dazu muss man sich noch einmal vor Augen führen, dass es an einem Markt mit vollständiger Konkurrenz theoretisch viele Anbieter für das gleiche Produkt ([[Polypol|homogenes Polypol]]) gibt und dass alle relevanten Informationen jedem bekannt sind. Daraus folgt zunächst, dass kein Konsument einen höheren Preis als den niedrigsten Preis akzeptieren würde.


Würde ein Unternehmen z.&nbsp;B. auf Grund einer innovativen Produktion günstiger produzieren können, würden die anderen Anbieter auch auf dieses Produktionsverfahren umstellen, womit wieder gleiche Bedingungen hergestellt wären und alle Hersteller zum gleichen Preis ohne Gewinn anbieten müssten. Das ist der optimale Preis, der vom Markt 'gefunden' wird und den jeder Unternehmer bekommt – nicht mehr und nicht weniger. [[Vollkommene Konkurrenz]] existiert jedoch nirgends, es handelt sich um ein theoretisches Konstrukt.
Würde ein Unternehmen z.&nbsp;B. auf Grund einer innovativen Produktion günstiger produzieren können ([[Pioniergewinn]]), würden die anderen Anbieter auch auf dieses [[Produktionsverfahren]] umstellen, womit wieder gleiche Bedingungen hergestellt wären und alle Hersteller zum gleichen Preis ohne Gewinn anbieten müssten. Das ist der optimale Preis, der vom Markt 'gefunden' wird und den jeder Unternehmer bekommt – nicht mehr und nicht weniger. Vollkommene Konkurrenz existiert jedoch in der Realität nirgends, es handelt sich um ein theoretisches Konstrukt.


== Rezeption ==
== Mikroökonomische Betrachtung ==
Das Gewinnstreben spielt im Wirtschaftsleben eine unbestreitbar wichtige Rolle.<ref>[https://books.google.de/books?id=GH0HoUPQkEYC&pg=PA20&dq=Gewinnmaximierung+Hypothese+pr%C3%A4missen&hl=de&sa=X&ved=2ahUKEwj_8p6U5IbtAhXQqaQKHTpLBeMQuwUwAHoECAAQBg#v=onepage&q=Gewinnmaximierung%20Hypothese%20pr%C3%A4missen&f=false Franz Xaver Bea, ''Kritische Untersuchungen über den Geltungsbereich des Prinzips der Gewinnmaximierung'', 1968, S. 14]</ref> Die generelle Behauptung, dass der Unternehmer seinen Gewinn langfristig maximieren wolle, ist jedoch kritisch zu sehen.<ref>Günther E. Braun, ''Gewinnmaximierung'', in: Wolfgang Lück (Hrsg.), ''Lexikon der Betriebswirtschaft'', 1983, S. 452 f.</ref> Denn die im Rahmen des vollkommenen Wettbewerbs verfolgte Zielvorstellung der Gewinnmaximierung ist unrealistisch. Da in der unternehmerischen Realität sowohl [[risiko]]behaftete als auch [[unvollkommene Information]]en vorliegen, kann ein „objektives Maximum“ nicht erreicht werden.<ref>Günther E. Braun, ''Gewinnmaximierung'', in: Wolfgang Lück (Hrsg.), ''Lexikon der Betriebswirtschaft'', 1983, S. 453</ref> Selbst ein „subjektives“ oder „absolutes Maximum“ ist angesichts faktischer, rechtlicher oder normativer [[Nebenbedingung|Restriktionen]], die unternehmerische Handlungsspielräume einengen, nicht möglich. Ein Unternehmensziel der Gewinnmaximierung ist deshalb nur unter Berücksichtigung von Nebenbedingungen (Restriktionen) sinnvoll. Dabei ist eine einzige Zielvariable zu maximieren, während die anderen als Nebenbedingungen in Form von [[Ungleichung]]en erscheinen.<ref>[https://books.google.de/books?id=mjOEBwAAQBAJ&pg=PA20&dq=Gewinnmaximierung+gutenberg&hl=de&sa=X&ved=2ahUKEwi-2P_clYftAhUS_aQKHSkMD20QuwUwBXoECAkQBw#v=onepage&q=Gewinnmaximierung%20gutenberg&f=false Silvio Unterguggenberger, ''Kybernetik und Deckungsbeitragsrechnung'', 1974, S. 21]</ref>
{{Hauptartikel|Gewinnfunktion}}

Wichtige Vertreter der Betriebswirtschaftslehre wie [[Eugen Schmalenbach]]<ref>Eugen Schmalenbach, ''Dynamische Bilanz'', 1926, S. 93 ff.</ref> oder [[Heinrich Nicklisch]]<ref>Heinrich Nicklisch, ''Wirtschaftliche Betriebslehre'', 1922, S. 79 ff.</ref> betonen die [[Gemeinwirtschaft]]lichkeit; die Mehrzahl der Autoren geht jedoch davon aus, dass das Leitbild der Gewinnmaximierung heute zur Struktur der meisten Modelle der [[Wirtschaftstheorie]] gehört.<ref>Franz Xaver Bea, ''Kritische Untersuchungen über den Geltungsbereich des Prinzips der Gewinnmaximierung'', 1968, S. 15</ref> Für [[Erich Gutenberg]] stellt „Gewinnerzielung den Primäreffekt betrieblicher Betätigung dar, die Leistungserstellung dagegen den Sekundäreffekt, insofern Leistungserstellung Mittel zum Zwecke maximaler Gewinnerzielung ist“.<ref>Erich Gutenberg, ''Grundlagen der Betriebswirtschaftslehre'', ''Band I: Die Produktion'', 1972, S. 465</ref> [[Konrad Mellerowicz]] gibt zu bedenken, dass Gewinnmaximierung auf kurze Sicht „hohe Lohnforderungen, Verärgerung von Kunden, neue Konkurrenten und öffentliches Ärgernis hervorruft und Gegenkräfte auslöst, die die [[Rentabilität]] auf lange Sicht zerstören können“.<ref>[https://books.google.de/books?id=0SKaDwAAQBAJ&pg=PA202&dq=Gewinnmaximierung+mellerowicz&hl=de&sa=X&ved=2ahUKEwjok9y8wp7tAhXrSRUIHZo8AY0Q6AEwAHoECAYQAg#v=onepage&q=Gewinnmaximierung%20mellerowicz&f=false Konrad Mellerowicz, ''Allgemeine Betriebswirtschaftslehre'', Band 4, 1968, S. 201 f.]</ref>


== Literatur ==
== Literatur ==
* {{Literatur|Autor=Friedrich Breyer|Titel=Mikroökonomik. Eine Einführung|Auflage=6|Verlag=Springer|Ort=Heidelberg u.&nbsp;a.|Jahr=2015|ISBN=978-3-662-45360-5}}
* {{Literatur|Autor=Friedrich Breyer|Titel=Mikroökonomik. Eine Einführung|Auflage=6|Verlag=Springer|Ort=Heidelberg u.&nbsp;a.|Jahr=2015|ISBN=978-3-662-45360-5}}


== Anmerkungen ==
== Einzelnachweise ==
<references/>
<references/>


{{Normdaten|TYP=s|GND=4020916-7}}
{{Normdaten|TYP=s|GND=4020916-7}}


[[Kategorie:Betriebswirtschaftslehre]]
[[Kategorie:Produktionstheorie]]
[[Kategorie:Produktionstheorie]]
[[Kategorie:Mikroökonomie]]
[[Kategorie:Mikroökonomie]]
[[Kategorie:Wirtschaft]]

Version vom 8. Dezember 2020, 11:32 Uhr

Gewinnmaximierung ist in der Wirtschaftswissenschaft ein Unternehmensziel, bei welchem das Maximum des Gewinns erreicht werden soll. Pendant ist die Nutzenmaximierung des Nachfragers.

Allgemeines

In Marktwirtschaften streben Unternehmer meist das Ziel der Gewinnmaximierung an, doch anstelle dieser können auch Kostendeckung oder Renditemaximierung als Ziele dienen. Für die traditionelle Betriebswirtschaftslehre ist das Prinzip langfristiger Gewinnmaximierung das oberste Formalziel, an dem unternehmerische Entscheidungen ausgerichtet werden.[1] Dagegen strebt die verhaltenswissenschaftliche Betriebswirtschaftslehre – im Rahmen des Stakeholder-Ansatzes – nach Maximierung des Gemeinwohls.[2]

Die Gewinnmaximierungshypothese gehört neben dem ausschließlich rational agierenden Homo oeconomicus und dem vollkommenen Markt zu den wichtigsten Prämissen bei theoretischen Modellen.

Berechnung

Ausgangspunkt ist der Gewinn als die positive Differenz zwischen Umsatzerlösen und Kosten :[3]

(Gewinnfunktion).

Die erste Ableitung dieser Funktion nennt man Grenzgewinn:[4]

.

Ist der Grenzgewinn , so kann durch den zusätzlichen Einsatz von Produktionsfaktoren keine Gewinnsteigerung mehr erwartet werden, das Gewinnmaximum als Zielgröße der Gewinnmaximierung ist erreicht.[5] Hier entsprechen die Grenzkosten den Grenzerlösen. Der Grenzgewinn ist auch die Differenz aus Grenzerlös und Grenzkosten :

.

Das Gewinnmaximum liegt im Monopol dort, wo der positive Abstand zwischen der Erlösfunktion und der Kostenfunktion am größten ist.[6]

Gewinnmaximierung bei einem Monopol

Charakteristisch für diese Situation ist, dass es eine Preis-Absatz-Funktion gibt, die beschreibt, welches Absatzvolumen eines Produktes bei einem bestimmten Preis abgesetzt werden kann. Man kann generell davon ausgehen, dass bei sinkenden Preisen eine größere Menge des Produktes abgesetzt werden kann. Das Unternehmen wählt dann für sein Produkt den Preis, bei dem der maximale Gewinn erzielt werden kann. Der Preis ist also nicht, wie bei einem Markt mit vollkommener Konkurrenz, an dem die Unternehmen als Preisnehmer bzw. Mengenanpasser auftreten, als Datenparameter gegeben, sondern wird vom Monopolisten als Aktionsparameter festgesetzt.

Der Punkt auf der Preis-Absatz-Funktion, bei dem ein Monopolunternehmen den maximalen Gewinn erzielt, wird Cournotscher Punkt genannt.

Formeln zur Gewinnmaximierung im Monopol

Eine besonders einfach zu handhabende Version einer Gewinnfunktion formuliert den Gewinn als Funktion von der Ausbringungsmenge eines bestimmten Gutes, das heißt für die Gewinnfunktion gilt:

mit der Erlös- und der Kostenfunktion (jeweils in Abhängigkeit von der abgesetzten Menge ).

Es wird angenommen, dass die Gewinnfunktion zweimal stetig differenzierbar[7] ist. Nach den allgemeinen Regeln über die Maximierung von Funktionen[8] liegt an einer inneren Stelle dann ein (lokales) Gewinnmaximum vor, wenn zum einen der Grenzgewinn bei dieser Menge null beträgt, also

(1) (notwendige Bedingung für ein Maximum),

und zum anderen die zweite Ableitung der Gewinnfunktion in der Stelle negativ ist,

(2) (hinreichende Bedingung für ein Maximum).[9]

Zu beachten ist, dass aus (1) mit der Definition der Gewinnfunktion unmittelbar folgt,[10] dass , das heißt der Grenzerlös entspricht den Grenzkosten. Dies erschließt sich intuitiv:[11] Wenn der Grenzerlös die Grenzkosten übersteigt, könnte man den Gewinn mit der Produktion einer (marginalen) Mehreinheit erhöhen, weil der damit erzielte Mehrerlös die dafür anfallenden Mehrkosten überwöge. Wenn umgekehrt die Grenzkosten den Grenzerlös übersteigen, könnte man den Gewinn durch Verringerung der Produktion um eine (marginale) Einheit erhöhen, weil die damit erzielte Kostenersparnis den damit bewirkten Erlösrückgang überkompensieren würde.

Beispiel

Veranschaulichung des Beispiels: Das Gewinnmaximum befindet sich an der Stelle .
Veranschaulichung des Beispiels: In der Maximalstelle der Gewinnfunktion stimmen Grenzerlös und Grenzkosten überein.

Gegeben sind die Preis-Absatz-Funktion eines Monopolisten

sowie eine lineare Kostenfunktion

.

Die Erlösfunktion lautet zunächst

.

Für die Gewinnfunktion folgt

.

Die Bedingung erster Ordnung für ein Maximum lautet , und also

.

Dies ist wegen

auch hinreichend. Über die Preis-Absatz-Funktion ergibt sich, dass der Preis bei dieser Produktionsmenge beträgt.

Gewinnmaximierung im Marktgleichgewicht

Für ein Unternehmen in einem Markt mit vollkommener Konkurrenz und im Marktgleichgewicht stellt sich die Maximierung des Gewinns ganz anders dar als bei einem Monopolisten: bei vollkommener Konkurrenz ist der Gewinn im Gleichgewicht gleich Null. Hier besteht das für ein Unternehmen erreichbare Maximum darin, dass keine Verluste erzielt werden.[12]

Das erscheint auf den ersten Blick nicht sinnvoll zu sein, da man annimmt, dass kein Unternehmer in einen Markt eintritt, ohne dort Gewinn erzielen zu können. Er will für seine Arbeit im Unternehmen (Planung, Organisation etc.) und für das Risiko, das er eingeht, belohnt werden.

Auch auf einem Markt mit vollkommener Konkurrenz, wie er z. B. von Arrow & Debreu behandelt wird, taucht der Unternehmer auf, allerdings als normaler Konsument, der einerseits seine Arbeitskraft zur Verfügung stellt und andererseits dafür das vom Markt für ihn bestimmte höchst-präferierte Güterbündel erhält, genau so wie jeder andere Marktteilnehmer auch.

Der Unternehmer erhält also ein virtuelles Gehalt für seine Arbeit. Ein Risiko besteht für ihn an diesem Markt nicht, er steht nur mit seiner Arbeitskraft ein. Für Gebäude, Maschinen etc. hat er Kapital aufgenommen, für das er Zinsen zu zahlen hat, die ganz normal in der Kostenrechnung auftauchen und vom Markt berücksichtigt werden.

Eine hypothetische Frage lautet, wie es an einem Markt mit vollständiger Konkurrenz dazu kommt, dass Unternehmen keine Gewinne erzielen. Dazu muss man sich noch einmal vor Augen führen, dass es an einem Markt mit vollständiger Konkurrenz theoretisch viele Anbieter für das gleiche Produkt (homogenes Polypol) gibt und dass alle relevanten Informationen jedem bekannt sind. Daraus folgt zunächst, dass kein Konsument einen höheren Preis als den niedrigsten Preis akzeptieren würde.

Würde ein Unternehmen z. B. auf Grund einer innovativen Produktion günstiger produzieren können (Pioniergewinn), würden die anderen Anbieter auch auf dieses Produktionsverfahren umstellen, womit wieder gleiche Bedingungen hergestellt wären und alle Hersteller zum gleichen Preis ohne Gewinn anbieten müssten. Das ist der optimale Preis, der vom Markt 'gefunden' wird und den jeder Unternehmer bekommt – nicht mehr und nicht weniger. Vollkommene Konkurrenz existiert jedoch in der Realität nirgends, es handelt sich um ein theoretisches Konstrukt.

Rezeption

Das Gewinnstreben spielt im Wirtschaftsleben eine unbestreitbar wichtige Rolle.[13] Die generelle Behauptung, dass der Unternehmer seinen Gewinn langfristig maximieren wolle, ist jedoch kritisch zu sehen.[14] Denn die im Rahmen des vollkommenen Wettbewerbs verfolgte Zielvorstellung der Gewinnmaximierung ist unrealistisch. Da in der unternehmerischen Realität sowohl risikobehaftete als auch unvollkommene Informationen vorliegen, kann ein „objektives Maximum“ nicht erreicht werden.[15] Selbst ein „subjektives“ oder „absolutes Maximum“ ist angesichts faktischer, rechtlicher oder normativer Restriktionen, die unternehmerische Handlungsspielräume einengen, nicht möglich. Ein Unternehmensziel der Gewinnmaximierung ist deshalb nur unter Berücksichtigung von Nebenbedingungen (Restriktionen) sinnvoll. Dabei ist eine einzige Zielvariable zu maximieren, während die anderen als Nebenbedingungen in Form von Ungleichungen erscheinen.[16]

Wichtige Vertreter der Betriebswirtschaftslehre wie Eugen Schmalenbach[17] oder Heinrich Nicklisch[18] betonen die Gemeinwirtschaftlichkeit; die Mehrzahl der Autoren geht jedoch davon aus, dass das Leitbild der Gewinnmaximierung heute zur Struktur der meisten Modelle der Wirtschaftstheorie gehört.[19] Für Erich Gutenberg stellt „Gewinnerzielung den Primäreffekt betrieblicher Betätigung dar, die Leistungserstellung dagegen den Sekundäreffekt, insofern Leistungserstellung Mittel zum Zwecke maximaler Gewinnerzielung ist“.[20] Konrad Mellerowicz gibt zu bedenken, dass Gewinnmaximierung auf kurze Sicht „hohe Lohnforderungen, Verärgerung von Kunden, neue Konkurrenten und öffentliches Ärgernis hervorruft und Gegenkräfte auslöst, die die Rentabilität auf lange Sicht zerstören können“.[21]

Literatur

  • Friedrich Breyer: Mikroökonomik. Eine Einführung. 6. Auflage. Springer, Heidelberg u. a. 2015, ISBN 978-3-662-45360-5.

Einzelnachweise

  1. Günter Wöhe/Ulrich Döring, Einführung in die Allgemeine Betriebswirtschaftslehre, 25. Auflage, 2013, S. 34
  2. Günter Wöhe/Ulrich Döring, Einführung in die Allgemeine Betriebswirtschaftslehre, 25. Auflage, 2013, S. 9
  3. Springer Fachmedien Wiesbaden (Hrsg.), Kompakt-Lexikon Wirtschaftstheorie, 2013, S. 120
  4. Jürgen Tietze, Einführung in die angewandte Wirtschaftsmathematik, 2006, S. 246
  5. Jürgen Tietze, Einführung in die angewandte Wirtschaftsmathematik, 2006, S. 340
  6. Günter Wöhe/Ulrich Döring, Einführung in die Allgemeine Betriebswirtschaftslehre, 25. Auflage, 2013, S. 423
  7. Ausreichend: zweimal stetig differenzierbar auf dem Intervall .
  8. Vgl. den Artikel Extremwert.
  9. Die Bedingungen (1) und (2) gewährleisten ein (lokales) Gewinnmaximum. Beachte, dass daraus im Allgemeinen nicht auch folgt, dass jede (lokale) Maximalstelle der Gewinnfunktion den Bedingungen (1) und (2) genügt. Im Fall könnte ebenfalls ein (lokales) Gewinnmaximum vorliegen. In diesem Fall verbleibt die Möglichkeit, das Vorzeichenverhalten von in der Umgebung einer anhand von Bedingung (1) ermittelten stationären Stelle zu überprüfen:
    (2’) Eine stationäre Stelle ist eine lokale Maximalstelle der Gewinnfunktion, wenn ein existiert, sodass für alle , und ein existiert, sodass für alle .
  10. Vgl. den Artikel Summenregel.
  11. Friedrich Breyer, Mikroökonomik. Eine Einführung, 2015, S. 71 f.
  12. Lawrence Boland, Foundations of Economic Method: A Popperian Perspective, 2. Auflage, 2003, S. 149 f.
  13. Franz Xaver Bea, Kritische Untersuchungen über den Geltungsbereich des Prinzips der Gewinnmaximierung, 1968, S. 14
  14. Günther E. Braun, Gewinnmaximierung, in: Wolfgang Lück (Hrsg.), Lexikon der Betriebswirtschaft, 1983, S. 452 f.
  15. Günther E. Braun, Gewinnmaximierung, in: Wolfgang Lück (Hrsg.), Lexikon der Betriebswirtschaft, 1983, S. 453
  16. Silvio Unterguggenberger, Kybernetik und Deckungsbeitragsrechnung, 1974, S. 21
  17. Eugen Schmalenbach, Dynamische Bilanz, 1926, S. 93 ff.
  18. Heinrich Nicklisch, Wirtschaftliche Betriebslehre, 1922, S. 79 ff.
  19. Franz Xaver Bea, Kritische Untersuchungen über den Geltungsbereich des Prinzips der Gewinnmaximierung, 1968, S. 15
  20. Erich Gutenberg, Grundlagen der Betriebswirtschaftslehre, Band I: Die Produktion, 1972, S. 465
  21. Konrad Mellerowicz, Allgemeine Betriebswirtschaftslehre, Band 4, 1968, S. 201 f.