Störungstheorie

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 3. März 2024 um 20:22 Uhr durch MrBenjo (Diskussion | Beiträge) (+Normdaten).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Als Störungstheorie (auch: Störungsrechnung)[1][2] werden verschiedene mathematische Verfahren in der Physik bezeichnet, die sich durch eine gemeinsame Strategie auszeichnen: ein kompliziertes Problem wird zunächst so lange durch Ignorieren kleiner Einflüsse idealisiert, bis es auf ein Problem mit bekannter Lösung reduziert ist. Danach werden die zuvor ignorierten Einflüsse als kleine Störungen (Störgröße) wieder dem System hinzugefügt und eine Näherungslösung berechnet.

Anwendungsbereiche

[Bearbeiten | Quelltext bearbeiten]

Beispiele für weitere Anwendungsfälle oder Fachgebiete sind:

Spezifische Literatur

[Bearbeiten | Quelltext bearbeiten]

Siehe die Artikel der Anwendungsbereiche.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Störungsrechnung. In: Lexikon der Physik. Spektrum Akademischer Verlag, 1998, abgerufen am 10. Februar 2023.
  2. Ingolf V. Hertel, C.-P. Schulz: Periodensystem und Aufhebung der l-Entartung. In: Atome, Moleküle und optische Physik 1. Springer Berlin Heidelberg, Berlin, Heidelberg 2017, ISBN 978-3-662-53103-7, S. 149–182, doi:10.1007/978-3-662-53104-4_3.
  3. Robert Lipton, Anthony Polizzi, Lokendra Thakur: Perturbation Analysis of Maxwell's Equations. In: High Power Microwave Sources and Technologies Using Metamaterials. 1. Auflage. Wiley, 2021, ISBN 978-1-119-38444-1, S. 127–155, doi:10.1002/9781119384472.ch5 (englisch).
  4. P. Gombás: Störungsrechnung. In: Die Statistische Theorie des Atoms und ihre Anwendungen. Springer Vienna, Vienna 1949, ISBN 978-3-7091-2101-6, S. 133–150, doi:10.1007/978-3-7091-2100-9_5.
  5. Chr. Møller, M. S. Plesset: Note on an Approximation Treatment for Many-Electron Systems. In: Physical Review. Band 46, Nr. 7, 1. Oktober 1934, ISSN 0031-899X, S. 618–622, doi:10.1103/PhysRev.46.618 (englisch).
  6. Dieter Cremer: Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms. In: Wiley Interdisciplinary Reviews: Computational Molecular Science. Band 1, Nr. 4, Juli 2011, S. 509–530, doi:10.1002/wcms.58 (englisch).