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From Galilean-invariant to relativistic wave equations
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Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an
original idea of Dirac and Lévy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann
and Wigner starting with the (Galilean-invariant) Schrodinger equation.

I. INTRODUCTION

In the last decade a series of papers by several
people!™" have been written with the common pur-
pose of trying to shed some light on the rather in-
trincate world of both relativistic and Galilean
field equations for the different spin particles.
Remarkable among them are the systematic
studies of the Galilei group carried out by Lévy-
Leblond,' the selection of good variables in order
to make possible the introduction of minimal elec-
tromagnetic coupling in a correct way (a program
developed by Hagen and Hurley),?™* the incorpora-
tion in the playground of the light-cone-frame
coordinates® by Chang, Root, and Yan,® and the
formulation by Singh and Hagen of general La-
grangian theories for bosons and fermions.’

In even more recent papers a procedure has
been found® which allows for the rederivation of
the Galilean-invariant equations of Lévy-Le-
blond! and Hagen2 starting with the relativistic
equations of Dirac, Bargmann and Wigner, Proca,
Rarita and Schwinger, and Singh and Hagen for
different spin particles. Finally, the discovery
that the ordinary Poincaré Lie algebra can be ob-
tained as a subalgebra of the Galilei Lie algebra
in 4 space dimensions by means of an imaginary
coordinate transformation® has opened the way to
the inverse procedure, i.e., the derivation of or-
dinary relativistic field equations starting from
Galilean-invariant equations and, in particular,
from the Schrodinger equation. These possibili-
ties are explored in the present paper.

The organization of this work is as follows. In
Sec. II we provide a review of the mathematical
aspects of the procedure: The commutation rela-
tions of the Poincaré algebra in Minkowski space
are obtained from the Galilei algebra in one addi-
tional space dimension. Section III is devoted to
the physical applications, namely, the derivation
of Dirac’s equation starting from Schrddinger’s
equation trivially generalized to a (4 +1)-dimen-
sional world. The equations of Bargmann and
Wigner are analogously obtained. Finally, Sec.
IV is devoted to our conclusions.

II. FROM THE GALILEI TO THE POINCARE LIE ALGEBRA

Let x* = («°,x!,%%,%°,x") denote a point in (4 + 1)~
dimensional space-time. Let us introduce the
coordinate transformation

P=ix!, T=x (=1,2,3), T =cx", (2.1)

where ¢ is an arbitrary constant.” The Galilei
group in 4+ 1 dimensions can be put in the form!%!!

G =[S0(4) xTM]x([T,®T,], 2.2) -

where T§” is the subgroup of generators of Gali-
lean boosts and T, that of translations in the 4-
space. If [, ); (i=1,2,3) are the generators of
S0(4), g, (r=1,2,3,4) those of Galilean boosts,
and d, (a=0, 1, 2, 3, 4) the generators of time and
space translations, respectively, and if we denote
with a bar the corresponding generators in the
new coordinate system, we have

L=1l;, d;=d;, g;=ir;, (=1,2,3), dy=—id;. (2.3)

Following Ref. 8, we take the new generators of
boosts to be k; =M" = -ix; = ~7,, where M,, are
those of the group SO(4) XT§’,

Once the coordinate transformation (2.1) has
been carried out, it is easy to see that the com-
mutation relations of the subset of new generators
L;, By, d; (i=1,2,3), and h=d, are given by

[25,0,] =€, 4l 7,k )= i€ ke, [2;,d,]=i€; ;s
[kl )= —i€, by, [dyyd))=[1;,h]=[d;,n]=0, (2.4)
(kyshl=id;, [kypd;)=ib,h GGk, h=1,2,3),

and constitute the commutation relations of the
Lie algebra of the Poincaré group in ordinary
Minkowski space. The rest of the transformed
generators are

- 1 - i - 1
)\iz"c_gi’ 81=_8u d4=;do- (2.5)

As c is an arbitrary constant, it can be made to
tend to infinity. By doing this, Egs. (2.4) are not
affected and 24 is transformed into a central ele-
ment of the new algebra, but notice that, for any
value of ¢, d, always remains a central element of
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the Poincaré (sub)algebra (2.4), in which we are
primarily interested.

III. FROM THE SCHRODINGER TO THE DIRAC AND
BARGMANN-WIGNER EQUATIONS

It is now our aim to construct a wave equation
invariant under the Galilean (4 + 1)-dimensional
kinematical group. Let E denote the energy of the
particle, p,=(p,p2,P3,p4) its impulse, and m its
mass. The equality

2mE-p,p,=0 3.1
must be satisfied. It provides the scalar equation
9 9 9 -
im—+ = )
<21m on 3x., Bx, ) ¢(X3x47x0) 0 s (3 2)

which we call the 4 +1 Schrédinger equation.
After the coordinate change (2.1) this equation
becomes

(D — 2ime a——) P& %,,%,) =0, (3.3)
0%,

where (=8%/8%,% — (8/8x,)8/0x; and ¢ (X,%,,%,)

= ¢ X,x4,%). When the operator 8/9%, acts as a
multiplicative constant -in [or, which is the same,
when one is restricted to solutions 5 whose depen-
dence on ¥, has the form ¢ = exp(-in%,) (X, %) ],
Eq. (3.3) is transformed into

@+mHh¢p=0, (3.4)
where
M?==2mnc. (3.5)

Equation (3.4) is a Klein-Gordon equation for a
particle of mass M given by (3.5). We thus see
that the Schrddinger equation gives rise to a rela-
tivistic Klein-Gordon equation after properly re-'
ducing one space dimension and use of (2.1).

Following Dirac!? and Lévy-Leblond,' let us try
to linearize Eq. (3.2). We must find six quanti~-
ties A, B, (r=1,2,3,4), and C such that

(AE+B,p,+ C)p(X,x4%) =0 (3.6)

will be a good (4 + 1)-dimensional Galilean equa-
tion, i.e., it must include the mass condition (3.1).
If we act on the left of (3.6) with the operator
A'E+B,p +C’, where A’, B,, and C’ is a new set
of six quantities, we easily find

[A’AE* + 4(B/B,+B.B)p,b,
+(A'B,+B/A)Ep,+(A'C+C'AE

+(C'B, +B/C)p, + C'Cly(&, x40 =0.

If we now require that this be identical with the
equation (2mE - p,p,) =0, the following relations
must be satisfied: :
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B,;B,,+B;Ba=—26“ (a,0=1,2,3,4,5,6), 3.7
where we have defined convenient new matrices:

3 C 7 . 7 Cl
B5=1(A+§—W‘[—>, 35=Z<A +§'m—> ,

(3.8)
C ! 7 c’
Bg=A-5—, Bij=A'-5—.
A solution to this system is
B=Rvi,...,B;=Ry;, Bg=~iR, (3.9)

Bi=-yR™,...,Bj=-yR", By==iR"™",

where the ¥ matrices are those given in Ref. 13
and where R is any invertible 4 X4 matrix. A
particularly clear expression for (3.6) is obtained
with the following choice of (high-energy) repre-
sentation:

0 —ioy 01
Yi= b Y4= ’
io; O 10

(3.10)
y5=<1 o), R=<o z>
0 -1 i 0
in which case there results
By + @ B +ip)x=0, (3.1

(G-D-ip)e +2mx=0.

¢ and x are two-component objects and = (¢,x).
This is the linear version of (3.6) and it is in-
variant under a certain 4X4 linear (projective)
representation of the 4 +1 Galilean group.1

Let us now perform the change of coordinates
(2.1) in (3.11): "

e s
ic— @+ (G -PHHY=
i 9%, ¢+@-p xX=0, (3.12)

G-p-H)¢ +2mx=0.
Here H is the new energy operator’H:iB/aa‘co and
the bars on functions mean transformed functions
in the same sense as before. If, again, 8/6%,

acts as a multiplicative constant —¢n, (3.12) be-
comes

ne@ +@F-p+H)X=0,
@-D-H)P +2mx=0.

(3.13)

Successively adding and substracting both Eqs.
(3.13), we get

G-DEX+9) +HX - ) +(2mx +ncp) =0,
G- D)x—®) +HEX+ @) — (2mX —nc) =0,

which strongly resemble Dirac’s equation for a
relativistic particle of spin 3. We only need to
let ¢ =-2m and define the new field variables
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- S S
“"EIF(“@’ X' =7 (X-9), (3.14)

hence finding

H-Me'+5.Dx'=0,

(3.15)
FDpo' +H+M)x' =0,
where
M=2m=-1c. (3.16)

Equation (3.15) is exactly that of Dirac for a parti-
cle of mass M given by (3.16), in the common low-
energy representation of the ¥ matrices.

Equation (3.16) relating the masses of the
Schrddinger and Dirac particles deserves a
short comment. Whereas it implies the Klein-
Gordon relation (3.5), it is not implied by the lat-
ter, i.e., it actually is a stronger restriction on
M than (3.5). This is bound to the process of
linearization of the Schrddinger equation (3.2) and
will also be seen to hold for higher-spin particles.

The generalization of the above procedure to
the case of a spin-s particle by means of the
Bargmann-Wigner formulation is straightforward.
Nevertheless, it must be remarked that the notion
of spin in 4 space dimensions is quite unphysical
because it is related to the spatial symmetry
group SO(4). We therefore should not speak of
such things as “Galilean 4 + 1 wave equations for
a particle of spin s.” On the other hand, we would
also like to be able to obtain relativistic equations
for higher-spin particles. The way out of this
problem will be to postulate a family of Galilean
(4 +1)-invariant equations which, after the change
of coordinates (2.1), yield the corresponding rela-
tivistic equations for the considered value of the
spin. In this way we omit any reference to the
“spin” of a 4+ 1 Galilean particle but find, after
all, that true physical spin comes out in a natural
way once the above-mentioned procedure is car-
ried out.

It appears to be a natural ansatz to take the
following Bargmann-Wigner type of equations:

ARIR. . - ®NP(X,x4,%) =0,

IOA® -+ @D (X,x4,%)) =0,
(3.17)

(IRI®...® N (X,x4%,)=0,

where we have a set of 2s equations and where A
is given by (3.6) in the representation (3.10), i.e.,

a=( E  T-Dripg (3.18)
6'5‘1‘1}4 2m

Through the coordinate change (2.1), (3.17) is

converted into
NRI®---@1)d'(%,X)=0,

UQN® -+ D¢ (%,%) =0, (3.19)

(I®I®...®A)¢'(%,X)=0,

where we again have a set of 2s equations and
where

Heu 5%
A= M o-p ©(3.20)
5P H+M

As they stand, Egs. (3.19) and (3.20) are exactly
those of Bargmann and Wigner for a relativistic
particle of spin s and mass M.

The system (3.17) having been established, we
may now use the method described in Ref. 13 to
transform a multispinorial wave equation into a
tensorial one. It is easy to prove that, using our
procedure, the equations of Proca and Rarita and
Schwinger in ordinary Minkowski space are ob-
tained starting from Eq. (3.17) with s=1 and s = 3,
respectively.

IV. CONCLUSIONS

The usual way to relate relativistic with Gali-
lean-invariant field equations has always been to
take the nonrelativistic limit of the relativistic
expressions, i.e., to write -down the constant ¢
where it belongs and let it tend to infinity.

In this way one obtains the nonrelativistic equa-
tions of Schrédinger and Pauli corresponding to
the different spin particles.” An alternative way
to connect both types of equations was proposed
in Ref. 8, based on the known fact that the use of
the light-cone frame® led to' some kind of Galilean
symmetries in 2+ 1 dimensions. This is so be-
cause in the new coordinates a (2 + 1)-dimensional
Galilean subgroup appears in the commutation
relations of the Poincaré group. Using this light-
cone procedure, the nonrelativistic equations of
Lévy-Leblond, Hagen and Hurley, and Schr&din-
ger and Pauli for the different spin particles were
obtained, all of them, that is clear, in one space
dimension less.

The demonstration in alatter work® thatthe (4+1)-
dimensional Galilei group yields an ordinary Poin-
caré subgroup through an imaginary coordinate
transformation opened the way to the reciprocal
procedure, i.e., the obtaining of relativistic equa~
tions starting from Galilean-invariant ones.

In the present paper we have taken this way and
developed a systematic method to obtain relativis-
tic equations for any spin by linearization of the
Schrddinger equation in 4 + 1 dimensions and then



extension of the Bargmann-Wigner method. This
procedure avoids any allusion to the unphysical
notion of SO(4) spin yielding, however, meaningful
relativistic equations in Minkowski space. The
explicit expansion of the multispinorial formula-
tion in terms of tensors—performed with coherent
results for the cases s=1 and s=3—leads to re-
lativistic equations in the tensor-spinor repre-
sentation (Proca, Rarita and Schwinger, etc.). It
seems clear to us that the tensorialization of
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multispinorial equations and the reduction through
(2.1) of one space dimension are commutative
processes for any value of the spin.
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