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An analytical approximation, depending on five parameters, for the atomic screening function is
proposed. The corresponding electrostatic potential takes a simple analytical form (superposition of

three Yukawa potentials) well suited to most practical applications.

Parameters in the screening

function, determined by an analytical fitting procedure to Dirac-Hartree-Fock-Slater (DHFS) self-
consistent data, are given for Z =1-92. The reliability of this analytical approach is demonstrated
by showing that (a) Born cross sections for elastic scattering of fast charged particles by the present
analytical field and by the DHFS field practically coincide and (b) one-electron binding energies com-
puted from the independent-particle model with our analytical field (corrected for exchange and elec-
trostatic self-interaction) agree closely with the DHFS energy eigenvalues.

I. INTRODUCTION

Quite a number of problems related to atomic structure
and radiation transport can be quantitatively solved in
terms of the atomic screening function ¢(r). This func-
tion is defined as the ratio between the electrostatic poten-
tial U(r), experienced by an infinitesimal point charge at a
distance r from the nucleus (spherical symmetry is as-
sumed), and the electrostatic potential of the bare nucleus.
Considering the nucleus as a point charge, U(r) can be
calculated in terms of the atomic electron density p(r) as

U(,):_£+f&(£ld3r15_£¢(r), (1)
r v r

where Z is the nuclear charge and r. is the greater of r
and r’ (the atomic unit system, fi=m =e =1, is used
throughout this paper). Poisson’s equation links p(r) and
¢(r) through
Z "
plr)= 47rr¢ (r) . (2)

Different approximate analytical screening functions for
neutral atoms have been proposed in the literature.! =’
Almost all of these proposals rely on the Thomas-Fermi
(TF) statistical model of the atom; only a few exceptions
are based on self-consistent Hartree-Fock (HF) or
Hartree-Fock-Slater (HFS) calculations.

An important application of these screening functions is
in independent-particle model (IPM) calculations of atom-
ic structure. The IPM one-electron orbitals and binding
energies are obtained by solving the Schrdodinger equation
for a central potential V' (r), giving the average interaction
energy of an atomic electron at a distance r from the nu-
cleus with the nuclear charge and with the other Z —1
electrons. The potential

V(r)=U(r)— Vex(r) (3)

differs from (1) in the term V¢ (r), usually referred to as
the exchange potential, which accounts for exchange
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effects and removes from U(r) the electrostatic self-
interaction of each electron. The exchange correction is
usually introduced by using Slater’s® approximation, i.e.,
from the free-electron-gas theory, which affords a local ex-
pression for it in terms of the electron density p(r):

173

Vex(r)=2ax (4)

3
ﬂ_p(r)

The value of the parameter ay depends on the procedure
used to derive V. (r) from the HF theory. If the free-
electron approximation is introduced in the expression of
the exchange energy before variation, one finds ay=1
which also coincides with the value obtained in the
derivation of the Thomas-Fermi-Dirac equation (see, e.g.,
Ref. 8). Slater introduced the free-electron approximation
in the HF exchange potential (i.e., after variation) and
found ay=2. As a consequence, with ay =%, the eigen-
values of the radial equation have the significance of one-
electron binding energies as in the HF theory (Koopmans’
theorem). We shall adopt Slater’s procedure which is
usually satisfactory for ground configurations. It should
be pointed out that Slater’s potential (4) is not adequate at
large distances from the nucleus; in that region, the elec-
tron density is very small, and (4) cannot compensate for
the electrostatic self-interaction included in the electrostat-
ic potential U(r). In order to ensure the correct asymp-
totic behavior of V(r),

rV(r) - —1, (5)

Latter? adopted the following ad hoc prescription:

Vin=—Z4n -V, iViI<—1/r
=—%, otherwise , (6)
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to compute IPM one-electron binding energies for neutral
atoms from the TF screening function. Latter’s prescrip-
tion (6) is usually adopted in HFS self-consistent calcula-
tions.

The HFS approximation, in which exchange effects are
also introduced following Slater’s approximation, plays a
role midway between HF and TF models. HFS one-
electron orbitals and binding energies are obtained by
solving the Schrodinger equation for the self-consistent
HFS potential, defined as in (6) with ¢(r) computed ac-
cording to (1) from the HFS electron density. The HFS
potential is common to all the electrons. This is not so
for the HF approximation where the one-electron orbitals
are obtained (for closed-shell atoms) as solutions of
Schrodinger equations with different effective potentials.
Numerical HFS calculations have been carried out by
Herman and Skillman® for neutral atoms with Z =1-103.
Their results have been adopted to determine the parame-
ters of an analytical IPM potential by Green, Sellin, and
Zachor.®

Dirac-Hartree-Fock-Slater (DHFS) calculations,'® in
which the one-electron orbitals are solutions of the Dirac
equation instead of the Schrodinger equation, incorporate
the main relativistic effects on the one-electron orbitals
and binding energies in a natural way. To the best of our
knowledge, no analytical screening functions incorporat-
ing relativistic effects have been proposed up to date, al-
though distortions in the electron charge density and in
the self-consistent potential due to these effects are notice-
able even for intermediate atomic numbers.

In this work we propose a simple analytical approxima-
tion, ¢, (r) for the atomic screening function depending on
five parameters which are determined analytically from
the results of DHFS calculations. These screening func-
tions, when used with the Slater exchange potential and
Latter’s correction (6), provide a simple and rather accu-
rate analytical potential for IPM calculations on atomic
structure. The universal TF screening function, mainly in
the approximate analytical form suggested by Moliere!
which allows us to perform most calculations analytically,
has been extensively used to treat a number of problems
related with interactions of charged particles with atoms,
including multiple scattering!'~!> and bremsstrahlung
emission.’* Our screening functions, having the same
functional form as Moliere’s, are particularly suitable for
treating these problems by improving the Moliere-TF ap-
proach without any additional complexity of the calcula-
tions. The present analytical approximation can be of
great value to improve the description of elastic scattering
events in Monte Carlo simulation of electron transport.'

The analytical screening function ¢,(r) is described in
Sec. II. Parameters for Z =1-92 obtained from the
DHEFS self-consistent results following an analytical pro-
cedure described in the Appendix are given. Atomic form
factors and Born scattering amplitudes for structureless
charged particles derived from ¢,(r) are compared with
numerical results from the DHFS density and from the
other analytical approximations in Sec. III. Finally, Sec.
IV is dedicated to the analysis of the reliability of IPM re-
sults based on these screening functions, including com-
parisons with other analytical IPM potentials.

II. ANALYTICAL SCREENING FUNCTIONS

Screening functions adopted in the literature are usually
based on the TF model and its refinements. The most
elemental TF model provides a universal screening func-
tion satisfying the following differential equation (see, e.g.,
Ref. 16):

" [¢rr(x)]?

¢Tr(x)= oz @)
where x =r /b with b =0.88534Z ~'/3. Accurate fits to
#TF using polynomials in x!/2 have been proposed by
Latter’ and by Gross and Dreizler.® Due to the failures
of the statistical model in the regions of large potential
gradients and of small electron densities, the TF screening
function becomes unreliable at small and large distances
from the nucleus.

Moliere! used the following analytical approximation:

3
dre(r)= 3, Biexp(—B;r/b) , (8)
i=1
where
B;=0.1, B,=0.55, B;=0.35,

B1=6.0, B>,=1.2, B3=0.3.

Function (8) differs from the exact solution of (7) by less
than 0.002 in the range O < x < 6. A similar analytical ap-
proximation has been proposed by Csavinszki* on the
basis of a variational solution of Eq. (7). The approxima-
tion (8) forces the exponential decrease of ¢(r) for large »
values which results from quantum treatments. This
feature makes expression (8) more reliable for practical
calculations than the exact TF screening function.

The analytical form (8) has also been adopted by Bon-
ham and Strand® to approximate the screening function
for Thomas-Fermi-Dirac atoms; in this case the parame-
ters B; and 3; are continuous functions of Z which have
been approximated by polynomials in InZ by those au-
thors. Simple analytical screening functions have also
been given by Gross and Dreizler® on the basis of the
variational formulation of the Thomas-Fermi-Dirac-
Weizsacker theory. Although the screening functions of
Bonham and Strand and of Gross and Dreizler are un-
doubtedly more reliable than the TF one, the scaling
properties of the simple TF theory are lost when exchange
and gradient corrections are introduced. Once we re-
nounce to these scaling properties, self-consistent methods
that are more accurate than the statistical ones can be
adopted to derive analytical screening functions.

Green, Sellin, and Zachor® have introduced an IPM po-
tential with the following analytical form:

V(r):—-%[(Z—l)Q(r)—{-l] , 9)

where (r) is a two-parameter screening function

Qr=[H (" —1)+1]"". (10)

The parameters H and d have been obtained by Green,
Sellin, and Zachor® from a least-squares fitting of the po-
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tential (9) to the HFS potential of Herman and Skillman.”
Alternative sets of parameters, determined by fitting the
IPM eigenvalues obtained with the potential (9) to the HF
eigenvalues and to experimental ionization energies, are
also given in Ref. 6 for Z =1-103. More recently, the
parameters of (9) have also been determined from a varia-
tional procedure in which the total binding energy of the
atom, computed from a Slater determinant composed of
one-electron orbitals, is minimized.” It should be noted
that Q(r) in (9) stands for the electrostatic screening func-
tion, the differences between (9) and our potential (6) aris-
ing from the different approaches used to introduce the
self-energy (and exchange) corrections.

The DHFS self-consistent calculations provide us with
reliable screening functions accounting for relativistic
effects which are difficult to be included in statistical or
nonrelativistic self-consistent models. DHFS densities for
neutral atoms, up to Z =92, have been computed using
our own computer code.!” Spherical symmetry is as-
sumed, so an average over open-shell orbitals is performed
to obtain the electron density p(r). Central field orbitals
are obtained by solving the Dirac radial equations for the
HFS potential with Latter’s correction [Egs. (3)-(6) with
Ay = %]

Representation of the DHFS screening functions in a
semilogarithmic plot (Fig. 1) reveals a nearly linear behav-
ior for large radial distances which suggests that they can
be adequately fitted with the analytical form adopted by

Th (Z=90)

log ®

Ne(Z =‘0)

~

r(a.u)

FIG. 1. Screening functions for Ne, Zn, and Th (Z =10, 50,
and 90). The solid curves are the DHFS results. The dashed
dotted, dotted, and dashed curves correspond to the analytical
screening functions (8), (10), and (11), respectively.

Moliere for ¢yg(r), namely,

3
¢a(r)=73 Aiexp(—a;r) . (11)

i=1

The corresponding electrostatic potential (1) is given as
the superposition of three Yukawa potentials and the
atomic density takes the expression

V4

3
plr)=-"— A;ajexp(—a;r) . (12)

4mr 2,

In principle, the parameters in (11) could be obtained
by numerical fitting to the numerical DHFS screening
function. To do this, a conventional least-squares-fitting
procedure can be used to select the optimum parameters.
However, proceeding in this way and using a standard
minimization method, different sets of parameters were
obtained from different initial estimates reflecting the ex-
istence of local minima in the function being minimized.
To avoid these uncertainties in the determination of the
parameters, we have adopted the procedure described
below which generalizes a more crude approach previous-
ly proposed to obtain analytical Born cross sections for
elastic scattering of electrons by atoms. '3

The quantities

"o(r)d = —L— J o

I
R"=<n+1)!zf' (n+1)

(13)
have been computed from the DHFS density for
—1<n <6. Except for the factor (n + 1)!, which is intro-

duced for posterior purposes, R, coincides with the radial
expected values {r"). It can be easily seen that

R_,=¢"(0),

Ro=¢(0), (14)
1

Rn= (n—1)

To determine the parameters in the screening function
(11), we require the R, values derived from it to coincide
with those computed from the DHFS results for n = —1,
0, 1, 2, 3, and 4. This leads to the following relations:

[or=endr (>

Ava1+ Ao+ Azaz3=R_y ,

A+ A, +A45=1, (15)

A, A, A
cor

al  af a3

=R, (n=1,2,3,4).

Under these conditions it is guaranteed that (i) ¢,(0) has
the correct (DHFS) value, (ii) ¢,(0)=1 (only two of the
three parameters A; need to be given), and (iii) consider-
ing screening functions as distributions, the four first mo-
menta of ¢,(r) coincide with those of the DHFS screening
function. This last feature makes Born cross sections de-
rived from (11) to practically coincide with those comput-
ed from the DHFS screening function (see Sec. III).

For neutral atoms, Egs. (15) can be solved analytically
as shown in the Appendix. However, it should be noticed
that, as the a; values have to be positive, DHFS radial ex-
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TABLE I. Parameters of the analytical screening function ¢,(r). Elements indicated with an asterisk
have DHFS radial expected values inconsistent with conditions (15).

Element Ay A a ar a3
H 1* —184.39 185.39 2.0027 1.9973

He 2* —0.2259 1.2259 5.5272 2.3992

Li 3* 0.6045 0.3955 2.8174 0.6625

Be 4* 0.3278 0.6722 4.5430 0.9852

B 5* 0.2327 0.7673 5.9900 1.2135

C 6* 0.1537 0.8463 8.0404 1.4913

N 7* 0.0996 0.9004 10.812 1.7687

O 8* 0.0625 0.9375 14.823 2.0403

F 9* 0.0368 0.9632 21.400 2.3060

Ne 10* 0.0188 0.9812 34.999 2.5662

Na 11* 0.7444 0.2556 4.1205 0.8718

Mg 12* 0.6423 0.3577 4.7266 1.0025

Al 13* 0.6002 0.3998 5.1405 1.0153

Si 14* 0.5160 0.4840 5.8492 1.1732

P 15* 0.4387 0.5613 6.6707 1.3410

S 16 0.5459 —0.5333 6.3703 2.5517 1.6753
Cl 17 0.7249 —0.7548 6.2118 3.3883 1.8596
Ar 18 2.1912 —2.2852 5.5470 4.5687 2.0446
K 19 0.0486 0.7759 30.260 3.1243 0.7326
Ca 20* 0.5800 0.4200 6.3218 1.0094

Sc 21* 0.5543 0.4457 6.6328 1.1023

Ti 22 0.0112 0.6832 99.757 4.1286 1.0090
VvV 23 0.0318 0.6753 42.533 3.9404 1.0533
Cr 24 0.1075 0.7162 18.959 3.0638 1.0014
Mn 25 0.0498 0.6866 31.864 3.7811 1.1279
Fe 26 0.0512 0.6995 31.825 3.7716 1.1606
Co 27 0.0500 0.7142 32.915 3.7908 1.1915
Ni 28 0.0474 0.7294 34.758 3.8299 1.2209
Cu 29 0.0771 0.7951 25.326 3.3928 1.1426
Zn 30 0.0400 0.7590 40.343 3.9465 1.2759
Ga 31 0.1083 0.7489 20.192 3.4733 1.0064
Ge 32 0.0610 0.7157 29.200 4.1252 1.1845
As 33 0.0212 0.6709 62.487 4.9502 1.3582
Se 34* 0.4836 0.5164 8.7824 1.6967

Br 35* 0.4504 0.5496 9.3348 1.7900

Kr 36* 0.4190 0.5810 9.9142 1.8835

Rb 37 0.1734 0.7253 17.166 3.1103 0.7177
Sr 38 0.0336 0.7816 55.208 4.2842 0.8578
Y 39 0.0689 0.7202 31.366 4.2412 0.9472
Zr 40 0.1176 0.6581 22.054 4.0325 1.0181
Nb 41 0.2257 0.5821 14.240 2.9702 1.0170
Mo 42 0.2693 0.5763 14.044 2.8611 1.0591
Tc 43 0.2201 0.5618 15.918 3.3672 1.1548
Ru 44 0.2751 0.5943 14.314 2.7370 1.1092
Rh 45 0.2711 0.6119 14.654 2.7183 1.1234
Pd 46 0.2784 0.6067 14.645 2.6155 1.4318
Ag 47 0.2562 0.6505 15.588 2.7412 1.1408
Cd 48 0.2271 0.6155 16.914 3.0841 1.2619
In 49 0.2492 0.6440 16.155 2.8819 0.9942
Sn 50 0.2153 0.6115 17.793 3.2937 1.1478
Sb 51 0.1806 0.5767 19.875 3.8092 1.2829
Te 52 0.1308 0.5504 24.154 4.6119 1.4195
153 0.0588 0.5482 39.996 5.9132 1.5471
Xe 54* 0.4451 0.5549 11.805 1.7967

Cs 55 0.2708 0.6524 16.591 2.6964 0.6814
Ba 56 0.1728 0.6845 22.397 3.4595 0.8073
La 57 0.1947 0.6384 20.764 3.4657 0.8911
Ce 58 0.1913 0.6467 21.235 3.4819 0.9011

Pr 59 0.1868 0.6558 21.803 3.5098 0.9106
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Table I. (Continued).

Element A Al a a; as
Nd 60 0.1665 0.7057 23.949 3.5199 0.8486
Pm 61 0.1624 0.7133 24.598 3.5560 0.8569
Sm 62 0.1580 0.7210 25.297 3.5963 0.8650
Eu 63 0.1538 0.7284 26.017 3.6383 0.8731
Gd 64 0.1587 0.7024 25.497 3.7364 0.9550
Tb 65 0.1453 0.7426 27.547 3.7288 0.8890
Dy 66 0.1413 0.7494 28.346 3.7763 0.8969
Ho 67 0.1374 0.7558 29.160 3.8244 0.9048
Er 68 0.1336 0.7619 29.990 3.8734 0.9128
Tm 69 0.1299 0.7680 30.835 3.9233 0.9203
Yb 70 0.1267 0.7734 31.681 3.9727 0.9288
Lu 71 0.1288 0.7528 31.353 4.0904 1.0072
Hf 72 0.1303 0.7324 31.217 4.2049 1.0946
Ta 73 0.1384 0.7096 30.077 4.2492 1.1697
W 74 0.1500 0.6871 28.630 4.2426 1.2340
Re 75 0.1608 0.6659 27.568 4.2341 1.2970
Os 76 0.1722 0.6468 26.586 4.1999 1.3535
Ir 77 0.1834 0.6306 25.734 4.1462 1.4037
Pt 78 0.2230 0.6176 22.994 3.7346 1.4428
Au 79 0.2289 0.6114 22.864 3.6914 1.4886
Hg 80 0.2098 0.6004 24.408 3.9643 1.5343
Tl 81 0.2708 0.6428 20.941 3.2456 1.1121
Pb 82 0.2380 0.6308 22.987 3.6217 1.2373
Bi 83 0.2288 0.6220 23.792 3.7796 1.2534
Po 84 0.1941 0.6105 26.695 4.2582 1.3577
At 85 0.1500 0.6031 31.840 4.9285 1.4683
Rn 86 0.0955 0.6060 43.489 5.8520 1.5736
Fr 87 0.3192 0.6233 20.015 2.9091 0.7207
Ra 88 0.2404 0.6567 24.501 3.5524 0.8376
Ac 89 0.2266 0.6422 25.684 3.7922 0.9335
Th 90 0.2176 0.6240 26.554 4.0044 1.0238
Pa 91 0.2413 0.6304 25.193 3.6780 0.9699
U 92 0.2448 0.6298 25.252 3.6397 0.9825
pected values can be inconsistent with conditions (15)
N

which, in such a case, must be relaxed. The parameters
determined following this procedure for Z =1-92 are
given in Table I. Elements indicated with an asterisk are
those giving DHFS radial expected values inconsistent
with the conditions (15); parameters for those elements
have been determined by setting 43 =0 and imposing the
four first conditions (15) (see Appendix).

Analytical screening functions determined in this way
agree well with the DHFS results (Fig. 1). Naturally, the
analytical density (12) can only partially reproduce the os-
cillations of the DHFS density associated with different
shell contributions (Fig. 2). One may expect that an even
better approximation to the DHFS screening function
could be obtained from a numerical least-squares fitting
using a standard minimization procedure with the param-
eters in Table I as initial estimates. Such a procedure has
not been pursued here because the resulting parameters do
not appreciably improve the quality of the fit, i.e., our pa-
rameters lie very near the least-squares minimum. More-
over, as mentioned above, conditions (15), even in the

A Argon (Z=18)

20

FIG. 2. Radial density for Ar (Z =18). The solid curve is
the DHFS density. The dash-dotted curve is the TF density de-
rived from Moliére’s screening function (8). The dotted curve
corresponds to the density obtained from the analytical screening
function (10). The dashed curve is the analytical density (12).
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noncompatible cases, ensure that the elastic Born cross
sections computed from ¢,(7) practically coincide with
that derived from the DHFS screening function.

III. ELASTIC BORN CROSS SECTIONS

The Born cross section for scattering of a fast particle
(which, for the sake of simplification, is assumed to have
unit charge and unit mass) in the atomic field (1) can be
written as (see, e.g., Mott and Massey'!):

do 4Z?

dQ ~ g*

_F(q)

2
Z , (16)

where ¢ is the momentum transfer in the collision and
sin(qr)

F(q)=fo°° p=

is the atomic form factor. For the density associated with
our (and Moliere’s) analytical screening functions, the
form factor takes the simple expression

F(q)
Z

p(r)daridr (17

3
=3 A4,al/(al+q?) . (18)

i=1

Expanding the right-hand side of Eq. (17) as a power
series in g, we found
F(q)

7:2(_1)VIR2nq2ny (19)
n=0

with the coefficients R, given by (13). Obviously, with
the parameters of our analytical screening function satis-
fying (15), we guarantee that the atomic form factor (18)
and its first derivatives coincide at ¢ =0 with those com-
puted from the DHFS density.

The form factors (18) are compared with the ones de-
rived from the DHFS density and from other analytical
screening functions in Fig. 3 for Z =50. Our analytical
results differ from the DHFS numerical calculations only
for relatively large momentum transfers. Although these
differences might seem important, they do not appreciably

1.0

Tin (Z=50)

F(q)IzZ

g (a.u.)

FIG. 3. Atomic form factors for Sn (Z =50). The solid
curve is the DHFS form factor. The dash-dotted, long-dashed,
and short-dashed curves correspond to form factors derived from
the analytical screening functions (8), (10), and (11), respectively.

500 .

Tin(Z=50)

400

300

200

do/dN (a.u)

100

q(a.u)

FIG. 4. Differential Born cross section for Sn (Z =50). The
dash-dotted and dashed curves have been obtained from the
analytical screening functions (8) and (10), respectively. The
solid curve is the DHFS cross section. The cross section derived
from the analytical density (12) coincides with the DHFS one at
the drawing level.

120 T
\.\ Zinc (Z =30)
S e}
i
o
o
b
T o}
0
0

FIG. 5. Born differential cross sections for Zn (Z =30). The
solid curve is the DHFS cross section. The correspondence be-
tween the curves and the theoretical models from which they
have been obtained is the same as in Fig. 4; here the cross section
derived from the analytical density (10) is shown as the short-
dashed curve.

800

T

Tin (Z=50)
600

200

k(a.u.)

FIG. 6. Born total cross sections as functions of the momen-
tum k of the incident particle (multiplied by E =k?2/2) for Sn
(Z =50). The correspondence between the curves and the
different screening functions from which they have been derived
is the same as in Fig. 4.
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TABLE II. Energy eigenvalues and radial expected values for tin (Z =50) (atomic units). Expt.: ex-
perimental data (Ref. 19). DHFS: Relativistic self-consistent results. IPM: Relativistic eigenvalues
from the analytical screening function. HFS: nonrelativistic HFS calculation. GSZ: derived from the
analytical potential (9). Comparison of radial expected values from DHFS and HFS densities clearly
show that relativistic effects tend to concentrate the electronic cloud near the nucleus.

Expt. DHFS IPM HFS GSZ
1512 1073.08 1072.51 1067.64 1034.54 1042.54
2512 164.07 163.18 161.27 153.92 156.44
2p1,2 152.73 152.91 149.97
2p3,2 144.38 144.29 141.57 144.42 147.70
3512 34.68 31.93 32.25 30.04 30.74
3pin 29.84 27.68 27.95
31 26.25 26.09 26.34 26.05 26.87
3dsp 18.13 18.49 18.95
3ds ) 17.82 18.16 17.24 18.58 19.36
451, 5.02 5.24 5.16 4.88 5.16
4p1, 3.80 3.71
4psr 3.26 351 343 3.53 3.82
4d; 1.22 1.18
ader 0.88 117 114 1.26 1.51
5S|/2 0.48 0.49 0.46 0.53
5p1,2 0.23 0.22 0.22 0.57
(r=1 302.20 288.59
(r?) 56.55 58.87
(r*) 629.87 701.33

affect the resulting Born differential cross section (see
Figs. 4 and 5) in which only the squared difference
[1—F(q)/Z]? weighted with g —* is reflected.

The total Born cross section for an energy E of the in-
cident particle, which can be calculated as

2
_ A7, rE)? 1 F(q)
o="7Z2 fo = - | 44, (20)

becomes proportional to 1/E in the limit of large energies.
Differences between the total cross sections derived from
different screening functions are evidenced in Fig. 6 where
oFE is plotted as a function of the particle momentum
k =(2E)"2. It is apparent that form factors whose
derivatives at g =0 differ slightly, but are otherwise rather
similar, can give quite different cross sections. In particu-
lar, the TF screening function is very unsatisfactory to de-
scribe elastic collisions; this is a consequence of the un-
realistically large tail of the TF electron density.

IV. IPM CALCULATIONS

In the context of the nonrelativistic IPM, atomic prop-
erties are obtained by solving the Schrodinger equation for
the occupied one-electron orbitals. The relativistic IPM
builds on the same grounds except for the fact that the
one-electron orbitals and binding energies are found from
the solution of the Dirac equation. Owing to the spherical
symmetry of the potential, central field orbitals can be
adopted and their radial parts obtained as the solution of
the corresponding radial equations. These can be numeri-
cally solved by using standard numerical methods.

The reliability of our analytical screening functions,
when adopted as the basis for IPM calculations, is

demonstrated in Table II where experimental’® and
DHFS binding energies are compared with those provided
by the relativistic IPM with our screening functions [using
(6) as the IPM potential]. Similar agreement is found be-
tween IPM and DHFS orbitals. Nonrelativistic binding
energies obtained from HFS calculations and from the
IPM using the potential (9), with parameters derived by
fitting the experimental ionization energies (corrected for
relativistic effects®), are also shown in that Table.

Table II includes radial expected values (r=1, (r?,
and (r*), computed from the DHFS and HFS self-
consistent densities. There are clear differences between
the DHFS and HFS expected values arising from relativis-
tic corrections which tend to concentrate the electronic
charge near the nucleus. As a consequence, the DHFS
screening function decreases faster than the HFS one with
increasing radial distances. These relativistic effects on
the screening functions cannot be accounted for if relativ-
istic corrections are introduced perturbatively from nonre-
lativistic one-electron orbitals.

V. SUMMARY

Analytical screening functions presented here improve
other alternatives previously proposed in three aspects
which can be important in usual applications. Firstly, rel-
ativistic effects distorting the atomic electron cloud, and
also the nuclear screened potential, are directly introduced
through the DHFS model. This fact ensures reliability
for large atomic numbers. Secondly, these screening func-
tions provide cross sections for elastic scattering of
charged particles in close agreement with those computed
from the DHFS numerical density. In fact, the atomic
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form factor derived from ¢,(7) coincides with the DHFS
form factor for small momentum transfers. Lastly, the
relativistic IPM with the potential (6) derived from ¢, (r)
yields ionization energies and one-electron orbitals which
practically coincide with the DHFS ones. This IPM po-
tential can be useful in perturbative calculations of atomic
structure and as starting potential in self-consistent calcu-
lations.
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APPENDIX

Equations (15) can be analytically solved in terms of the
screening function parameters. After rather tedious alge-
braic manipulations, the constants A4; can be eliminated;
the resulting equations for a; can be written in the form
R_|—(a1+ary+a3)+R(a1a+a a3 +azas)

—Ryajaa3=0 ,
1—R(aj4+az+a3)+Ry(arja,+aa3+asas)
—Rjaj0a3=0,
R, —Ry(aj+az+a3)+Ri(ajar+ajaz+aras)
—Rsaaa3=0.

(A1)

These equations can now be solved for the quantities
a=a1+a+as,
a)=aqa+aja3+aas,
ap=a 103 .

(A2)

Thus, the screening function parameters «; (i =1,2,3) are
the three solutions of the cubic equation

ad+ara’+aja+ag=0. (A3)
If the three roots of (A3) are real and positive, the 4, pa-
rameters can then be computed from the first three equa-
tions of (15).

In certain cases, mainly for low atomic numbers, condi-
tions (15) are incompatible with the DHFS radial expected
values R,, i.e., either the determinant of the coefficient
matrix of (A1) is zero or some of the roots of (A3) are
complex. In these cases we proceed as indicated in Sec.
II, i.e., we set 43=0 and impose only the first four condi-
tions (15)—the screening function so obtained coincides
with the one proposed in Ref. 18 to describe elastic
scattering of electrons by atoms. Proceeding by the same
steps as in the above calculation, it is easy to show that a;
and a; can be obtained as the solutions of the quadratic
equation

(R, —R}a’+(Ry—R _Ry)a+(R_ R, —1)=0 (A4)
and
R_—a; .
Al=—= Adr,=1—4, . (A5)
a;—a

It should be noticed that, even when Egs. (15) are in-
compatible, the form factor (18) and at least its three first
derivatives coincide at ¢ =0 with those computed from
the DHFS self-consistent density.
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